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Space-Time Coding:The model
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The code design

The goal is the design of the codebook C:

C =

{
X =

(
x1 x2

x3 x4

)
| x1, x2, x3, x4 ∈ C

}
the xi are functions of the information symbols.

I Reliability is based on the pairwise probability of error of
sending X and decoding X̂ 6= X.

I Assuming that the receiver knows the channel (called the
coherent case), decoding consists of

X̂ = arg min ‖Y −HX‖2.
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The differential noncoherent MIMO channel

I Consider a channel with M transmit antennas and N receive
antennas, with unknown channel information.

I How to do decoding?

I We use differential unitary space-time modulation. that is
(assuming S0 = I)

St = XztSt−1, t = 1, 2, . . . ,

where zt ∈ {0, . . . , L− 1} is the data to be transmitted, and
C = {X0, . . . ,XL−1} the constellation to be designed.

I The matrices X have to be unitary.
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The decoding

I If we assume the channel is roughly constant, we have

Yt = StH + Wt

= XztSt−1H + Wt

= Xzt (Yt−1 −Wt−1) + Wt

= XztYt−1 + W′
t .

I The matrix H does not appear in the last equation.

I The decoder is thus given by

ẑt = arg min
l=0,...,|C|−1

‖Yt − XlYt−1‖.
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Probability of error

I At high SNR, the pairwise probability of error Pe has the
upper bound

Pe ≤
(

1

2

) (
8

ρ

)MN 1

| det(Xi − Xj)|2N

I The quality of the code is measure by the diversity product

ζC =
1

2
min

Xi 6=Xj

| det(Xi − Xj)|1/M ∀ Xi 6= Xj ∈ C
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Problem statement

Find a set C of unitary matrices (XX† = I) such that

det(Xi − Xj) 6= 0 ∀ Xi 6= Xj ∈ C
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The idea behind Division Algebras

The first ingredient: linearity

I The difficulty in building C such that

det(Xi − Xj) 6= 0, Xi 6= Xj ∈ C,

comes from the non-linearity of the determinant.

I An algebra of matrices is linear, so that

det(Xi − Xj) = det(Xk),

Xk a matrix in the algebra.
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The idea behind Division Algebras

The second ingredient: invertibility

I The problem is now to build a family C of matrices such that

det(X) 6= 0, 0 6= X ∈ C.

or equivalently, such that each 0 6= X ∈ C is invertible.

I By definition, a field is a set such that every (nonzero)
element in it is invertible.

I Take C inside an algebra of matrices which is also a field.
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The idea behind Division Algebras

Division algebra: the definition

A division algebra is a non-commutative field.
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How to build Division Algebras

The Hamiltonian Quaternions: the definition

I Let {1, i , j , k} be a basis for a vector space of dimension 4
over R.

I We have the rule that i2 = −1, j2 = −1, and ij = −ji .

I The Hamiltonian Quaternions is the set H defined by

H = {x + yi + zj + wk | x , y , z ,w ∈ R}.
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How to build Division Algebras

Hamiltonian Quaternions are a division algebra

I Define the conjugate of a quaternion q = x + yi + wk :

q̄ = x − yi − zj − wk .

I Compute that

qq̄ = x2 + y2 + z2 + w2, x , y , z ,w ∈ R.

I The inverse of the quaternion q is given by

q−1 =
q̄

qq̄
.
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How to build Division Algebras

The Hamiltonian Quaternions: how to get matrices

I Any quaternion q = x + yi + zj + wk can be written as

(x + yi) + j(z − wi) = α + jβ, α, β ∈ C.

I Now compute the multiplication by q:

(α + jβ)︸ ︷︷ ︸
q

(γ + jδ) = αγ + jᾱδ + jβγ + j2β̄δ

= (αγ − β̄δ) + j(ᾱδ + βγ)

I Write this equality in the basis {1, j}:(
α −β̄
β ᾱ

) (
γ
δ

)
=

(
αγ − β̄δ
ᾱδ + βγ

)
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How to build Division Algebras

The Hamiltonian Quaternions: the Alamouti Code

q = α + jβ, α, β ∈ C ⇐⇒
(

α −β̄
β ᾱ

)
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Basic definitions and properties

Cyclic algebras: definition

I Let L = Q(i ,
√

d) = {u +
√

dv , u, v ∈ Q(i)}. A cyclic
algebra A is defined as follows

A = L⊕ eL

with e2 = γ and

λe = eσ(λ) where σ(u +
√

dv) = u −
√

dv .

I Recall that (C = R⊕ iR)

H = C⊕ jC

with
j2 = −1 and ij = −ji
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Basic definitions and properties

Cyclic algebras: matrix formulation

I We associate to an element its multiplication matrix

x = x0 + ex1 ∈ A ↔
(

x0 γσ(x1)
x1 σ(x0)

)

I as we did for the Hamiltonian Quaternions.

q = α + jβ ∈ H ↔
(

α −β̄
β ᾱ

)
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Basic definitions and properties

Codewords based on cyclic algebras

I We have the code C as

C =

{[
x1 x2

x3 x4

]
=

[
x0 γσ(x1)
x1 σ(x0)

]
: x0, x1 ∈ L = Q(i ,

√
d)

}

I C is a linear code, i.e., X1 + X2 ∈ C for all X1,X2 ∈ C.
I The minimum determinant of C is given by

δmin(C) = min
X1 6=X2∈C

| det(X1 − X2)|2 = min
0 6=X∈C

| det(X)|2 6= 0

by choice of A, a division algebra.
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Basic definitions and properties

Encoding and rate

We have the code C as

C =

{[
a + b

√
d c + d

√
d

γ(c + dσ(
√

d)) a + bσ(
√

d)

]
: a, b, c , d ∈ Z[i ]

}

I The finite code C is obtained by limiting the information
symbols to a, b, c , d ∈ S ⊂ Z[i ] (QAM signal constellation).

I The code C is full rate.
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Basic definitions and properties

So far...so good

Recall the problem statement:

Find a set C of unitary matrices (XX† = I) such that

det(Xi − Xj) 6= 0 ∀ Xi 6= Xj ∈ C
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The unitary constraint

Natural unitary matrices

I Recall that a matrix X in the algebra has the form(
x0 x1

γσ(x1) σ(x0)

)
.

I There are natural unitary matrices:

E =

(
0 1
γ 0

)
and D =

(
x 0
0 σ(x)

)
, x ∈ L.

I If γ satisfies γγ̄ = 1, then E k , k = 0, 1, is unitary.

I If x satisfies xx̄ = 1, D and its powers will be unitary.
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The unitary constraint

A first family of unitary matrices (1)

I Consider L = Q(ζm) where ζm is a mth root of unity. Here
m = 21.

I We have

E =

 0 1 0
0 0 1
ζ3 0 0

 and D =

 ζ21 0 0
0 ζ4

21 0
0 0 ζ16

21

 ,

σ : ζ21 7→ ζ4
21.

I The family C = {E iD j , i = 0, 1, 2, j = 0, . . . , 20} has 63
elements, and thus gives a constellation of rate almost 2 for 3
antennas.
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The unitary constraint

A first family of unitary matrices (2)

I These families were obtained using representations of fixed
point free groups.

I Drawback of this construction: the rate of the code C is

R =
log2(#C)

n
=

log2(nm − 1)

n
.

I Hope: a cyclic algebra contains infinitely many elements, and
we are using only nm − 1 of them!
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The unitary constraint

Extending the construction (1)

I Recall that if x̄x = 1 then the corresponding matrix

F =

 x 0 0
0 σ(x) 0
0 0 σ2(x)


is unitary.

I We consider the subfield of L = Q(ζm) fixed by the complex
conjugation

Q(ζm + ζ−1
m ) = {y ∈ L | ȳ = y}

I We have
x̄x = 1 ⇐⇒ NL/Q(ζm+ζ−1

m )(x) = 1

where NL/Q(ζm+ζ−1
m )(x) is the relative norm of x .
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The unitary constraint

Translating the properties

A

the cyclic algebra

A described formally

the cyclic algebra

inside M3(L)

LM1 M2

the subfields of A

1
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The unitary constraint

The unitary constraint: summary

α(x)x = 1 ⇐⇒ NM/Mα(x) = 1 ⇐⇒ ∃y ∈ M∗ such that x = y/α(y).

the cyclic algebra

A described formally

xα(x) = 1, x ∈ A

the cyclic algebra

inside M3(L)

XX
† = I3, X ∈M3(L)

L

A

the subfields of A

M

Mα

M ′

1

XX† = I3 ⇐⇒ xα(x) = 1, x ∈ A ⇐⇒ NM/Mα(x) = 1, M ⊂ A
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The unitary constraint

A systematic procedure

1. Choose a cyclic algebra A.

2. Take a commutative field M inside A with Mα as subfield.

3. Take an element y in M and compute y/α(y).

4. The corresponding matrix is unitary.
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The unitary constraint

Extending the construction (2)

This simple result allows to construct codebooks of the form

C(i) =


 ζ21 0 0

0 ζ4
21 0

0 0 ζ16
21

l  0 1 0
0 0 1
ζ3 0 0

k  x 0 0
0 σ(x) 0
0 0 σ2(x)

i
 ,

l = 0, . . . ,m − 1, k = 0, . . . , n − 1 with i varying into a chosen
range, since x is no more a root of unity.

Cyclic algebras with involution: applications to unitary Space-Time coding Frédérique Oggier



Division Algebras Cyclic Division Algebras

The unitary constraint

More generally

To increase the rate, one can consider

C(i1, . . . , is) = {D lE kF i1
1 · · ·F

is
s | l = 0, . . . ,m−1, k = 0, . . . , n−1},

with i1, . . . , is varying into a chosen range.
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The unitary constraint

Conclusion

I Coding for wireless communication requires design of matrices
with suitable properties.

I Cyclic division algebras have been proven to be a suitable tool
for such code design.

I Endowed with a suitable involution, cyclic algebras are also
useful for non-coherent space-time coding, which requires
unitary matrices.
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The unitary constraint

Thank you for your attention!
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