Problems to Hand In:

Problem 1. Determine the ROC for the following discrete-time signal:

\[x[n] = \begin{cases}
\pi e^n & \text{if } n \geq 0 \text{ and } n \text{ is even} \\
\sin(\pi n) & \text{if } n \geq 0 \text{ and } n \text{ is odd} \\
\exp(\pi n) & \text{if } n < 0 \text{ and } -n \text{ is prime.} \\
0 & \text{if } n < 0 \text{ and } -n \text{ isn’t prime.}
\end{cases} \]

Problem 2. (Courtesy Dustin Boswell) Consider the unstable causal LTI system with impulse response

\[h[n] = \begin{cases}
(-1)^n 1/n & \text{if } n \geq 1 \\
0 & \text{if } n < 0.
\end{cases} \]

(a) Use the technique suggested in Prob. 2.49 to find a bounded input \(x[n] \) that produces an unbounded output \(y[n] \).

(b) Find a *causal* bounded input \(x[n] \) that produces an unbounded output \(y[n] \).

Problem 3. OW2, Problem 10.31.

Problem 4. OW2, Problem 6.28 (a), parts (iv) and (vii); also find and plot the group delay in both cases.