Simple erasure decoding algorithm

- Want to recover input/source bits (packets) from received output/transmitted bits (packets).
- Decoder needs to know which input bits correspond to each output bit, e.g.
 - Sender & receiver use identical pseudorandom no. generators seeded by synchronized clocks or by key in packet.
- Special case of belief propagation (facts).

1. Find an output node \(t_i \) that is connected to only one input node \(x_j \):
 a) Set \(x_j = t_i \);
 b) Add \(x_j \) to all output nodes \(t_i \) that are connected to \(x_j \);
 c) Remove all edges connected to \(x_j \).
2. Repeat (1) until all \(x_j \) are found.
- Success of decoding algorithm depends on degree distribution

- # encoding & decoding operations roughly proportional to # edges (good for sparse graphs w/ # edges proportional to # nodes)

- Code is an irregular low density generator matrix code
Raptor Codes

Key idea:
• relax condition that the LT code has to recover all its input symbols
• concatenate outer block code with inner LT code

A Raptor Code is specified by parameters \((k, c, \Omega(x))\)

• \(c\) is an \((n, k)\) erasure-correcting block code (pre-code)
• \(\Omega(x)\) is the degree distribution of the LT code:
 \[
 \Omega(x) = \sum \Omega_i x^i
 \]
 where \(\Omega_i\) is the prob that an output node has degree \(i\)
Raptor Code Performance Metrics

- Overhead:
 \[\frac{\text{# output symbols to recover } k \text{ input symbols reliably}}{k} \]

- Decoding Cost:
 \[\frac{E(\text{# operations to recover } k \text{ input symbols})}{k} \]

- Encoding Cost:
 \[\frac{E(\text{# operations for encoding } n \text{ intermediate symbols})}{k} + \text{encoding cost of LT code} \]

- Space Requirement:
 \[\frac{\text{# intermediate symbols}}{\text{# input symbols}} = \frac{n}{k} = \frac{1}{R} \]
First Examples of Raptor Codes

- LT Codes
 - trivial pre-code
 - sophisticated LT code output distribution
 - logarithmic encoding & decoding cost
 - overhead close to 1
 - space requirement = 1

- Pre-Code-Only (PCO) Raptor Codes
 - sophisticated pre-code
 - trivial LT code output distribution
 \[\Omega(x) = x \]
 - encoding & decoding cost = that of pre-code
 - overhead = \(-\ln (1-R(1+\varepsilon))/R \approx 1+\varepsilon \) as \(R \to 0\)
 - space requirement = \(1/R\)
RAPTOR CODES WITH GOOD ASYMPTOTIC PERFORMANCE

- Constant encoding & decoding costs
- Space consumption & overhead arbitrarily close to 1
- Possible to satisfy these requirements simultaneously with appropriate pre-code & output distribution.
EDGE DEGREE DISTRIBUTIONS

Consider an LT code with parameters $(n, \Omega(x))$, & the graph associated with m of its output symbols

- $\Omega(x) = \text{output node degree distribution}$
- $a = \Omega'(1) = \text{average output node degree}$
- $w(x) = \text{output edge degree distribution}$
 $$\frac{\Omega'(x)}{\Omega'(1)} = \frac{\Omega'(x)}{a} = \sum_i w_i x^{i-1}$$

- $\Psi(x) = \text{input node degree distribution}$
 $$= (1 - \frac{a(1-x)}{n})^m$$

- $\psi(x) = \text{input edge degree distribution}$
 $$\frac{\Psi'(x)}{\Psi'(1)} = (1 - \frac{a(1-x)}{n})^{m-1} = \sum_i \psi_i x^{i-1}$$
Consider an edge \((v, w)\) chosen uniformly at random from the original graph.

\[w(p) = \sum_i w_i p^{i-1} \]

- prob that output node \(w\) is released at some stage where \((v, w)\) has not been deleted & a proportion \(p\) of input nodes have been recovered
 (need all other neighbors of \(w\) to be recovered)

\[\zeta(p) = \sum_i \zeta_i p^{i-1} \]

- prob that input node \(v\) is not recovered at some stage where \((v, w)\) has not been deleted & a proportion \((1-p)\) of output nodes have been released
 (all other neighbors of \(v\) not recovered)
Consider the subgraph G_z induced by the left node v and all neighbors of v within distance $2h$ after deleting (v, w).

- The probability that G_z is not a tree is proportional to $\frac{1}{n}$, $\to 0$ as $n \to \infty$.
- Asymptotic distribution of shape of G_z as $n \to \infty$: random And-Or tree.

- Each OR node evaluates to the 'OR' of its children (0 if no children).
- Each AND node evaluates to the 'AND' of its children.
- Let y_z denote the probability that v evaluates to 0 when each leaf is 1.

\[
y_z = 1 - w(1-y_{z-1})
\]
Want $y_2 \to s$ as $l \to \infty$, which happens if

$$1(1 - w(1-x)) < x \quad (y_2 < y_{x-1})$$

\forall x \in [s, 1]$$
PROOF OF ASYMPTOTIC PERFORMANCE

- show that $\ell(x) \& w(x)$ induced by $\Omega_D(x)$ satisfy
 $\ell(1-w(1-x)) < x$

 → ensures recovery of $(1-S)n$

 intermediate symbols from
 $(1 + \varepsilon/2)n + 1$ output symbols

 → allows decoder for C_n to

 recover input symbols

- overall overhead = $\frac{n(1+\varepsilon/2)}{\ln n} = 1 + \varepsilon$

- encoding & decoding cost of
 LT code proportional to $\Omega_D^\prime(1)$

 = $1 + \frac{H(D)}{1+\mu} = \ln(\frac{1}{\varepsilon}) + \alpha + O(\varepsilon)$

 where $H(D)$ is the harmonic sum up to D, &

 $1 < \alpha < 1 + \gamma + \ln(9)$,

 $\gamma = Euler's\\ constant$
AN ASYMPTOTICALLY GOOD RAPTOR CODE

- Pre-code: \((n,k)\) code \(C_n\) of rate
 \[R = \frac{k}{n} = \frac{1 + \varepsilon/2}{1 + \varepsilon} \]
 that can be decoded on a BEC of erasure probability
 \[S = \frac{\varepsilon}{4(1 + \varepsilon)} = \frac{1 - R}{2} \]
 with \(O(n \log(1/\varepsilon))\) encoding & decoding operations
 e.g. tornado codes, right-regular codes, etc

- LT code: parameters \((n, \Omega_D(x))\),
 where
 \[\Omega_D(x) = \frac{1}{\mu + 1} \left(\mu x + \frac{x^2}{2} + \frac{x^3}{2 \cdot 3} + \ldots \right) \]
 \[\ldots + \frac{x^D}{(D-1)D} + \frac{x^{D+1}}{D} \]
 \[D = \lceil \frac{4(1 + \varepsilon)}{\varepsilon} \rceil \], \(\mu = \frac{\varepsilon}{2} + \left(\frac{\varepsilon}{2}\right)^2\)
Design of finite length raptor codes

- LT code component is obtained by linear programming on a heuristically chosen problem:
 - minimize # edges subject to constraint that the expected # input nodes recovered during each round is at least the square root of some constant factor $c \times (# \text{ unrecovered input nodes})$

- Precode is an LDPC code with optimized degree distribution