Outline

- Convolutional Code Fundamentals
- Generator Matrices for a Convolutional Code.
- Canonical, Minimal, Systematic Generator Matrices
- The Corresponding Encoders
Block Code Fundamentals

• An \((n, k)\) linear block code \(\mathcal{C}\) is a \(k\)-dimensional subspace of \(F^n\).

• A generator matrix \(G\) for \(\mathcal{C}\) is a \(k \times n\) matrix over \(F\) whose rowspace is \(\mathcal{C}\).

• \(G\) can be used as an encoder: If \(u = (u_1, \ldots, u_k) \in F^k\) is an information word, the corresponding codeword \(x = (x_1, \ldots, x_n) \in F^n\) is given by

\[x = uG. \]
Convolutional Code Fundamentals

- An \((n, k)\) convolutional code is a \(k\)-dimensional subspace of \(F(z^{-1})^n\).

- Here \(F(z^{-1})\) is the field of rational functions (quotients of polynomials) in the indeterminate \(z^{-1}\) over \(F\).

- A generator matrix \(G\) for \(\mathcal{C}\) is a \(k \times n\) matrix over \(F(z^{-1})\) whose rowspace is \(\mathcal{C}\).

- \(G(z)\) is called a polynomial generator matrix if the entries in \(G(z)\) are all polynomials.

- Every convolutional code has polynomial generator ma-
trices. (Proof?)
Examples

• Example: $n = 2, k = 1$. Here is a polynomial generator matrix for a $(2, 1)$ convolutional code over $GF(2)$:

\[
G = \begin{pmatrix}
1 + z^{-1} + z^{-2} & 1 + z^{-2}
\end{pmatrix}.
\]

• Here is another generator matrix for the same code:

\[
G' = \begin{pmatrix}
1 & \frac{1 + z^{-2}}{1 + z^{-1} + z^{-2}}
\end{pmatrix}.
\]
There are Lots of Possible Generator Matrices

- If G is any generator matrix for \mathcal{C}, any matrix G' which is row-equivalent to G is also a generator matrix for \mathcal{C}.

- That is, G' can be obtained from G by a series of elementary row operations, or equivalently,

$$G' = UG,$$

where U is a $k \times k$ nonsingular matrix over $F(z^{-1})$.

Examples

\[G_1(z) = \begin{pmatrix} \frac{1}{1+z^{-1}+z^{-2}} & 1 & \frac{1+z^{-2}}{1+z^{-1}+z^{-2}} & \frac{1+z^{-1}}{1+z^{-1}+z^{-2}} \\ 1 & \frac{1+z^{-1}+z^{-2}}{z^{-1}} & \frac{1}{z^{-1}} & \end{pmatrix}. \]

defines a (4, 2) convolutional code over \(GF(2) \). Clearing denominators,

\[G_2(z) = \begin{pmatrix} 1 & 1+z^{-1}+z^{-2} & 1+z^{-2} & 1+z^{-1} \\ z^{-1} & 1+z^{-1}+z^{-2} & z^{-2} & 1 \end{pmatrix} \]

is a polynomial generator matrix for the same code.
Some More Generator
Matrices for the Same Code
\[G_3 = \begin{pmatrix} 1 & 1 + z^{-1} + z^{-2} & 1 + z^{-2} & 1 + z^{-1} \\ 0 & 1 + z^{-1} & z^{-1} & 1 \end{pmatrix} \]

\[G_4 = \begin{pmatrix} 1 & z^{-1} & 1 + z^{-1} & 0 \\ 0 & 1 + z^{-1} & z^{-1} & 1 \end{pmatrix} \]

\[G_5 = \begin{pmatrix} 1 + z^{-1} & 0 & 1 & z^{-1} \\ z^{-1} & 1 + z^{-1} + z^{-2} & z^{-2} & 1 \end{pmatrix} \]

\[G_6 = \begin{pmatrix} 1 & 1 & 1 & 1 \\ 0 & 1 + z^{-1} & z^{-1} & 1 \end{pmatrix} \]

\[G_7 = \begin{pmatrix} 1 + z^{-1} & 0 & 1 & z^{-1} \\ 1 & z^{-1} & 1 + z^{-1} & 0 \end{pmatrix} \]

\[G_8 = \begin{pmatrix} 1 & 0 & \frac{1}{1+z^{-1}} & \frac{z^{-1}}{1+z^{-1}} \\ 0 & 1 & \frac{z^{-1}}{1+z^{-1}} & \frac{1}{1+z^{-1}} \end{pmatrix} \]
A Good Question

• Among all possible generator matrices, which ones are best?

 • **Canonical** generator matrices.

 • **Systematic** generator matrices.

 • **Minimal** generator matrices
Generalizing the Definition of Degree

• The degree of a vector of polynomials is the maximum degree of any component. Example:

\[
\deg \left(\begin{array}{cccc}
1 & 1 + z^{-1} + z^{-2} & 1 + z^{-2} & 1 + z^{-1}
\end{array} \right) = 2.
\]

• The degree of a polynomial matrix is the sum of the row degrees. Example:

\[
\deg \left(\begin{array}{cccc}
1 & 1 + z^{-1} + z^{-2} & 1 + z^{-2} & 1 + z^{-1} \\
0 & 1 + z^{-1} & z^{-1} & 1
\end{array} \right) = 3.
\]
The Degree of a Convolutional Code

- The degree of a convolutional code is the minimum degree of any polynomial generator matrix for C.

Notation. An (n, k) convolutional code whose degree is m is called an (n, k, m) convolutional code.

- A minimum degree polynomial generator matrix is called a canonical generator matrix.
Canonical Generator Matrices

• There are efficient algorithms for computing canonical generator matrices. We will not cover this.

• But there is an easy test for canonicity:

Theorem. A polynomial generator matrix is canonical iff it is basic and reduced.

• Basic: The gcd of the $k \times k$ minors is 1.

• Reduced: The indicator matrix \overline{G} for the highest degree terms in each row has rank k.
Basic and/or Reduced?

• Examples:

\[
G_4 = \begin{pmatrix}
1 & z^{-1} & 1 + z^{-1} & 0 \\
0 & 1 + z^{-1} & z^{-1} & 1
\end{pmatrix}
\]

\[
G_5 = \begin{pmatrix}
1 + z^{-1} & 0 & 1 & z^{-1} \\
z^{-1} & 1 + z^{-1} + z^{-2} & z^{-2} & 1
\end{pmatrix}
\]

\[
G_6 = \begin{pmatrix}
1 & 1 & 1 & 1 \\
0 & 1 + z^{-1} & z^{-1} & 1
\end{pmatrix}
\]
G_4 is Basic but not reduced

$$
G_4 = \begin{pmatrix}
1 & z^{-1} & 1 + z^{-1} & 0 \\
0 & 1 + z^{-1} & z^{-1} & 1
\end{pmatrix}.
$$

$$
\Delta_{1,2} = 1 + z^{-2}, \quad \Delta_{1,3} = z^{-1}, \ldots.
$$

$$
\bar{G} = \begin{pmatrix}
0 & 1 & 1 & 0 \\
0 & 1 & 1 & 0
\end{pmatrix}.
$$
G_5 is Reduced but not Basic

$$G_5 = \begin{pmatrix} 1 + z^{-1} & 0 & 1 & z^{-1} \\ z^{-1} & 1 + z^{-1} + z^{-2} & z^{-2} & 1 \end{pmatrix}.$$

$$\Delta_{1,2} = 1 + z^{-3}, \quad \Delta_{1,3} = z^{-1} + z^{-2} + z^{-3}, \ldots.$$

$$\bar{G} = \begin{pmatrix} 1 & 0 & 0 & 1 \\ 0 & 1 & 1 & 0 \end{pmatrix}.$$
G_6 is Reduced and Basic

$$G_6 = \begin{pmatrix} 1 & 1 & 1 & 1 \\ 0 & 1 + z^{-1} & z^{-1} & 1 \end{pmatrix}.$$

$$\Delta_{1,2} = 1 + z^{-2}, \quad \Delta_{1,3} = z^{-1}, \ldots.$$

$$\bar{G} = \begin{pmatrix} 1 & 1 & 1 & 1 \\ 0 & 1 & 1 & 0 \end{pmatrix}.$$
Canonical generator Matrices are Not Unique

• Example:

\[G_6 = \begin{pmatrix} 1 & 1 & 1 & 1 \\ 0 & 1 + z^{-1} & z^{-1} & 1 \end{pmatrix} \]

\[G'_6 = \begin{pmatrix} 1 & 1 & 1 & 1 \\ 1 & z^{-1} & 1 + z^{-1} & 0 \end{pmatrix} \]

both canonical.
Important Property I of Canonical Generator Matrices

“The Forney Indices”

• If \(G(z) \) and \(G'(z) \) are two canonical generator matrices for \(C \), then

\[
\deg g_i(z) = \deg g'_i(z) \quad \text{for } i = 1, \ldots, n,
\]

i.e., the list of row degrees is the same for any canonical generator matrix.

• These row degrees are called the Forney indices of the code.
Important Property I of Canonical Generator Matrices

- For Example,

\[G_6 = \begin{pmatrix} 1 & 1 & 1 & 1 & 1 \\ 0 & 1 + z^{-1} & z^{-1} & 1 \end{pmatrix} \]

\[G'_6 = \begin{pmatrix} 1 & 1 & 1 & 1 \\ 1 & z^{-1} & 1 + z^{-1} & 0 \end{pmatrix} \]

The Forney indices are \((0, 1)\).
Important Property II of Canonical Generator Matrices

“The Predictable Degree Property”

• If \(u(z) = (u_1(z) \cdots u_k(z)) \) is a vector of polynomials, and \(x(z) = u(z)G(z) \), i.e.,

\[
x(z) = \sum_{1 \leq i \leq k} u_i(z)g_i(z)
\]

Then
\[\deg \mathbf{x}(z) = \max_{1 \leq i \leq k} \left(\deg u_i(z) + \deg g_i(z) \right). \]

- (Any reduced generator matrix has this property.)
Important Property III of Canonical Generator Matrices

“Polynomial Out → Polynomial In”

- If $u(z)G(z)$ is a polynomial vector, then so is $u(z)$.
- (Any basic generator matrix has this property.)
Examples

• The following GM does not have the predictable degree property.

\[
G = \begin{pmatrix}
1 & w & 1 + w & 0 \\
0 & 1 + w & w & 1
\end{pmatrix}.
\]

• The following GM does not have the POPI property:

\[
G = (1 + w^3, 1 + w + w^2 + w^3).
\]
• The set of row degrees is the same for any canonical generator matrix.

\[
G_6 = \begin{pmatrix}
1 & 1 & 1 & 1 & 1 \\
0 & 1 + z^{-1} & z^{-1} & 1 \\
\end{pmatrix}
\]

\[
G'_6 = \begin{pmatrix}
1 & 1 & 1 & 1 \\
1 & z^{-1} & 1 + z^{-1} & 0 \\
\end{pmatrix}
\]

These row degrees are called the Forney indices of the code, in this case (0, 1).
Important Properties of Canonical Generator Matrices

• The predictable degree property. If

\[u(z) = \begin{pmatrix} u_1(z) & \cdots & u_k(z) \end{pmatrix}, \]

and

\[G(z) = \begin{pmatrix} g_1(z) \\ \vdots \\ g_k(z) \end{pmatrix}, \]

\[u(z)G(z) = \sum_{1 \leq i \leq k} u_i(z)g_i(z) \]

\[\deg u(z)G(z) = \max_{1 \leq i \leq k} \left(\deg u_i(z) + \deg g_i(z) \right). \]
The Realizability Theorem

Theorem. An \((n, k, m)\) convolutional code \(C\) possesses an encoder which uses exactly \(m\) delay elements. No encoder for \(C\) has fewer than \(m\) memory elements.

Definition. An encoder that uses exactly \(m\) memory elements is called a minimal encoder.
One Way to Construct a Minimal Encoder

A minimal encoder can be realized via a canonical generator matrix in the “obvious way” (direct form realization).

\[(1 + z^{-1} + z^{-2}, 1 + z^{-2})\]
Canonical Generator
Matrix \rightarrow Minimal Encoder

$$G_6 = \begin{pmatrix} x_1 & x_2 & x_3 & x_4 \\ u_1 & u_2 \end{pmatrix} = \begin{pmatrix} 1 & 1 & 1 & 1 \\ 0 & 1 + z^{-1} & z^{-1} & 1 \end{pmatrix}$$
Non-Canonical Generator
Matrix \rightarrow Minimal Encoder

$$G_4 = \begin{pmatrix} x_1 & x_2 & x_3 & x_4 \\ u_1 & z^{-1} & 1 + z^{-1} & 0 \\ u_2 & 0 & 1 + z^{-1} & z^{-1} & 1 \end{pmatrix}$$
Systematic Generator Matrices

\[G_6 = \begin{bmatrix} u_1 \\ u_2 \end{bmatrix} \begin{pmatrix} x_1 & x_2 & x_3 & x_4 \\ 1 & 1 & 1 & 1 \\ 0 & 1 + z^{-1} & z^{-1} & 1 \end{pmatrix} \]

- Multiply row 2 by \(\frac{1}{1 + z^{-1}} \) and add it to row 1:

\[G_8 = \begin{bmatrix} u_1 \\ u_2 \end{bmatrix} \begin{pmatrix} x_1 & x_2 & x_3 & x_4 \\ 1 & 0 & \frac{1}{1 + z^{-1}} & \frac{z^{-1}}{1 + z^{-1}} \\ 0 & 1 & \frac{z^{-1}}{1 + z^{-1}} & \frac{1}{1 + z^{-1}} \end{pmatrix} \]
In General

Theorem. Any convolutional code has a systematic generator matrix. Every systematic generator matrix can be realized by an encoder with m delay elements.
Example: Systematic and Minimal, Not Canonical

\[G_8 = \begin{array}{l}
\begin{array}{cc}
\begin{array}{cccc}
 x_1 & x_2 & x_3 & x_4 \\
 1 & 0 & \frac{1}{1+z^{-1}} & \frac{z^{-1}}{1+z^{-1}} \\
 0 & 1 & \frac{z^{-1}}{1+z^{-1}} & \frac{1}{1+z^{-1}} \\
\end{array}
\end{array}
\end{array}
\]
Outline

• Convolutional Code Fundamentals: Review

• The Important Special Case $k = 1$.

• Three Important Properties of Canonical Generator Matrices.

• The Free Distance.
Convolutional Code Fundamentals

- An \((n, k)\) **convolutional code** is a \(k\)-dimensional sub-space of \(F(z^{-1})^n\).

- \(G(z)\) is called a **generator matrix** for the convolutional code \(C\) if its rowspace is \(C\).

- Every convolutional code has polynomial generator matrices that are basic and reduced: Canonical.

- Every convolutional code has a systematic GM.

- Canonical and Systematic GM’s lead to minimal encoders.
Special Case: \(k = 1 \)

Theorem. A canonical generator matrix for an \((n, 1)\) convolutional code is of the form

\[
G = (g_1(z), \ldots, g_n(z)),
\]

where

\[
gcd(g_1(z), \ldots, g_n(z)) = 1.
\]

Proof: Basic? Yes, because \(gcd(g_1(z), \ldots, g_n(z)) = 1 \). Reduced? yes, automatically. \(\blacksquare \)
A Canonical Encoder for $k = 1$
Special Case: $k = 1$

Theorem. A systematic generator matrix for an $(n, 1)$ convolutional code is of the form

$$G = \begin{pmatrix} 1, \frac{g_2(z)}{g_1(z)}, \ldots, \frac{g_n(z)}{g_1(z)} \\ \frac{g_1(z)}{g_2(z)}, 1, \ldots, \frac{g_n(z)}{g_2(z)} \\ \vdots \\ \frac{g_1(z)}{g_n(z)}, \frac{g_2(z)}{g_n(z)}, \ldots, 1 \end{pmatrix}.$$
Systematic Encoders for $k = 1$
Back to Canonical Generator Matrices

Let $G(z)$ be a canonical generator matrix for a convolutional code C, with $g_i(z) = (g_{1,1}(z), \ldots, g_{1,n}(z))$ being the ith row:

$$G(z) = \begin{pmatrix} g_1(z) \\ \vdots \\ g_k(z) \end{pmatrix},$$

with $\deg g_1 \leq \deg g_2 \leq \cdots \leq \deg g_n$.
\[G_6 = \begin{pmatrix} 1 & 1 & 1 & 1 \\ 0 & 1 + z^{-1} & z^{-1} & 1 \end{pmatrix} \]
The Free Distance of a Convolutional Code

• A block code has a minimum distance:

Definition. The minimum distance of an \((n, k)\) linear block code is the minimum Hamming weight among all nonzero codewords.

• A convolutional code has a free distance:

Definition. The free distance of a convolutional code is the minimum weight among all polynomial codewords.
Example 1

• The \((2, 1, 2)\) code, described by the generator matrix

\[
G = \begin{pmatrix} 1 + w + w^2 & 1 + w^2 \\ 1 & 1 + w^2 \end{pmatrix}
= \begin{pmatrix} 1 & 1 \\ 1 & 0 \end{pmatrix} + w \begin{pmatrix} 1 & 0 \\ 1 & 1 \end{pmatrix} + w^2 \begin{pmatrix} 1 & 1 \end{pmatrix}
\]

• The general polynomial codeword is a finite linear combination of

\[G, wG, w^2 G, \ldots\]
The Free Distance is 5

- The general polynomial codeword is a finite linear combination of:

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>1</th>
<th>w</th>
<th>w</th>
<th>w²</th>
<th>w²</th>
<th>w³</th>
<th>w³</th>
</tr>
</thead>
<tbody>
<tr>
<td>G</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>wG</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>w²G</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>w³G</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Example 2

• The $(4, 2, 1)$ code described by the generator matrix

\[
G = \begin{pmatrix}
1 & 1 & 1 & 1 \\
0 & 1 + w & w & 1 \\
\end{pmatrix}
= \begin{pmatrix}
1 & 1 & 1 & 1 \\
0 & 1 & 0 & 1 \\
\end{pmatrix} + w \begin{pmatrix}
0 & 0 & 0 & 0 \\
0 & 1 & 1 & 0 \\
\end{pmatrix}
\]

• The general polynomial codeword is a finite linear combination of

\[g_1, g_2, wg_1, wg_2, w^2g_1, w^2g_2, \ldots\]
The Free Distance is 4

- The general polynomial codeword is a finite linear combination of:

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>1</th>
<th>1</th>
<th>1</th>
<th>w</th>
<th>w</th>
<th>w</th>
<th>w</th>
<th>w²</th>
<th>w²</th>
<th>w²</th>
<th>w²</th>
</tr>
</thead>
<tbody>
<tr>
<td>G</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>wG</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>$w²G$</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
</tr>
</tbody>
</table>