Division	Algebras
000	
0000	

Other applications

FONDS NATIONAL SUISSE SCHWEIZERISCHER NATIONALFONDS FONDO NAZIONALE SVIZZERO SWISS NATIONAL SCIENCE FOUNDATION

Division Algebras: A Tool for Space-Time Coding

Frédérique Oggier frederique@systems.caltech.edu

California Institute of Technology

UCSD, CWC Seminar, February 17th 2006

- 4 同 ト - 4 三 ト - 4

Division	Algebras
000	
0000	

Other applications

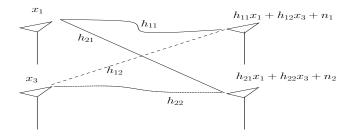
Space-Time Coding



Other applications

Space-Time Coding

< □ > < f¹ >



Division Algebras: A Tool for Space-Time Coding

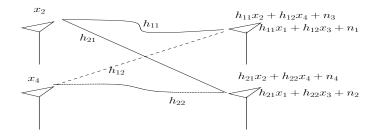
3 Frédérique Oggier

Ξ

Other applications

Space-Time Coding

< □ > < □ > < □ > < □ > < □ > < □



Division Algebras	The Golden Code	Other applications
000	00 000000	00000

Space-Time Coding: The model

$$\mathbf{Y} = \left(\begin{array}{cc} h_{11} & h_{12} \\ h_{21} & h_{22} \end{array}\right) \left(\begin{array}{cc} x_1 & x_2 \\ x_3 & x_4 \end{array}\right) + \mathbf{W}, \ \mathbf{W}, \ \mathbf{H} \ \text{complex Gaussian}$$

time T = 1 time T = 2

Division Algebras: A Tool for Space-Time Coding

< 17 ▶

→ Ξ →

Division Algebras The Golden Code	
000	00000
0000 0000000	00

The code design

The goal is the design of the codebook C:

$$\mathcal{C} = \left\{ \mathbf{X} = \left(\begin{array}{cc} x_1 & x_2 \\ x_3 & x_4 \end{array} \right) | x_1, x_2, x_3, x_4 \in \mathbb{C} \right\}$$

the x_i are functions of the information symbols.

► The *pairwise probability of error* of sending X and decoding X̂ ≠ X is upper bounded by

$$P(\mathbf{X}
ightarrow \hat{\mathbf{X}}) \leq rac{const}{|\det(\mathbf{X} - \hat{\mathbf{X}})|^{2M}}$$

We assume the receiver knows the channel (called the coherent case).

Division Algebras The Golden Code	
000	00000
0000 0000000	00

The code design

The goal is the design of the codebook C:

$$\mathcal{C} = \left\{ \mathbf{X} = \left(\begin{array}{cc} x_1 & x_2 \\ x_3 & x_4 \end{array} \right) | x_1, x_2, x_3, x_4 \in \mathbb{C} \right\}$$

the x_i are functions of the information symbols.

► The *pairwise probability of error* of sending X and decoding ≠ X is upper bounded by

$$P(\mathbf{X}
ightarrow \hat{\mathbf{X}}) \leq rac{const}{|\det(\mathbf{X} - \hat{\mathbf{X}})|^{2M}}$$

We assume the receiver knows the channel (called the coherent case).

Division Algebras	The Golden Code	Other applications
000	00 000000	00000

A simplified problem

• Find a family C of $M \times M$ matrices such that

$$\det(\mathbf{X}_i - \mathbf{X}_j) \neq 0, \ \mathbf{X}_i \neq \mathbf{X}_j \in \mathcal{C}.$$

- ► Such a family *C* is said *fully-diverse*.
- Encoding, decoding

Division Algebras	The Golden Code	Other applications
000	00 000000	00000

A simplified problem

• Find a family C of $M \times M$ matrices such that

$$\det(\mathbf{X}_i - \mathbf{X}_j) \neq 0, \ \mathbf{X}_i \neq \mathbf{X}_j \in \mathcal{C}.$$

- ► Such a family *C* is said *fully-diverse*.
- Encoding, decoding

Division Algebras	The Golden Code	Other applications
000	00 0000000	00000 00

Outline

Division Algebras

The idea behind Division Algebras How to build Division Algebras

The Golden Code

Cyclic Division Algebras A 2 \times 2 Space-Time Code

Other applications

Differential Space-Time Coding Wireless Relay Networks

Division Algebras	The Golden Code	Other applic
• 00 • 00 0	00 000000	00000
0000	0000000	00

The idea behind Division Algebras

The first ingredient: linearity

\blacktriangleright The difficulty in building ${\cal C}$ such that

$$\det(\mathbf{X}_i - \mathbf{X}_j) \neq 0, \ \mathbf{X}_i \neq \mathbf{X}_j \in \mathcal{C},$$

comes from the *non-linearity* of the determinant.

$$\det(\mathbf{X}_i - \mathbf{X}_j) = \det(\mathbf{X}_k),$$

 X_k a matrix in the algebra.

→ Ξ →

The Golden Code	Other applicati
00 0000000	00000
	00

The idea behind Division Algebras

The first ingredient: linearity

 \blacktriangleright The difficulty in building ${\cal C}$ such that

$$\det(\mathbf{X}_i - \mathbf{X}_j) \neq 0, \ \mathbf{X}_i \neq \mathbf{X}_j \in \mathcal{C},$$

comes from the *non-linearity* of the determinant.

$$\det(\mathbf{X}_i - \mathbf{X}_j) = \det(\mathbf{X}_k),$$

 \mathbf{X}_k a matrix in the algebra.

Division Algebras	
000	
0000	

The idea behind Division Algebras

The second ingredient: invertibility

 \blacktriangleright The problem is now to build a family ${\cal C}$ of matrices such that

 $\mathsf{det}(\mathbf{X}) \neq \mathbf{0}, \ \mathbf{0} \neq \mathbf{X} \in \mathcal{C}.$

or equivalently, such that each $\boldsymbol{0}\neq\boldsymbol{X}\in\mathcal{C}$ is invertible.

- By definition, a *field* is a set such that every (nonzero) element in it is invertible.
- Take C inside an algebra of matrices which is also a field.

→ Ξ → < Ξ</p>

Division Algebras	
000	
0000	

The idea behind Division Algebras

The second ingredient: invertibility

 \blacktriangleright The problem is now to build a family ${\cal C}$ of matrices such that

 $\mathsf{det}(\boldsymbol{\mathsf{X}}) \neq \boldsymbol{0}, \ \boldsymbol{0} \neq \boldsymbol{\mathsf{X}} \in \mathcal{C}.$

or equivalently, such that each $\mathbf{0} \neq \mathbf{X} \in \mathcal{C}$ is *invertible*.

- By definition, a *field* is a set such that every (nonzero) element in it is invertible.
- Take C inside an algebra of matrices which is also a field.

→ Ξ → < Ξ</p>

Division Algebras	
000	

The idea behind Division Algebras

The second ingredient: invertibility

 \blacktriangleright The problem is now to build a family ${\mathcal C}$ of matrices such that

 $\mathsf{det}(\mathbf{X}) \neq \mathbf{0}, \ \mathbf{0} \neq \mathbf{X} \in \mathcal{C}.$

or equivalently, such that each $\mathbf{0} \neq \mathbf{X} \in \mathcal{C}$ is *invertible*.

- By definition, a *field* is a set such that every (nonzero) element in it is invertible.
- ► Take C inside an algebra of matrices which is also a field.

→ Ξ ► + Ξ ►

Division	Algebras	
000		
0000		

Other applications

The idea behind Division Algebras

Division algebra: the definition

A *division algebra* is a non-commutative field.

Division Algebras: A Tool for Space-Time Coding

Frédérique Oggier

イロト イポト イヨト イヨト

The Hamiltonian Quaternions: the definition

- Let {1, i, j, k} be a basis for a vector space of dimension 4 over ℝ.
- We have the rule that $i^2 = -1$, $j^2 = -1$, and ij = -ji.
- ▶ The Hamiltonian Quaternions is the set \mathbb{H} defined by

$$\mathbb{H} = \{x + yi + zj + wk \mid x, y, z, w \in \mathbb{R}\}.$$

Division Algebras: A Tool for Space-Time Coding

イロト イポト イヨト イヨト

Division Algebras	The Golden Code	Other applications
000 0000	00 000000	00000
How to build Division Algebras		

Hamiltonian Quaternions are a division algebra

• Define the *conjugate* of a quaternion q = x + yi + wk:

$$\bar{q} = x - yi - zj - wk.$$

Compute that

$$q\bar{q} = x^2 + y^2 + z^2 + w^2, \ x, y, z, w \in \mathbb{R}.$$

▶ The inverse of the quaternion *q* is given by

$$q^{-1} = \frac{\bar{q}}{q\bar{q}}.$$

Division Algebras	The Golden Code	Other applications
000 0000	00 000000	00000
How to build Division Algebras		

Hamiltonian Quaternions are a division algebra

• Define the *conjugate* of a quaternion q = x + yi + wk:

$$\bar{q} = x - yi - zj - wk.$$

Compute that

$$q\bar{q} = x^2 + y^2 + z^2 + w^2, \ x, y, z, w \in \mathbb{R}.$$

▶ The inverse of the quaternion *q* is given by

$$q^{-1} = \frac{\bar{q}}{q\bar{q}}.$$

Division Algebras	The Golden Code	Other applications
000 0000	00 000000	00000
How to build Division Algebras		

Hamiltonian Quaternions are a division algebra

• Define the *conjugate* of a quaternion q = x + yi + wk:

$$\bar{q} = x - yi - zj - wk.$$

Compute that

$$q\bar{q} = x^2 + y^2 + z^2 + w^2, \ x, y, z, w \in \mathbb{R}.$$

▶ The inverse of the quaternion *q* is given by

$$q^{-1} = \frac{\bar{q}}{q\bar{q}}$$

Division Algebras	The Golden Code	Other application
000 00000	00 0000000	00000
Harrison India Distance Alexandre		

How to build Division Algebras

The Hamiltonian Quaternions: how to get matrices

• Any quaternion q = x + yi + zj + wk can be written as

$$(x + yi) + j(z - wi) = \alpha + j\beta, \ \alpha, \ \beta \in \mathbb{C}.$$

Now compute the *multiplication* by *q*:

$$\underbrace{(\alpha + j\beta)}_{q}(\gamma + j\delta) = \alpha\gamma + j\bar{\alpha}\delta + j\beta\gamma + j^{2}\bar{\beta}\delta$$
$$= (\alpha\gamma - \bar{\beta}\delta) + j(\bar{\alpha}\delta + \beta\gamma)$$

• Write this equality in the basis $\{1, j\}$:

$$\left(\begin{array}{cc} \alpha & -\bar{\beta} \\ \beta & \bar{\alpha} \end{array}\right) \left(\begin{array}{c} \gamma \\ \delta \end{array}\right) = \left(\begin{array}{c} \alpha\gamma - \bar{\beta}\delta \\ \bar{\alpha}\delta + \beta\gamma \end{array}\right)$$

Division Algebras ○○○ ○○●○	The Golden Code oo ooooooo	Other applications
0000	0000000	00
Harrison build Division Alexandre		

How to build Division Algebras

The Hamiltonian Quaternions: how to get matrices

• Any quaternion q = x + yi + zj + wk can be written as

$$(x + yi) + j(z - wi) = \alpha + j\beta, \ \alpha, \ \beta \in \mathbb{C}.$$

▶ Now compute the *multiplication* by *q*:

$$\underbrace{(\alpha + j\beta)}_{q}(\gamma + j\delta) = \alpha\gamma + j\bar{\alpha}\delta + j\beta\gamma + j^{2}\bar{\beta}\delta$$
$$= (\alpha\gamma - \bar{\beta}\delta) + j(\bar{\alpha}\delta + \beta\gamma)$$

• Write this equality in the basis $\{1, j\}$:

$$\left(\begin{array}{cc} \alpha & -\bar{\beta} \\ \beta & \bar{\alpha} \end{array}\right) \left(\begin{array}{c} \gamma \\ \delta \end{array}\right) = \left(\begin{array}{c} \alpha\gamma - \bar{\beta}\delta \\ \bar{\alpha}\delta + \beta\gamma \end{array}\right)$$

Division Algebras	The Golden Code	Other applications
000 0000	00 0000000	00000
Hannes India Distance Alexience		

How to build Division Algebras

The Hamiltonian Quaternions: how to get matrices

• Any quaternion q = x + yi + zj + wk can be written as

$$(x + yi) + j(z - wi) = \alpha + j\beta, \ \alpha, \ \beta \in \mathbb{C}.$$

▶ Now compute the *multiplication* by *q*:

$$\underbrace{(\alpha + j\beta)}_{q}(\gamma + j\delta) = \alpha\gamma + j\bar{\alpha}\delta + j\beta\gamma + j^{2}\bar{\beta}\delta$$
$$= (\alpha\gamma - \bar{\beta}\delta) + j(\bar{\alpha}\delta + \beta\gamma)$$

▶ Write this equality in the basis {1, *j*}:

$$\begin{pmatrix} \alpha & -\bar{\beta} \\ \beta & \bar{\alpha} \end{pmatrix} \begin{pmatrix} \gamma \\ \delta \end{pmatrix} = \begin{pmatrix} \alpha\gamma - \bar{\beta}\delta \\ \bar{\alpha}\delta + \beta\gamma \end{pmatrix}$$

Division Algebras	The Golden Code
000	00
0000	0000000

Other applications 00000 00

How to build Division Algebras

The Hamiltonian Quaternions: the Alamouti Code

$$q = \alpha + j\beta, \ \alpha, \ \beta \in \mathbb{C} \iff \left(egin{array}{cc} lpha & -ar{eta} \\ eta & ar{lpha} \end{array}
ight)$$

Division Algebras: A Tool for Space-Time Coding

E ▶ . .≣ • ∽ ९ (Frédérique Oggier

・ロン ・回と ・ ヨン ・ ヨン

000 00	ations
0000 0000000 000000 000000 0000000 00000	

Division Algebras The idea behind Division Algebras How to build Division Algebras

The Golden Code Cyclic Division Algebras A 2×2 Space-Time Code

Other applications Differential Space-Time Coding Wireless Relay Networks

000 00 000 0000 00000 00000 00000 000000	Division Algebras	The Golden Code	Other applications
		00 0000000	

Joint work with Prof. Jean-Claude Belfiore, Ghaya Rekaya, ENST Paris, France. Prof. Emanuele Viterbo, Politecnico di Torino, Italy.

Division Algebras 000 0000	The Golden Code ●O ○○○○○○○	Other applications

Cyclic Division Algebras

Cyclic algebras: definition

▶ Let
$$L = \mathbb{Q}(i, \sqrt{d}) = \{u + \sqrt{d}v, u, v \in \mathbb{Q}(i)\}$$
. A cyclic

algebra \mathcal{A} is defined as follows

$$\mathcal{A} = \mathcal{L} \oplus \mathcal{eL}$$

with $e^2 = \gamma$ and

$$\lambda e = e\sigma(\lambda)$$
 where $\sigma(u + \sqrt{d}v) = u - \sqrt{d}v$.

▶ Recall that
$$(\mathbb{C} = \mathbb{R} \oplus i\mathbb{R})$$

$$\mathbb{H} = \mathbb{C} \oplus j\mathbb{C}$$

with

$$j^2 = -1$$
 and $ij = -ji$

Division Algebras: A Tool for Space-Time Coding

- 4 同 🖌 4 日 🖌 4 日

Division Algebras	The Golden Code	Other applications
000 0000	• 0 0000000	00000 00
Cyclic Division Algebras		

Cyclic algebras: definition

► Let $L = \mathbb{Q}(i, \sqrt{d}) = \{u + \sqrt{d}v, u, v \in \mathbb{Q}(i)\}$. A cyclic algebra \mathcal{A} is defined as follows

$$\mathcal{A} = \mathcal{L} \oplus \mathcal{eL}$$

with $e^2 = \gamma$ and

$$\lambda e = e\sigma(\lambda)$$
 where $\sigma(u + \sqrt{d}v) = u - \sqrt{d}v$.

▶ Recall that $(\mathbb{C} = \mathbb{R} \oplus i\mathbb{R})$

$$\mathbb{H} = \mathbb{C} \oplus j\mathbb{C}$$

with

$$j^2 = -1$$
 and $ij = -ji$

→ 3 → < 3</p>

Division Algebras	The Golden Code	Other applications
000 0000	• 0 0000000	00000 00
Cyclic Division Algebras		

Cyclic algebras: definition

Let L = Q(i, √d) = {u + √dv, u, v ∈ Q(i)}. A cyclic algebra A is defined as follows

$$\mathcal{A} = \mathcal{L} \oplus \mathcal{eL}$$

with $e^2 = \gamma$ and

$$\lambda e = e\sigma(\lambda)$$
 where $\sigma(u + \sqrt{d}v) = u - \sqrt{d}v$.

▶ Recall that $(\mathbb{C} = \mathbb{R} \oplus i\mathbb{R})$

$$\mathbb{H} = \mathbb{C} \oplus j\mathbb{C}$$

with

$$j^2 = -1$$
 and $ij = -ji$

• 3 > < 3</p>

Division Algebras	The Golden Code	Other applications
000	•0 0000000	00000
Cyclic Division Algebras		

Cyclic algebras: definition

Let L = Q(i, √d) = {u + √dv, u, v ∈ Q(i)}. A cyclic algebra A is defined as follows

$$\mathcal{A} = \mathcal{L} \oplus \mathcal{eL}$$

with $e^2 = \gamma$ and

$$\lambda e = e\sigma(\lambda)$$
 where $\sigma(u + \sqrt{d}v) = u - \sqrt{d}v$.

• Recall that
$$(\mathbb{C} = \mathbb{R} \oplus i\mathbb{R})$$

 $\mathbb{H} = \mathbb{C} \oplus j\mathbb{C}$
with

$$j^2 = -1$$
 and $ij = -ji$

Division Algebras: A Tool for Space-Time Coding

Division Algebras	The Golden Code	Other applications
000	○● ○○○○○○○	00000
Cyclic Division Algebras		

Cyclic algebras: matrix formulation

We associate to an element its *multiplication matrix*

$$x = x_0 + ex_1 \in \mathcal{A} \leftrightarrow \begin{pmatrix} x_0 & \gamma \sigma(x_1) \\ x_1 & \sigma(x_0) \end{pmatrix}$$

as we did for the Hamiltonian Quaternions.

$$q = \alpha + j\beta \in \mathbb{H} \leftrightarrow \left(\begin{array}{cc} \alpha & -\bar{\beta} \\ \beta & \bar{\alpha} \end{array}\right)$$

Division Algebras: A Tool for Space-Time Coding

• = • •

Division Algebras	The Golden Code	Other applications
000	○● ○○○○○○○	00000
Cyclic Division Algebras		

Cyclic algebras: matrix formulation

We associate to an element its *multiplication matrix*

$$x = x_0 + ex_1 \in \mathcal{A} \leftrightarrow \left(\begin{array}{cc} x_0 & \gamma \sigma(x_1) \\ x_1 & \sigma(x_0) \end{array}\right)$$

as we did for the Hamiltonian Quaternions.

$$\boldsymbol{q} = \alpha + \boldsymbol{j}\boldsymbol{\beta} \in \mathbb{H} \leftrightarrow \left(\begin{array}{cc} \alpha & -\bar{\boldsymbol{\beta}} \\ \boldsymbol{\beta} & \bar{\alpha} \end{array}\right)$$

Division Algebras: A Tool for Space-Time Coding

→ Ξ →

Division Algebras	The Golden Code	Other applications
000	00 ●000000	00000
A 2 \times 2 Space-Time Code		

The Golden Code: a 2×2 Space-Time Code

► The Golden code is related to the *Golden number* $\theta = \frac{1+\sqrt{5}}{2}$, a root of $x^2 - x - 1 = 0$ ($\sigma(\theta) = \overline{\theta} = \frac{1-\sqrt{5}}{2}$ is the other).

• We define the code C as

$$\mathcal{C} = \left\{ \begin{bmatrix} x_1 & x_2 \\ x_3 & x_4 \end{bmatrix} = \begin{bmatrix} a+b\theta & c+d\theta \\ i(c+d\overline{\theta}) & a+b\overline{\theta} \end{bmatrix} : a, b, c, d \in \mathbb{Z}[i] \right\}$$

► This code has been built from the *cyclic algebra* A, given by $A = \{v = (u + v\theta) + e(w + z\theta) \mid e^2 = i, u, v, w, z \in \mathbb{O}(i)\}$

- 4 同 ト 4 目 ト 4 目 ト

Division Algebras	The Golden Code	Other applications
000	00 ●000000	00000
A 2 \times 2 Space-Time Code		

The Golden Code: a 2×2 Space-Time Code

- The Golden code is related to the Golden number $\theta = \frac{1+\sqrt{5}}{2}$, a root of $x^2 x 1 = 0$ ($\sigma(\theta) = \overline{\theta} = \frac{1-\sqrt{5}}{2}$ is the other).
- We define the code C as

$$\mathcal{C} = \left\{ \left[\begin{array}{cc} x_1 & x_2 \\ x_3 & x_4 \end{array} \right] = \left[\begin{array}{cc} a + b\theta & c + d\theta \\ i(c + d\overline{\theta}) & a + b\overline{\theta} \end{array} \right] : a, b, c, d \in \mathbb{Z}[i] \right\}$$

► This code has been built from the *cyclic algebra* A, given by

$$\mathcal{A} = \{ y = (u + v\theta) + e(w + z\theta) \mid e^2 = i, \ u, v, w, z \in \mathbb{Q}(i) \}.$$

Division Algebras	The Golden Code	Other applications
000	00 ●000000	00000
A 2 \times 2 Space-Time Code		

The Golden Code: a 2×2 Space-Time Code

- The Golden code is related to the Golden number $\theta = \frac{1+\sqrt{5}}{2}$, a root of $x^2 x 1 = 0$ ($\sigma(\theta) = \overline{\theta} = \frac{1-\sqrt{5}}{2}$ is the other).
- ▶ We define the code C as

$$\mathcal{C} = \left\{ \left[\begin{array}{cc} x_1 & x_2 \\ x_3 & x_4 \end{array} \right] = \left[\begin{array}{cc} a + b\theta & c + d\theta \\ i(c + d\overline{\theta}) & a + b\overline{\theta} \end{array} \right] : a, b, c, d \in \mathbb{Z}[i] \right\}$$

► This code has been built from the cyclic algebra A, given by $A = \{y = (u + v\theta) + e(w + z\theta) \mid e^2 = i, u, v, w, z \in Q(i)\}.$

- 4 周 ト 4 月 ト 4 月 ト

Division Algebras	The Golden Code	Other applications
000	00 000000	00000
A 2 × 2 Space Time Code		

The Golden code: minimum determinant

 \blacktriangleright We have the code ${\cal C}$ as

$$\mathcal{C} = \left\{ \left[\begin{array}{cc} x_1 & x_2 \\ x_3 & x_4 \end{array} \right] = \left[\begin{array}{cc} a + b\theta & c + d\theta \\ i(c + d\overline{\theta}) & a + b\overline{\theta} \end{array} \right] : a, b, c, d \in \mathbb{Z}[i] \right\}$$

- ▶ C is a linear code, i.e., $X_1 + X_2 \in C$ for all $X_1, X_2 \in C$.
- ▶ The *minimum determinant* of C is given by

$$\delta_{\min}(\mathcal{C}) = \min_{\mathbf{X}_1 \neq \mathbf{X}_2 \in \mathcal{C}} |\det(\mathbf{X}_1 - \mathbf{X}_2)|^2 = \min_{\mathbf{0} \neq \mathbf{X} \in \mathcal{C}} |\det(\mathbf{X})|^2 \neq 0$$

by choice of \mathcal{A} , a *division algebra*.

Division Algebras	The Golden Code	Other applications
000	00 000000	00000
A 2 × 2 Space Time Code		

The Golden code: minimum determinant

• We have the code C as

$$\mathcal{C} = \left\{ \left[\begin{array}{cc} x_1 & x_2 \\ x_3 & x_4 \end{array} \right] = \left[\begin{array}{cc} a + b\theta & c + d\theta \\ i(c + d\bar{\theta}) & a + b\bar{\theta} \end{array} \right] : a, b, c, d \in \mathbb{Z}[i] \right\}$$

- ▶ C is a linear code, i.e., $X_1 + X_2 \in C$ for all $X_1, X_2 \in C$.
- The *minimum determinant* of C is given by

$$\delta_{\min}(\mathcal{C}) = \min_{\mathbf{X}_1 \neq \mathbf{X}_2 \in \mathcal{C}} |\det(\mathbf{X}_1 - \mathbf{X}_2)|^2 = \min_{\mathbf{0} \neq \mathbf{X} \in \mathcal{C}} |\det(\mathbf{X})|^2 \neq 0$$

by choice of A, a *division algebra*.

Division Algebras	The Golden Code	Other applications
000	00 000000	00000
A 2 × 2 Space Time Code		

The Golden code: minimum determinant

• We have the code C as

$$\mathcal{C} = \left\{ \left[\begin{array}{cc} x_1 & x_2 \\ x_3 & x_4 \end{array} \right] = \left[\begin{array}{cc} a + b\theta & c + d\theta \\ i(c + d\overline{\theta}) & a + b\overline{\theta} \end{array} \right] : a, b, c, d \in \mathbb{Z}[i] \right\}$$

- ▶ C is a linear code, i.e., $X_1 + X_2 \in C$ for all $X_1, X_2 \in C$.
- ▶ The *minimum determinant* of C is given by

$$\delta_{\min}(\mathcal{C}) = \min_{\mathbf{X}_1 \neq \mathbf{X}_2 \in \mathcal{C}} |\det(\mathbf{X}_1 - \mathbf{X}_2)|^2 = \min_{\mathbf{0} \neq \mathbf{X} \in \mathcal{C}} |\det(\mathbf{X})|^2 \neq 0$$

by choice of A, a *division algebra*.

Division Algebras	The Golden Code	Other applications
000	00 000000	00000
A 2 × 2 Space Time Code		

The Golden code: minimum determinant

 \blacktriangleright We have the code ${\cal C}$ as

$$\mathcal{C} = \left\{ \left[\begin{array}{cc} x_1 & x_2 \\ x_3 & x_4 \end{array} \right] = \left[\begin{array}{cc} a + b\theta & c + d\theta \\ i(c + d\overline{\theta}) & a + b\overline{\theta} \end{array} \right] : a, b, c, d \in \mathbb{Z}[i] \right\}$$

- ▶ C is a linear code, i.e., $X_1 + X_2 \in C$ for all $X_1, X_2 \in C$.
- The *minimum determinant* of C is given by

$$\delta_{\min}(\mathcal{C}) = \min_{\mathbf{X}_1 \neq \mathbf{X}_2 \in \mathcal{C}} |\det(\mathbf{X}_1 - \mathbf{X}_2)|^2 = \min_{\mathbf{0} \neq \mathbf{X} \in \mathcal{C}} |\det(\mathbf{X})|^2 \neq 0$$

by choice of A, a *division algebra*.

Division Algebras	The Golden Code	Other applications
000	00 000000	00000

The non-vanishing determinant property

• Let $\mathbf{X} \in \mathcal{C}$, then

$$det(\mathbf{X}) = det \begin{pmatrix} a+b\theta & c+d\theta \\ i(c+d\bar{\theta}) & a+b\bar{\theta} \end{pmatrix}$$

= $(a+b\theta)(a+b\bar{\theta}) - i(c+d\theta)(c+d\bar{\theta})$
= $a^2 + ab(\bar{\theta}+\theta) - b^2 - i[c^2 + cd(\theta+\bar{\theta}) - d^2]$
= $a^2 + ab - b^2 + i(c^2 + cd - d^2),$

 $a, b, c, d \in \mathbb{Z}[i].$

Thus

$$\det(\mathbf{X}) \in \mathbb{Z}[i] \Rightarrow \delta_{\min}(\mathcal{C}) = |\det(\mathbf{X})|^2 \ge 1.$$

Division Algebras	The Golden Code	Other applications
000	00 000000	00000

The non-vanishing determinant property

• Let $\mathbf{X} \in \mathcal{C}$, then

$$det(\mathbf{X}) = det \begin{pmatrix} a+b\theta & c+d\theta \\ i(c+d\bar{\theta}) & a+b\bar{\theta} \end{pmatrix}$$

= $(a+b\theta)(a+b\bar{\theta}) - i(c+d\theta)(c+d\bar{\theta})$
= $a^2 + ab(\bar{\theta}+\theta) - b^2 - i[c^2 + cd(\theta+\bar{\theta}) - d^2]$
= $a^2 + ab - b^2 + i(c^2 + cd - d^2),$

 $a, b, c, d \in \mathbb{Z}[i].$

Thus

$$\det(\mathbf{X}) \in \mathbb{Z}[i] \Rightarrow \delta_{\min}(\mathcal{C}) = |\det(\mathbf{X})|^2 \ge 1.$$

Division Algebras	The Golden Code	Other applications
000	00 000000	00000

The non-vanishing determinant property

• Let $\mathbf{X} \in \mathcal{C}$, then

$$det(\mathbf{X}) = det \begin{pmatrix} a+b\theta & c+d\theta \\ i(c+d\bar{\theta}) & a+b\bar{\theta} \end{pmatrix}$$

= $(a+b\theta)(a+b\bar{\theta}) - i(c+d\theta)(c+d\bar{\theta})$
= $a^2 + ab(\bar{\theta}+\theta) - b^2 - i[c^2 + cd(\theta+\bar{\theta}) - d^2]$
= $a^2 + ab - b^2 + i(c^2 + cd - d^2),$

 $a, b, c, d \in \mathbb{Z}[i].$

► Thus

$$\det(\mathbf{X}) \in \mathbb{Z}[i] \Rightarrow \delta_{\min}(\mathcal{C}) = |\det(\mathbf{X})|^2 \ge 1.$$

Division Algebras	The Golden Code	Other applications
000	00 000000	00000

The non-vanishing determinant property

• Let $\mathbf{X} \in \mathcal{C}$, then

$$det(\mathbf{X}) = det \begin{pmatrix} a+b\theta & c+d\theta \\ i(c+d\bar{\theta}) & a+b\bar{\theta} \end{pmatrix}$$

$$= (a+b\theta)(a+b\bar{\theta}) - i(c+d\theta)(c+d\bar{\theta})$$

$$= a^{2} + ab(\bar{\theta}+\theta) - b^{2} - i[c^{2} + cd(\theta+\bar{\theta}) - d^{2}]$$

$$= a^{2} + ab - b^{2} + i(c^{2} + cd - d^{2}),$$

 $a, b, c, d \in \mathbb{Z}[i].$

► Thus

$$\det(\mathbf{X}) \in \mathbb{Z}[i] \Rightarrow \delta_{\min}(\mathcal{C}) = |\det(\mathbf{X})|^2 \ge 1.$$

Division Algebras	The Golden Code	Other applications
000	00	00000
		00

The non-vanishing determinant property

• Let $\mathbf{X} \in \mathcal{C}$, then

$$det(\mathbf{X}) = det \begin{pmatrix} a+b\theta & c+d\theta \\ i(c+d\bar{\theta}) & a+b\bar{\theta} \end{pmatrix}$$

= $(a+b\theta)(a+b\bar{\theta}) - i(c+d\theta)(c+d\bar{\theta})$
= $a^2 + ab(\bar{\theta}+\theta) - b^2 - i[c^2 + cd(\theta+\bar{\theta}) - d^2]$
= $a^2 + ab - b^2 + i(c^2 + cd - d^2),$

 $a, b, c, d \in \mathbb{Z}[i].$

Thus

$$\det(\mathbf{X}) \in \mathbb{Z}[i] \Rightarrow \delta_{min}(\mathcal{C}) = |\det(\mathbf{X})|^2 \ge 1.$$

Division Algebras	The Golden Code	Other applications
000	00 000000	00000

The non-vanishing determinant property

• Let $\mathbf{X} \in \mathcal{C}$, then

$$det(\mathbf{X}) = det \begin{pmatrix} a+b\theta & c+d\theta \\ i(c+d\bar{\theta}) & a+b\bar{\theta} \end{pmatrix}$$

= $(a+b\theta)(a+b\bar{\theta}) - i(c+d\theta)(c+d\bar{\theta})$
= $a^2 + ab(\bar{\theta}+\theta) - b^2 - i[c^2 + cd(\theta+\bar{\theta}) - d^2]$
= $a^2 + ab - b^2 + i(c^2 + cd - d^2),$

a, b, c, d ∈
$$\mathbb{Z}[i]$$
.
► Thus
 $\det(\mathbf{X}) \in \mathbb{Z}[i] \Rightarrow \delta_{min}(\mathcal{C}) = |\det(\mathbf{X})|^2 \ge 1.$

Division Algebras	The Golden Code	Other applications
000	00 000000	00000
A 2 \times 2 Space-Time Code		

The Golden code: encoding and rate

• We have the code C as

$$\mathcal{C} = \left\{ \left[\begin{array}{cc} x_1 & x_2 \\ x_3 & x_4 \end{array} \right] = \left[\begin{array}{cc} a + b\theta & c + d\theta \\ i(c + d\bar{\theta}) & a + b\bar{\theta} \end{array} \right] : a, b, c, d \in \mathbb{Z}[i] \right\}$$

► The *finite code* C is obtained by limiting the *information* symbols to a, b, c, d ∈ S ⊂ Z[i] (QAM signal constellation).

▶ The code *C* is full rate.

Division Algebras	The Golden Code	Other applications
000	00 000000	00000
A 2 \times 2 Space-Time Code		

The Golden code: encoding and rate

▶ We have the code C as

$$\mathcal{C} = \left\{ \left[\begin{array}{cc} x_1 & x_2 \\ x_3 & x_4 \end{array} \right] = \left[\begin{array}{cc} a + b\theta & c + d\theta \\ i(c + d\bar{\theta}) & a + b\bar{\theta} \end{array} \right] : a, b, c, d \in \mathbb{Z}[i] \right\}$$

- ► The *finite code* C is obtained by limiting the *information* symbols to a, b, c, d ∈ S ⊂ Z[i] (QAM signal constellation).
- ► The code *C* is full rate.

Division Algebras	The Golden Code	Other applications
000	00 000000	00000
A 2 \times 2 Space-Time Code		

The Golden code: encoding and rate

▶ We have the code C as

$$\mathcal{C} = \left\{ \left[\begin{array}{cc} x_1 & x_2 \\ x_3 & x_4 \end{array} \right] = \left[\begin{array}{cc} a + b\theta & c + d\theta \\ i(c + d\bar{\theta}) & a + b\bar{\theta} \end{array} \right] : a, b, c, d \in \mathbb{Z}[i] \right\}$$

► The finite code C is obtained by limiting the information symbols to a, b, c, d ∈ S ⊂ Z[i] (QAM signal constellation).

Division Algebras	The Golden Code	Other applications
000	00 0000000	00000
A 2 \times 2 Space-Time Code		

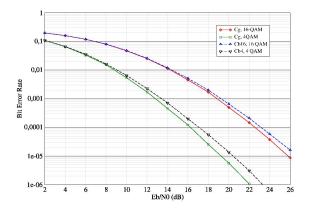
Golden Code: summary of the properties

The Golden Code is a 2×2 code for the coherent MIMO channel that satisfies

- full rate
- minimum non zero determinant
- furthermore non-vanishing determinant
- same average energy is transmitted from each antenna at each channel use.

Division Algebras	The Golden Code	Other a
000	00	00000
0000	0000000	00

Decoding and Performance of the Golden Code



Ξ

(日) (同) (三) ()

Division Algebras	The Golden Code	Other applications
000	00 000000	00000 00
A 2 \times 2 Space-Time Code		

Codes in higher dimensions

- Isomorphic versions of the Golden code were independently derived by [Yao, Wornell, 2003] and by [Dayal, Varanasi, 2003] by analytic optimization.
- Cyclic division algebras enable to generalize to larger n × n systems.

Division Algebras	The Golden Code	Other applications
000	00 000000	00000 00
A 2 \times 2 Space-Time Code		

Codes in higher dimensions

- Isomorphic versions of the Golden code were independently derived by [Yao, Wornell, 2003] and by [Dayal, Varanasi, 2003] by analytic optimization.
- ► Cyclic division algebras enable to generalize to larger n × n systems.

Division Algebras	The Golden Code	Other applications
000	00	00000
0000	0000000	00

Division Algebras The idea behind Division Algebras How to build Division Algebras

The Golden Code Cyclic Division Algebras A 2 × 2 Space-Time Code

Other applications

Differential Space-Time Coding Wireless Relay Networks

- ► Consider a channel with *M* transmit antennas and *N* receive antennas, with *unknown channel information*.
- ► How to do decoding?
- ► We use differential unitary space-time modulation. that is (assuming S₀ = I)

$$S_t = X_{z_t} S_{t-1}, \ t = 1, 2, \dots,$$

where $z_t \in \{0, \dots, L-1\}$ is the data to be transmitted, and $C = \{\mathbf{X}_0, \dots, \mathbf{X}_{L-1}\}$ the constellation to be designed.

► The matrices **X** have to be *unitary*.

- ► Consider a channel with *M* transmit antennas and *N* receive antennas, with *unknown channel information*.
- How to do decoding?
- ► We use differential unitary space-time modulation. that is (assuming S₀ = I)

$$S_t = X_{z_t} S_{t-1}, t = 1, 2, \dots,$$

where $z_t \in \{0, \dots, L-1\}$ is the data to be transmitted, and $C = \{\mathbf{X}_0, \dots, \mathbf{X}_{L-1}\}$ the constellation to be designed.

► The matrices **X** have to be *unitary*.

- ► Consider a channel with *M* transmit antennas and *N* receive antennas, with *unknown channel information*.
- How to do decoding?
- ► We use differential unitary space-time modulation. that is (assuming S₀ = I)

$$\mathbf{S}_t = \mathbf{X}_{z_t} \mathbf{S}_{t-1}, \ t = 1, 2, \dots,$$

where $z_t \in \{0, \dots, L-1\}$ is the data to be transmitted, and $C = \{\mathbf{X}_0, \dots, \mathbf{X}_{L-1}\}$ the constellation to be designed.

▶ The matrices **X** have to be *unitary*.

- ► Consider a channel with *M* transmit antennas and *N* receive antennas, with *unknown channel information*.
- How to do decoding?
- ► We use differential unitary space-time modulation. that is (assuming S₀ = I)

$$S_t = X_{z_t} S_{t-1}, \ t = 1, 2, \dots,$$

where $z_t \in \{0, \dots, L-1\}$ is the data to be transmitted, and $C = \{\mathbf{X}_0, \dots, \mathbf{X}_{L-1}\}$ the constellation to be designed.

► The matrices **X** have to be *unitary*.

Division Algebras	The Golden Code	Other applications
000	00 000000	00000
Differential Space-Time Coding		

The decoding

If we assume the channel is roughly constant, we have

$$\begin{aligned} \mathbf{Y}_t &= \mathbf{S}_t \mathbf{H} + \mathbf{W}_t \\ &= \mathbf{X}_{z_t} \mathbf{S}_{t-1} \mathbf{H} + \mathbf{W}_t \\ &= \mathbf{X}_{z_t} (\mathbf{Y}_{t-1} - \mathbf{W}_{t-1}) + \mathbf{W}_t \\ &= \mathbf{X}_{z_t} \mathbf{Y}_{t-1} + \mathbf{W}_t'. \end{aligned}$$

▶ The matrix **H** does *not* appear in the last equation.

The decoder is thus given by

$$\hat{z}_t = \arg\min_{l=0,\ldots,|\mathcal{C}|-1} \|\mathbf{Y}_t - \mathbf{X}_l \mathbf{Y}_{t-1}\|.$$

Division Algebras	The Golden Code	Other applications
000	00 000000	00000
Differential Space-Time Coding		

The decoding

If we assume the channel is roughly constant, we have

$$\begin{aligned} \mathbf{Y}_t &= \mathbf{S}_t \mathbf{H} + \mathbf{W}_t \\ &= \mathbf{X}_{z_t} \mathbf{S}_{t-1} \mathbf{H} + \mathbf{W}_t \\ &= \mathbf{X}_{z_t} (\mathbf{Y}_{t-1} - \mathbf{W}_{t-1}) + \mathbf{W}_t \\ &= \mathbf{X}_{z_t} \mathbf{Y}_{t-1} + \mathbf{W}_t'. \end{aligned}$$

The matrix H does *not* appear in the last equation.
The decoder is thus given by

$$\hat{z}_t = \arg\min_{l=0,\ldots,|\mathcal{C}|-1} \|\mathbf{Y}_t - \mathbf{X}_l \mathbf{Y}_{t-1}\|.$$

Division Algebras	The Golden Code	Other applications
000	00 000000	00000
Differential Space-Time Coding		

The decoding

If we assume the channel is roughly constant, we have

$$\begin{aligned} \mathbf{Y}_t &= \mathbf{S}_t \mathbf{H} + \mathbf{W}_t \\ &= \mathbf{X}_{z_t} \mathbf{S}_{t-1} \mathbf{H} + \mathbf{W}_t \\ &= \mathbf{X}_{z_t} (\mathbf{Y}_{t-1} - \mathbf{W}_{t-1}) + \mathbf{W}_t \\ &= \mathbf{X}_{z_t} \mathbf{Y}_{t-1} + \mathbf{W}_t'. \end{aligned}$$

- ▶ The matrix **H** does *not* appear in the last equation.
- ▶ The decoder is thus given by

$$\hat{z}_t = \arg\min_{l=0,\ldots,|\mathcal{C}|-1} \|\mathbf{Y}_t - \mathbf{X}_l \mathbf{Y}_{t-1}\|.$$

Division Algebras 000 0000	The Golden Code oo ooooooo	Other applications
Differential Space-Time Coding		

Probability of error

At high SNR, the *pairwise probability of error* P_e has the upper bound

$${{{P}_{e}}} \le {\left({rac{1}{2}}
ight)\left({rac{8}{
ho }}
ight)^{MN}rac{1}{{\left| {\det ({{f X}_{i}} - {f X}_{j}})
ight|^{2N}}}$$

The quality of the code is measure by the *diversity product*

$$\zeta_{\mathcal{C}} = \frac{1}{2} \min_{\mathbf{X}_i \neq \mathbf{X}_j} |\det(\mathbf{X}_i - \mathbf{X}_j)|^{1/M} \qquad \forall \mathbf{X}_i \neq \mathbf{X}_j \in \mathcal{C}$$

Division Algebras: A Tool for Space-Time Coding

Division Algebras	The Golden Code	Other applications
000 0000	00 000000	
Differential Space-Time Coding		

Problem statement

Find a set C of *unitary* matrices (**XX**^{\dagger} = **I**) such that

$$\det(\mathbf{X}_i - \mathbf{X}_j) \neq 0 \qquad \forall \ \mathbf{X}_i \neq \mathbf{X}_j \in \mathcal{C}$$

Division Algebras: A Tool for Space-Time Coding

A 10

→ Ξ →

Division Algebras 000 0000	The Golden Code oo ooooooo	Other applications
Differential Space-Time Coding		

Recall that a matrix X in the algebra has the form

$$\left(\begin{array}{cc} x_0 & x_1 \\ \gamma \sigma(x_1) & \sigma(x_0) \end{array}\right).$$

There are *natural* unitary matrices:

$$E = \left(egin{array}{cc} 0 & 1 \ \gamma & 0 \end{array}
ight)$$
 and $D = \left(egin{array}{cc} x & 0 \ 0 & \sigma(x) \end{array}
ight), \; x \in L.$

- ▶ If γ satisfies $\gamma \overline{\gamma} = 1$, then E^k , k = 0, 1, is unitary.
- ▶ If x satisfies $x\bar{x} = 1$, D and its powers will be unitary.
- ► Yields the constructions given by *fixed point free groups*.

Division Algebras 000 0000	The Golden Code oo ooooooo	Other applications
Differential Space-Time Coding		

Recall that a matrix X in the algebra has the form

$$\left(\begin{array}{cc} x_0 & x_1 \\ \gamma \sigma(x_1) & \sigma(x_0) \end{array}\right).$$

There are *natural* unitary matrices:

$$E=\left(egin{array}{cc} 0&1\ \gamma&0\end{array}
ight)$$
 and $D=\left(egin{array}{cc} x&0\ 0&\sigma(x)\end{array}
ight),\;x\in L.$

- ▶ If γ satisfies $\gamma \overline{\gamma} = 1$, then E^k , k = 0, 1, is unitary.
- ▶ If x satisfies $x\bar{x} = 1$, D and its powers will be unitary.
- ► Yields the constructions given by *fixed point free groups*.

Division Algebras 000 0000	The Golden Code oo ooooooo	Other applications
Differential Space-Time Coding		

Recall that a matrix X in the algebra has the form

$$\left(\begin{array}{cc} x_0 & x_1 \\ \gamma \sigma(x_1) & \sigma(x_0) \end{array}\right).$$

There are *natural* unitary matrices:

$$E=\left(egin{array}{cc} 0&1\ \gamma&0\end{array}
ight)$$
 and $D=\left(egin{array}{cc} x&0\ 0&\sigma(x)\end{array}
ight),\ x\in L.$

• If γ satisfies $\gamma \bar{\gamma} = 1$, then E^k , k = 0, 1, is unitary.

• If x satisfies $x\bar{x} = 1$, D and its powers will be unitary.

Yields the constructions given by fixed point free groups.

• • = • • = •

Division Algebras 000 0000	The Golden Code oo oooooooo	Other applications
Differential Space-Time Coding		

Recall that a matrix X in the algebra has the form

$$\left(\begin{array}{cc} x_0 & x_1 \\ \gamma \sigma(x_1) & \sigma(x_0) \end{array}\right).$$

There are *natural* unitary matrices:

$$E=\left(egin{array}{cc} 0&1\ \gamma&0\end{array}
ight)$$
 and $D=\left(egin{array}{cc} x&0\ 0&\sigma(x)\end{array}
ight),\;x\in L.$

- If γ satisfies $\gamma \bar{\gamma} = 1$, then E^k , k = 0, 1, is unitary.
- If x satisfies $x\bar{x} = 1$, D and its powers will be unitary.
- Yields the constructions given by fixed point free groups.

Division Algebras	The Golden Code	Other applications
000	00	00000
0000	0000000	•0

Wireless Relay Networks

Applications to Wireless Relay Networks

- Distributed Space-Time Codes
 Each relay encodes a column of the Space-Time code.
- MIMO Amplify-and-Forward Cooperative Channel Each terminal is equipped with *multiple antennas*.

The diversity criterion holds.

Division Algebras	The Golden Code	Other application
000	00	00000
0000	0000000	•0

Wireless Relay Networks

Applications to Wireless Relay Networks

- Distributed Space-Time Codes
 Each relay encodes a column of the Space-Time code.
- MIMO Amplify-and-Forward Cooperative Channel Each terminal is equipped with *multiple antennas*.

The diversity criterion holds.

Division Algebras	The Golden Code	Other applications
000	00 000000	00000 00
Wireless Relay Networks		

Thank you for your attention!

Division Algebras: A Tool for Space-Time Coding

■ ト ーヨー シへの Frédérique Oggier

▲□▶ ▲圖▶ ▲厘▶ ▲厘▶