Andre Tkacenko

Cell: (626) 399-6833

Objective

Signal analysis engineer with background in signal processing and digital communications seeking to leverage technical and professional expertise in the fields of data science and machine learning

Education

• California Institute of Technology • Doctor of Philosophy in Electrical Engineering: GPA: 4.2/4.0	Pasadena, CA Jun. 2001 – Jun. 2004
 Advisor: Professor P. P. Vaidyanathan 	
- Field of Specialization: Digital signal processing	
- Ph. D. Thesis: Optimization Algorithms for Realizable Signal-Adapted Filter Banks	
California Institute of Technology	Pasadena, CA
Master of Science in Electrical Engineering; GPA: 4.2/4.0	Sep. 1999 – Jun. 2001
• California Institute of Technology • Bachelor of Science in Electrical Engineering; GPA: 4.1/4.0	Pasadena, CA Sep. 1995 – Jun. 1999

Experience

•

• Jet Propulsion Laboratory Signal Analysis Engineer Pasadena, CA Feb. 2005 – Present

- Developed algorithms for spectrum reconstruction of non-uniformly sampled interferogram data obtained from the Tropospheric Emission Spectrometer (TES) instrument on-board the Aura (EOS CH-1) satellite
- Implemented optimal step-size block-based independent component analysis (ICA) and constant modulus algorithm (CMA) methods for underdetermined blind source separation (BSS) of digital telemetry signals
- Characterized radio frequency interference (RFI) from the upcoming NASA-ISRO Synthetic Aperture Radar (NISAR) on several satellite missions based on orbital and RF parameters; assessed compliance with interference limits set forth by the International Telecommunication Union (ITU) Radiocommunication Sector (ITU-R)
- Generated comprehensive software model characterizing the Deep Space Optical Communications (DSOC) downlink received signal; channel impairments included blocking effects due to superconducting nanowire single-photon detector (SNSPD), bandwidth limiting due to optical signal amplifier, and offset/drift effects due to receiver clock oscillator instability

•	Department of Electrical Engineering, Caltech	Pasadena, CA
	Lecturer	$Apr. \ 2012 - Jun. \ 2012$
– Taught graduate level special topics course entitled EE 150: Applications of Convex		oplications of Convex
Optimization in Signal Processing and Communications, in the spring term of 2012		spring term of 2012

- Information for the course can be found at the following URL:

http://www.systems.caltech.edu/dsp/ee150_acospc/

Department of Electrical Engineering, Caltech	Pasadena, CA
Lecturer	Apr. 2003 – Jun. 2003
– Taught EE 112b, second term of the graduate level course EE 112:	Introduction to Digital
Signal Processing, in the spring term of 2003	

- Gave lectures, held office hours, and created handouts along with homework sets and solutions

- Department of Electrical Engineering, Caltech Pasadena, CA Teaching Assistant Sep. 1998 - Mar. 2003, Sep. 2003 - Mar. 2004 - Graded and prepared solutions for homework sets and held office hours for following courses: * EE 32: Signals, Systems, and Transforms * EE 112: Introduction to Digital Signal Processing
- * EE 111: Signals, Systems, and Transforms

* EE 160: Communication-System Fundamentals

Computer Skills

Programming/Scripting Languages: MATLAB, Python, C/C++, Assembly (x86)

Operating Systems: Microsoft Windows, macOS, Android, iOS

Software: IATEX, Microsoft Office, Satellite Orbit Analysis Program (SOAP)

Honors & Awards

- Charles H. Wilts Doctoral Thesis Prize (2004)
- Member of Sigma Xi, The Scientific Research Society (1999-present)
- Member (1998-present) and treasurer (1999) of Tau Beta Pi The Engineering Honor Society, California Beta Chapter
- Valedictorian, Adrian C. Wilcox High School, 1995

Selected Publications

Journal Articles:

- 1. A. Tkacenko and P. P. Vaidyanathan, "Iterative greedy algorithm for solving the FIR paraunitary approximation problem," IEEE Trans. Signal Process., vol. 54, no. 1, pp. 146-160, Jan. 2006.
- 2. A. Tkacenko and B. I. Erkmen, "Parameter Estimation Bounds and Preamble Designs for SOQPSK Waveforms," Interplanetary Network Progress Report, vol. 42-180, pp. 1-30, Feb. 15, 2010.
- 3. A. Tkacenko, K. J. Quirk, and M. Srinivasan, "Deep-Space Optical Transceiver Uplink Detection Analysis," Interplanetary Network Progress Report, vol. 42-193, pp. 1-40, May 15, 2013.

Conference Proceedings:

- 1. A. Tkacenko, "Spectral properties and interpolation error analysis for variable sample rate conversion systems," in Proc. IEEE Global Communications Conference (GLOBECOM 2007), Washington, D.C., USA, Nov. 26-30, 2007, pp. 3123-3127.
- 2. A. Tkacenko, "Approximate eigenvalue decomposition of para-Hermitian systems through successive FIR paraunitary transformations," in Proc. IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP 2010), Dallas, Texas, USA, Mar. 14-19, 2010, pp. 4074-4077.

References

Dr. Edgar H. Satorius Signal Analysis Engineer 337H - Communications Systems & Operations Jet Propulsion Laboratory 4800 Oak Grove Drive, M/S 161-260 Pasadena, California 91109 Office: (818) 354-5790 E-mail: Edgar.H.Satorius@jpl.nasa.gov

Prof. P. P. Vaidyanathan Professor of Electrical Engineering California Institute of Technology 1200 East California Boulevard, M/S 136-93 Pasadena, California 91125 Office: (626) 395-4681 Fax: (626) 795-8649 E-mail: ppvnath@systems.caltech.edu