FN 4 NF

Algebraic Cayley differential space-time codes

Frédérique Oggier
(joint work with Babak Hassibi)
frederique@systems.caltech.edu

California Institute of Technology
Sequences and Codes, Vancouver, July 17th 2006

Outline

Space-Time Coding
Differential Space-Time Coding
Cayley codes
Code construction
Algebraic Cayley codes
Division algebras

Space-Time Coding

Space-Time Coding

Space-Time Coding

Space-Time Coding: the model

$$
\mathbf{Y}=\left(\begin{array}{ll}
h_{11} & h_{12} \\
h_{21} & h_{22}
\end{array}\right)\left(\begin{array}{ll}
x_{1} & x_{2} \\
x_{3} & x_{4}
\end{array}\right)+\mathbf{W}, \mathbf{W}, \mathbf{H} \text { complex Gaussian }
$$

The code design

The goal is the design of the codebook \mathcal{C} :

$$
\mathcal{C}=\left\{\left.\mathbf{X}=\left(\begin{array}{ll}
x_{1} & x_{2} \\
x_{3} & x_{4}
\end{array}\right) \right\rvert\, x_{1}, x_{2}, x_{3}, x_{4} \in \mathbb{C}\right\}
$$

the x_{i} are functions of the information symbols.

The code design

The goal is the design of the codebook \mathcal{C} :

$$
\mathcal{C}=\left\{\left.\mathbf{X}=\left(\begin{array}{ll}
x_{1} & x_{2} \\
x_{3} & x_{4}
\end{array}\right) \right\rvert\, x_{1}, x_{2}, x_{3}, x_{4} \in \mathbb{C}\right\}
$$

the x_{i} are functions of the information symbols.

- The pairwise probability of error of sending \mathbf{X} and decoding $\hat{\mathbf{X}} \neq \mathbf{X}$ is upper bounded by

$$
P(\mathbf{X} \rightarrow \hat{\mathbf{X}}) \leq ?
$$

Coherent vs noncoherent MIMO channel

- Let us assume the receiver knows the channel (which is called coherent case). Then we have

$$
P(\mathbf{X} \rightarrow \hat{\mathbf{X}})=P(\|\mathbf{H} \mathbf{X}-\mathbf{Y}\| \geq\|\mathbf{H} \hat{\mathbf{X}}-\mathbf{Y}\|)
$$

- Assume now the receiver does not know the channel (which is called noncoherent case).
- How to do decoding?

Coherent vs noncoherent MIMO channel

- Let us assume the receiver knows the channel (which is called coherent case). Then we have

$$
P(\mathbf{X} \rightarrow \hat{\mathbf{X}})=P(\|\mathbf{H} \mathbf{X}-\mathbf{Y}\| \geq\|\mathbf{H} \hat{\mathbf{X}}-\mathbf{Y}\|)
$$

- Assume now the receiver does not know the channel (which is called noncoherent case).
- How to do decoding?

The differential noncoherent MIMO channel

- We use differential unitary space-time modulation. that is (assuming $\mathbf{S}_{0}=\mathbf{I}$)

$$
\mathbf{S}_{t}=\mathbf{X}_{z_{t}} \mathbf{S}_{t-1}, t=1,2, \ldots,
$$

where $z_{t} \in\{0, \ldots, L-1\}$ is the data to be transmitted, and $\mathcal{C}=\left\{\mathbf{X}_{0}, \ldots, \mathbf{X}_{L-1}\right\}$ the constellation to be designed.

The differential noncoherent MIMO channel

- We use differential unitary space-time modulation. that is (assuming $\mathbf{S}_{0}=\mathbf{I}$)

$$
\mathbf{S}_{t}=\mathbf{X}_{z_{t}} \mathbf{S}_{t-1}, t=1,2, \ldots
$$

where $z_{t} \in\{0, \ldots, L-1\}$ is the data to be transmitted, and $\mathcal{C}=\left\{\mathbf{X}_{0}, \ldots, \mathbf{X}_{L-1}\right\}$ the constellation to be designed.

- The matrices \mathbf{X} have to be unitary.

The decoding

- If we assume the channel is roughly constant, we have

$$
\begin{aligned}
\mathbf{Y}_{t} & =\mathbf{S}_{t} \mathbf{H}+\mathbf{W}_{t} \\
& =\mathbf{X}_{z_{t}} \mathbf{S}_{t-1} \mathbf{H}+\mathbf{W}_{t} \\
& =\mathbf{X}_{z_{t}}\left(\mathbf{Y}_{t-1}-\mathbf{W}_{t-1}\right)+\mathbf{W}_{t} \\
& =\mathbf{X}_{z_{t}} \mathbf{Y}_{t-1}+\mathbf{W}_{t}^{\prime}
\end{aligned}
$$

- The matrix \mathbf{H} does not appear in the last equation.
- The decoder is thus given by

The decoding

- If we assume the channel is roughly constant, we have

$$
\begin{aligned}
\mathbf{Y}_{t} & =\mathbf{S}_{t} \mathbf{H}+\mathbf{W}_{t} \\
& =\mathbf{X}_{z_{t}} \mathbf{S}_{t-1} \mathbf{H}+\mathbf{W}_{t} \\
& =\mathbf{X}_{z_{t}}\left(\mathbf{Y}_{t-1}-\mathbf{W}_{t-1}\right)+\mathbf{W}_{t} \\
& =\mathbf{X}_{z_{t}} \mathbf{Y}_{t-1}+\mathbf{W}_{t}^{\prime}
\end{aligned}
$$

- The matrix \mathbf{H} does not appear in the last equation.
- The decoder is thus given by

The decoding

- If we assume the channel is roughly constant, we have

$$
\begin{aligned}
\mathbf{Y}_{t} & =\mathbf{S}_{t} \mathbf{H}+\mathbf{W}_{t} \\
& =\mathbf{X}_{z_{t}} \mathbf{S}_{t-1} \mathbf{H}+\mathbf{W}_{t} \\
& =\mathbf{X}_{z_{t}}\left(\mathbf{Y}_{t-1}-\mathbf{W}_{t-1}\right)+\mathbf{W}_{t} \\
& =\mathbf{X}_{z_{t}} \mathbf{Y}_{t-1}+\mathbf{W}_{t}^{\prime}
\end{aligned}
$$

- The matrix \mathbf{H} does not appear in the last equation.
- The decoder is thus given by

$$
\hat{z}_{t}=\arg \min _{I=0, \ldots,|\mathcal{C}|-1}\left\|\mathbf{Y}_{t}-\mathbf{X}_{/} \mathbf{Y}_{t-1}\right\|
$$

Probability of error

- At high SNR, the pairwise probability of error P_{e} has the upper bound

$$
P_{e} \leq\left(\frac{1}{2}\right)\left(\frac{8}{\rho}\right)^{M N} \frac{1}{\left|\operatorname{det}\left(\mathbf{X}_{i}-\mathbf{X}_{j}\right)\right|^{2 N}}
$$

- The quality of the code is measure by the diversity product

$$
\zeta_{\mathcal{C}}=\frac{1}{2} \min _{\mathbf{x}_{i} \neq \mathbf{X}_{j}}\left|\operatorname{det}\left(\mathbf{X}_{i}-\mathbf{X}_{j}\right)\right|^{1 / M} \quad \forall \mathbf{X}_{i} \neq \mathbf{X}_{j} \in \mathcal{C}
$$

Problem statement

- Find a set \mathcal{C} of unitary matrices $\left(\mathbf{X X}^{\dagger}=\mathbf{I}\right)$ such that

$$
\operatorname{det}\left(\mathbf{X}_{i}-\mathbf{X}_{j}\right) \neq 0 \quad \forall \mathbf{X}_{i} \neq \mathbf{X}_{j} \in \mathcal{C}
$$

- Find a way of encoding and decoding these matrices.

Problem statement

- Find a set \mathcal{C} of unitary matrices $\left(\mathbf{X X}^{\dagger}=\mathbf{I}\right)$ such that

$$
\operatorname{det}\left(\mathbf{X}_{i}-\mathbf{X}_{j}\right) \neq 0 \quad \forall \mathbf{X}_{i} \neq \mathbf{X}_{j} \in \mathcal{C}
$$

- Find a way of encoding and decoding these matrices.

Space-Time Coding
 Differential Space-Time Coding

Cayley codes

Code construction

Algebraic Cayley codes
 Division algebras

The Cayley transform

- Let A be an Hermitian matrix, that is $A^{\dagger}=A$.
- Its Cayley transform is given by

$$
V=(\mathbf{I}+i A)^{-1}(\mathbf{I}-i A) .
$$

Encoding a Cayley code

- Let $\alpha_{1}, \ldots, \alpha_{Q} \in \mathcal{S} \subset \mathbb{R}$ be the information symbols.
- Let A_{1}, \ldots, A_{Q} be a basis of Q Hermitian matrices.
- Encode the α_{i} 's in A :

- Compute

$$
V=(\mathbf{I}+i A)^{-1}(\mathbf{I}-i A) .
$$

Encoding a Cayley code

- Let $\alpha_{1}, \ldots, \alpha_{Q} \in \mathcal{S} \subset \mathbb{R}$ be the information symbols.
- Let A_{1}, \ldots, A_{Q} be a basis of Q Hermitian matrices.
- Encode the α_{i} 's in A :

$$
A=\sum_{q=1}^{Q} \alpha_{q} A_{q}
$$

- Compute

$$
V=(\mathbf{I}+i A)^{-1}(\mathbf{I}-i A) .
$$

Design criteria for Cayley codes

- Recall we want $\operatorname{det}\left(V_{i}-V_{j}\right) \neq 0$, which is equivalent to ask

$$
\operatorname{det}\left(A_{i}-A_{j}\right) \neq 0, \quad i \neq j
$$

where A_{i} are Hermitian.

- The rate of the code is

Design criteria for Cayley codes

- Recall we want $\operatorname{det}\left(V_{i}-V_{j}\right) \neq 0$, which is equivalent to ask

$$
\operatorname{det}\left(A_{i}-A_{j}\right) \neq 0, \quad i \neq j
$$

where A_{i} are Hermitian.

- The rate of the code is

$$
\frac{Q}{M} \log |\mathcal{S}|
$$

Previous Cayley codes

- Cayley codes were introduced by Hassibi and Hochwald.
- They are available at high rate.
- The diversity criterion was replaced by an information theoretical criterion.
- Cayley codes can be efficiently decoded (linearized Sphere Decoder).
- One drawback: heavy optimization is required for each number of antennas and each rate.

Previous Cayley codes

- Cayley codes were introduced by Hassibi and Hochwald.
- They are available at high rate.
- The diversity criterion was replaced by an information theoretical criterion.
- Cayley codes can be efficiently decoded (linearized Sphere Decoder).
- One drawback: heavy optimization is required for each number of antennas and each rate.

Space-Time Coding
 Differential Space-Time Coding

Cayley codes
Code construction

Algebraic Cayley codes
Division algebras

The first ingredient: linearity

- The difficulty in building \mathcal{C} such that

$$
\operatorname{det}\left(\mathbf{X}_{i}-\mathbf{X}_{j}\right) \neq 0, \mathbf{X}_{i} \neq \mathbf{X}_{j} \in \mathcal{C}
$$

comes from the non-linearity of the determinant.

- An algebra of matrices is linear, so that

\mathbf{X}_{k} a matrix in the algebra.

The first ingredient: linearity

- The difficulty in building \mathcal{C} such that

$$
\operatorname{det}\left(\mathbf{X}_{i}-\mathbf{X}_{j}\right) \neq 0, \mathbf{X}_{i} \neq \mathbf{X}_{j} \in \mathcal{C}
$$

comes from the non-linearity of the determinant.

- An algebra of matrices is linear, so that

$$
\operatorname{det}\left(\mathbf{X}_{i}-\mathbf{X}_{j}\right)=\operatorname{det}\left(\mathbf{X}_{k}\right)
$$

\mathbf{X}_{k} a matrix in the algebra.

The second ingredient: invertibility

- The problem is now to build a family \mathcal{C} of matrices such that

$$
\operatorname{det}(\mathbf{X}) \neq 0, \quad \mathbf{0} \neq \mathbf{X} \in \mathcal{C}
$$

or equivalently, such that each $\mathbf{0} \neq \mathbf{X} \in \mathcal{C}$ is invertible.

- By definition, a field is a set such that every (nonzero) element in it is invertible.
- Take \mathcal{C} inside an algebra of matrices which is also a field.
- A division algebra is a non-commutative field.

The second ingredient: invertibility

- The problem is now to build a family \mathcal{C} of matrices such that

$$
\operatorname{det}(\mathbf{X}) \neq 0, \quad \mathbf{0} \neq \mathbf{X} \in \mathcal{C}
$$

or equivalently, such that each $\mathbf{0} \neq \mathbf{X} \in \mathcal{C}$ is invertible.

- By definition, a field is a set such that every (nonzero) element in it is invertible.
- Take \mathcal{C} inside an algebra of matrices which is also a field.
- A division algebra is a non-commutative field.

The second ingredient: invertibility

- The problem is now to build a family \mathcal{C} of matrices such that

$$
\operatorname{det}(\mathbf{X}) \neq 0, \quad \mathbf{0} \neq \mathbf{X} \in \mathcal{C}
$$

or equivalently, such that each $\mathbf{0} \neq \mathbf{X} \in \mathcal{C}$ is invertible.

- By definition, a field is a set such that every (nonzero) element in it is invertible.
- Take \mathcal{C} inside an algebra of matrices which is also a field.
- A division algebra is a non-commutative field.

The second ingredient: invertibility

- The problem is now to build a family \mathcal{C} of matrices such that

$$
\operatorname{det}(\mathbf{X}) \neq 0, \quad \mathbf{0} \neq \mathbf{X} \in \mathcal{C}
$$

or equivalently, such that each $\mathbf{0} \neq \mathbf{X} \in \mathcal{C}$ is invertible.

- By definition, a field is a set such that every (nonzero) element in it is invertible.
- Take \mathcal{C} inside an algebra of matrices which is also a field.
- A division algebra is a non-commutative field.
- Let $\mathbb{Q}(i)=\{a+i b, a, b \in \mathbb{Q}\}$.
- Let L be a vector space of dimension n over $\mathbb{Q}(i)$.
- A cyclic algebra \mathcal{A} is defined as follows

$$
\mathcal{A}=\left\{\left(x_{0}, x_{1}, \ldots, x_{n-1}\right) \mid x_{i} \in L\right\}
$$

with basis $\left\{1, e, \ldots, e^{n-1}\right\}$ and $e^{n}=\gamma \in \mathbb{Q}(i)$.

- Think of $i^{2}=-1$.

An example of division algebras: cyclic division algebras

- Let $\mathbb{Q}(i)=\{a+i b, a, b \in \mathbb{Q}\}$.
- Let L be a vector space of dimension n over $\mathbb{Q}(i)$.
- A cyclic algebra \mathcal{A} is defined as follows

$$
\mathcal{A}=\left\{\left(x_{0}, x_{1}, \ldots, x_{n-1}\right) \mid x_{i} \in L\right\}
$$

with basis $\left\{1, e, \ldots, e^{n-1}\right\}$ and $e^{n}=\gamma \in \mathbb{Q}(i)$.

An example of division algebras: cyclic division algebras

- Let $\mathbb{Q}(i)=\{a+i b, a, b \in \mathbb{Q}\}$.
- Let L be a vector space of dimension n over $\mathbb{Q}(i)$.
- A cyclic algebra \mathcal{A} is defined as follows

$$
\mathcal{A}=\left\{\left(x_{0}, x_{1}, \ldots, x_{n-1}\right) \mid x_{i} \in L\right\}
$$

with basis $\left\{1, e, \ldots, e^{n-1}\right\}$ and $e^{n}=\gamma \in \mathbb{Q}(i)$.

An example of division algebras: cyclic division algebras

- Let $\mathbb{Q}(i)=\{a+i b, a, b \in \mathbb{Q}\}$.
- Let L be a vector space of dimension n over $\mathbb{Q}(i)$.
- A cyclic algebra \mathcal{A} is defined as follows

$$
\mathcal{A}=\left\{\left(x_{0}, x_{1}, \ldots, x_{n-1}\right) \mid x_{i} \in L\right\}
$$

with basis $\left\{1, e, \ldots, e^{n-1}\right\}$ and $e^{n}=\gamma \in \mathbb{Q}(i)$.

- Think of $i^{2}=-1$.

Cyclic algebras: how to multiply

1. For $n=2, x \in \mathcal{A}$ can be written $x=x_{0}+e x_{1}$.
2. Compute the multiplication by x of any element $y \in \mathcal{A}$.

$=x_{0} y_{0}+x_{0} e y_{1}+e x_{1} y_{0}+e x_{1} e y_{1}$
3. The noncommutativity rule: $\lambda e=e \sigma(\lambda), \sigma: L \rightarrow L$ a "suitable" map
4. So that

since $e^{2}=\gamma$.

Cyclic algebras: how to multiply

1. For $n=2, x \in \mathcal{A}$ can be written $x=x_{0}+e x_{1}$.
2. Compute the multiplication by x of any element $y \in \mathcal{A}$.

$$
\begin{aligned}
x y & =\left(x_{0}+e x_{1}\right)\left(y_{0}+e y_{1}\right) \\
& =x_{0} y_{0}+x_{0} e y_{1}+e x_{1} y_{0}+e x_{1} e y_{1}
\end{aligned}
$$

3. The noncommutativity rule: $\lambda e=e \sigma(\lambda), \sigma: L \rightarrow L$ a "suitable" map
4. So that

Cyclic algebras: how to multiply

1. For $n=2, x \in \mathcal{A}$ can be written $x=x_{0}+e x_{1}$.
2. Compute the multiplication by x of any element $y \in \mathcal{A}$.

$$
\begin{aligned}
x y & =\left(x_{0}+e x_{1}\right)\left(y_{0}+e y_{1}\right) \\
& =x_{0} y_{0}+x_{0} e y_{1}+e x_{1} y_{0}+e x_{1} e y_{1}
\end{aligned}
$$

3. The noncommutativity rule: $\lambda e=e \sigma(\lambda), \sigma: L \rightarrow L$ a "suitable" map .
4. So that

Cyclic algebras: how to multiply

1. For $n=2, x \in \mathcal{A}$ can be written $x=x_{0}+e x_{1}$.
2. Compute the multiplication by x of any element $y \in \mathcal{A}$.

$$
\begin{aligned}
x y & =\left(x_{0}+e x_{1}\right)\left(y_{0}+e y_{1}\right) \\
& =x_{0} y_{0}+x_{0} e y_{1}+e x_{1} y_{0}+e x_{1} e y_{1}
\end{aligned}
$$

3. The noncommutativity rule: $\lambda e=e \sigma(\lambda), \sigma: L \rightarrow L$ a "suitable" map.
4. So that

$$
\begin{aligned}
x y & =x_{0} y_{0}+e \sigma\left(x_{0}\right) y_{1}+e x_{1} y_{0}+\gamma \sigma\left(x_{1}\right) y_{1} \\
& =\left[x_{0} y_{0}+\gamma \sigma\left(x_{1}\right) y_{1}\right]+e\left[\sigma\left(x_{0}\right) y_{1}+x_{1} y_{0}\right]
\end{aligned}
$$

since $e^{2}=\gamma$.

Cyclic algebras: matrix formulation

1. We have $x y=\left[x_{0} y_{0}+\gamma \sigma\left(x_{1}\right) y_{1}\right]+e\left[\sigma\left(x_{0}\right) y_{1}+x_{1} y_{0}\right]$.
2. In the basis $\{1, e\}$, this yields

$$
x y=\left(\begin{array}{cc}
x_{0} & \gamma \sigma\left(x_{1}\right) \\
x_{1} & \sigma\left(x_{0}\right)
\end{array}\right)\binom{y_{0}}{y_{1}} .
$$

3. There is thus a correspondance
4. We associate to an element its multiplication matrix.

Cyclic algebras: matrix formulation

1. We have $x y=\left[x_{0} y_{0}+\gamma \sigma\left(x_{1}\right) y_{1}\right]+e\left[\sigma\left(x_{0}\right) y_{1}+x_{1} y_{0}\right]$.
2. In the basis $\{1, e\}$, this yields

$$
x y=\left(\begin{array}{cc}
x_{0} & \gamma \sigma\left(x_{1}\right) \\
x_{1} & \sigma\left(x_{0}\right)
\end{array}\right)\binom{y_{0}}{y_{1}} .
$$

3. There is thus a correspondance

$$
x=x_{0}+e x_{1} \in \mathcal{A} \leftrightarrow\left(\begin{array}{cc}
x_{0} & \gamma \sigma\left(x_{1}\right) \\
x_{1} & \sigma\left(x_{0}\right)
\end{array}\right) .
$$

4. We associate to an element its multiplication matrix.

Cyclic algebras: matrix formulation

1. We have $x y=\left[x_{0} y_{0}+\gamma \sigma\left(x_{1}\right) y_{1}\right]+e\left[\sigma\left(x_{0}\right) y_{1}+x_{1} y_{0}\right]$.
2. In the basis $\{1, e\}$, this yields

$$
x y=\left(\begin{array}{cc}
x_{0} & \gamma \sigma\left(x_{1}\right) \\
x_{1} & \sigma\left(x_{0}\right)
\end{array}\right)\binom{y_{0}}{y_{1}} .
$$

3. There is thus a correspondance

$$
x=x_{0}+e x_{1} \in \mathcal{A} \leftrightarrow\left(\begin{array}{cc}
x_{0} & \gamma \sigma\left(x_{1}\right) \\
x_{1} & \sigma\left(x_{0}\right)
\end{array}\right) .
$$

4. We associate to an element its multiplication matrix.

An involution on the algebra

- Choose the matrices A_{j} to be in a division algebra, so that $V_{j}=\left(\mathbf{I}-i A_{j}\right)\left(\mathbf{I}-i A_{j}\right)$ satisfies $\operatorname{det}\left(V_{i}-V_{j}\right) \neq 0$.
- To satisfy the Hermitian condition:

An involution on the algebra

- Choose the matrices A_{j} to be in a division algebra, so that $V_{j}=\left(\mathbf{I}-i A_{j}\right)\left(\mathbf{I}-i A_{j}\right)$ satisfies $\operatorname{det}\left(V_{i}-V_{j}\right) \neq 0$.
- To satisfy the Hermitian condition:

$$
\begin{array}{ccc}
\mathcal{A} & & \mathcal{M}_{n}(L) \\
\hline x & \leftrightarrow & \mathbf{X} \\
\alpha(x) & \leftrightarrow & \mathbf{X}^{\dagger} \\
\alpha(x)=x & \leftrightarrow & \mathbf{X}^{\dagger}=\mathbf{X} \\
\alpha\left(x_{0}+e x_{1}\right)= & \overline{x_{0}} & +e^{-1} \sigma^{-1}\left(\overline{x_{1}}\right) .
\end{array}
$$

Example: 2 transmit antennas (I)

- Consider the algebra $\mathcal{A}=(\mathbb{Q}(i, \sqrt{5}) / \mathbb{Q}(i), \sigma, i)$, where $\sigma: \sqrt{5} \mapsto-\sqrt{5}$.
- Let $x \in \mathcal{A}$,

$$
x=x_{0}+e x_{1}, x_{0}, x_{1} \in \mathbb{Q}(i, \sqrt{5}) .
$$

- We compute $x=\alpha(x)$. Let $\theta=\frac{1+\sqrt{5}}{2}$. Thus, x can be written

$$
x=\left[a_{0}+\theta b_{0}\right]+e[(s(1-\theta)-t \theta)+i(t(1-\theta)-s \theta)],
$$

Example: 2 transmit antennas (II)

- In matrix equations

$$
\begin{aligned}
\mathbf{X}= & a_{0}\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right)+s\left(\begin{array}{cc}
0 & 1-\theta-i \theta \\
i \theta+(1-\theta) & 0
\end{array}\right) \\
& +b_{0}\left(\begin{array}{cc}
\theta & 0 \\
0 & 1-\theta
\end{array}\right)+t\left(\begin{array}{cc}
0 & -\theta+i(1-\theta) \\
-i(1-\theta)-\theta & 0
\end{array}\right) .
\end{aligned}
$$

We thus get a basis of 4 matrices.

Example: 2 transmit antennas (III)

Figure: $M=2, N=2, R=6, Q=4$

4 transmit antennas

Figure: $M=4, N=1, R=4, Q=8$

Thank you for your attention!

