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ABSTRACT

With the advent of wavelets for lossy data compression came the
notion of representing signals in a certain vector space by their pro-
jections in well chosen subspaces of the original space. In this pa-
per, we consider the subspace of signals generated by an overdec-
imated rational nonuniform filter bank and find the optimal condi-
tions under which the mean-squared error between a given deter-
ministic signal and its representation in this subspace is minimized
for a fixed set of synthesis filters. Under these optimal conditions,
it is shown that choosing the synthesis filters to further minimize
this error is simply an energy compaction problem. With this, we
introduce the notion of deterministic energy compaction filters for
classes of signals. Simulation results are presented showing the
merit of our proposed method for optimizing the synthesis filters.1

1. INTRODUCTION

Along with the introduction of wavelets in the field of signal pro-
cessing came the notion of representing signals in a given vector
space, usually �2, by their projections in certain special types of
subspaces of the original space. The impetus for such a represen-
tation arises in lossy data compression and multiresolution theory
[3, 4], since the above projections often require less information
to be stored than the original signal itself at the cost of a small
amount of loss of fidelity.

In this paper, we consider the subspace of signals generated by
an overdecimated rational nonuniform synthesis bank as shown in
Figure 1. By overdecimated, we mean that,

P−1∑
k=0

mk

nk
< 1

and so the inputs {ck(n)} operate at a lower overall rate than the
output y(n). The subspace V that we will focus on is defined by,

V �
{

y(n) : y(n) =

P−1∑
k=0

∞∑
m=−∞

ck(m)fk(mkn − nkm)

}
(1)

For a fixed set of synthesis filters {Fk(z)}, we will find the optimal
choice of the driving signals {ck(n)} which minimize the mean-
squared error between y(n) and any given signal x(n) ∈ �2. This
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Fig. 1. Rational nonuniform synthesis filter bank.

is a generalization of the results given in [7] for integer nonuni-
form filter banks. Though rational nonuniform filter banks can be
shown to be transformable to integer nonuniform filter banks, our
approach avoids this complicated transformation and solves the
least squares problem in a more direct way.

In addition to solving this least squares problem, we also con-
sider optimizing the synthesis filters to further minimize the mean-
squared error. This is shown to be analogous to choosing the op-
timum filter for compacting the energy of a process whose power
spectrum is related to the blocked version of the given signal x(n).
Though for a single deterministic signal, we can trivially force the
mean-squared error to be zero through proper choice of the synthe-
sis filters, the filters here are chosen to minimize the mean-squared
error for a class of deterministic signals with certain practical con-
straints. With this, we introduce the notion of deterministic energy
compaction filters for classes of signals. Experimental results pro-
vided here show the merit of our proposed method.

1.1. Notations

All notations are as in [6] unless specified otherwise. In particular,
M -fold decimation and expansion will be represented by the sym-
bols ↓M and ↑M , respectively. Also, the M -fold blocked version
of a scalar signal x(n) is an M × 1 vector signal x(n) given by,

x(n) �


x(Mn)

x(Mn + 1)

...

x(Mn + (M − 1))


Finally, the M -fold blocked representation of a scalar transfer func-
tion H(z) is an M × M multiple-input multiple-output (MIMO)
pseudocirculant system H(z) whose 0-th column consists of the
Type 1 polyphase components of H(z).



2. LEAST SQUARES SIGNAL APPROXIMATION MODEL

Consider the rational nonuniform synthesis filter bank shown in
Figure 1. We will make the following assumptions here.

• gcd(mk, nk) = 1 ∀ k (Coprimeness of mk and nk)

•
P−1∑
k=0

mk

nk
< 1 (Overdecimated system)

There is no loss of generality in making the first assumption, as
common factors between mk and nk can be absorbed into the filter
Fk(z). The second assumption ensures that the subspace V in (1)
is a proper subspace of �2. Let us define the following integers.

• N � lcm(n0, n1, . . . , nP−1)

• pk � N
nk

∀ k

• K �
P−1∑
k=0

mkpk

Note that as the system is overdecimated, we have K < N .
The goal here is to choose the driving signals {ck(n)} to min-

imize the mean-squared error objective,

ξ �
∑

n

|y(n) − x(n)|2

where x(n) is any signal in �2. If x(n) and y(n) denote, respec-
tively, the N -fold blocked versions of x(n) and y(n), we have,

ξ =
∑

n

||y(n) − x(n)||2

Using Parseval’s relation, this in turn can be expressed as follows.

ξ =
1

2π

∫ 2π

0

∣∣∣∣∣∣Y(ejω) − X(ejω)
∣∣∣∣∣∣2 dω (2)

where X(z) and Y(z) denote, respectively, the z-transforms of
x(n) and y(n).

To simplify Y(z), consider the k-th branch of the system of
Figure 1 reproduced in Figure 2(a). If we implement Fk(z) in an
mkN -fold block form, we obtain the system shown in Figure 2(b),
where Ak(z) is an mkN ×mkN pseudocirculant matrix [6] with,

[Ak(z)]r,s =
[
zr−sFk(z)

]
↓mkN

for 0 ≤ r, s ≤ mkN − 1. By applying the polyphase identity [6],
the expander on the left (↑nk) as well as the decimator on the right
(↓mk) can be moved across the network resulting in the system of
Figure 2(c). The N × mkpk transfer matrix Fk(z) is obtained by
preserving only the N rows of Ak(z) which are multiples of mk

and the mkpk columns which are multiples of nk. In other words,

[Fk(z)]c,d =
[
zcmk−dnkFk(z)

]
↓mkN

=

[
zc

[
z−dnkFk(z)

]
↓mk

]
↓N

(3)
for 0 ≤ c ≤ N −1 and 0 ≤ d ≤ mkpk−1. Note that from Figure
2(c), ck(n) is simply the mkpk-fold blocked version of ck(n) and
yk(n) is the N -fold blocked version of yk(n). Clearly, we have,

Yk(z) = Fk(z)Ck(z) (4)

But note that we have,

y(n) =

P−1∑
k=0

yk(n) ⇐⇒ y(n) =

P−1∑
k=0

yk(n)

Thus, using (4), we get,

Y(z) =

P−1∑
k=0

Yk(z) =

P−1∑
k=0

Fk(z)Ck(z)

This can be expressed as,

Y(z) =
[

F0(z) F1(z) · · · FP−1(z)
]︸ ︷︷ ︸

F(z)


C0(z)

C1(z)

...

CP−1(z)


︸ ︷︷ ︸

C(z)

(5)
where F(z) is an N ×K matrix and C(z) is a K ×1 vector. Note
that even though the fixed matrix F(z) has a restricted structure as
can be seen from (3), the vector C(z) is completely arbitrary.

Substituting (5) into (2), we have,

ξ =
1

2π

∫ 2π

0

∣∣∣∣∣∣ F(ejω)C(ejω) − X(ejω)︸ ︷︷ ︸
ε(ω)

∣∣∣∣∣∣2 dω

and so we can minimize ξ by minimizing ||ε(ω)||2 pointwise in ω.
The solution to this well known least squares problem is [2],

C(ejω) =
[
F†(ejω)F(ejω)

]+

F†(ejω)X(ejω)

where A+ denotes the Moore-Penrose pseudoinverse of the matrix
A [2]. We will assume here that F(ejω) has a full rank of K and
so the pseudoinverse from above will in fact be a true inverse. In
the z-domain, the optimum driving signal C(z) is given by,

C(z) =
[
F̃(z)F(z)

]−1

F̃(z)︸ ︷︷ ︸
H(z)

X(z) (6)

where Ã(z) � A† (1/z∗) for any A(z) [6]. Hence, the optimal
C(z) from (6) can be obtained via the system shown in Figure 3.

3. OPTIMIZING THE SYNTHESIS FILTERS SUBJECT
TO A PARAUNITARY CONSTRAINT

The optimal driving signal vector C(z) in (6) can be viewed as an
information compacted version of the blocked signal vector X(z).
In this setting, a signal to be approximated, say x(n), will be pro-
cessed through the network of Figure 3 to produce C(z) (or equiv-
alently {ck(n)}). The {ck(n)} are then stored and used to obtain
y(n), the best approximation to x(n) for the given model.

Typically x(n) will be a finite length signal (i.e. a speech sig-
nal or an image) and we want the signals {ck(n)} to be finite in
length themselves. In addition, we also want the synthesis filters
{Fk(z)} to be finite impulse response (FIR) filters. However, in
general, if these filters are FIR, then the transfer function H(z)
used to obtain C(z) in (6) will have an infinite impulse response

(IIR). This is due to the factor
[
F̃(z)F(z)

]−1

present in H(z).
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Fig. 2. (a) The k-th branch of the signal model, (b) With
Fk(z) implemented in an mkN -fold block form, (c) Re-
sulting structure after applying the polyphase identity.
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Fig. 3. System for obtaining the optimal driving signal C(z).
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Fig. 4. Condition for orthonormality of the synthesis filters.

One way to keep H(z) FIR and consequently to keep the driv-
ing signals {ck(n)} finite in length is to impose the paraunitary
condition on F(z) [6]. Namely, we will constrain F(z) to satisfy,

F̃(z)F(z) = I (7)

Given the structure inherent in F(z) (see (5) and (3)), it is not
obvious that we can even satisfy (7). However, it turns out that (7)
is satisfied iff the synthesis filters {Fk(z)} form an orthonormal
basis, as shown in Figure 4. This is stated formally in the following
theorem, the proof of which is omitted for sake of brevity.

Theorem 1 The transfer function F(z) given by (5) and (3) satis-
fies the paraunitary condition of (7) iff the synthesis filters {Fk(z)}
satisfy the orthonormality relation shown in Figure 4. ♦

From [1], the orthonormality condition given in Figure 4 can
be expressed algebraically as,∑

n

f∗
k (mkn − nkm)fl(mln − nli) = δ(k − l)δ(m − i) (8)

Hence, the paraunitary condition for F(z) in (7) is equivalent to
the orthonormality condition in (8). It should be noted that the
condition given in (8) can often be satisfied in practice and so in-
deed we can usually ensure the paraunitarity of F(z) as desired.

4. RELATION TO ENERGY COMPACTION

Using the optimal C(z) of (6), the error ξ can be expressed as,

ξ =
∑

n

|x(n)|2−
∫ 2π

0

Tr
[
G(ejω)X(ejω)X†(ejω)G†(ejω)

] dω

2π︸ ︷︷ ︸
σ2

where G(z) �
[
F̃(z)F(z)

]− 1
2
F̃(z). Hence, minimizing ξ is

equivalent to maximizing σ2. But maximizing σ2 is equivalent to
compacting the energy of a filtered wide sense stationary (WSS)
process V(z) � G(z)W(z) where W(z) is WSS with a power
spectral density (psd) of Sww(z) = X(z)X̃(z). In the single
channel integer case, it was shown [5] that ξ could be made zero
by trivially adjusting the subspace to accomodate the given deter-
ministic signal x(n). To avoid such trivialities, Unser considered
the energy compaction problem for an ensemble of signals charac-
terized by a WSS process x(n) with a psd of Sxx(z) subject to the
paraunitary constraint of (7) for the single channel integer case.

In this paper, we consider the energy compaction problem for
a collection or class of deterministic signals. The class may repre-
sent, for example, a set of vowel phonemes uttered by a variety of
speakers, or a set of images with a common theme. Consider a set
of L signals {xl(n)} for 0 ≤ l ≤ L−1. Using the optimal driving
signal model from Figure 3, we propose to choose F(z) subject to
the paraunitary constraint in (7) to minimize the objective,

J �
L−1∑
l=0

αlξl where ξl �
∑

n

|yl(n) − xl(n)|2 (9)
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Fig. 5. Collection of images used for simulations.

and yl(n) is the output of xl(n) to the system of Figure 3. Here,
αl is a weighing factor that satisfies,

αl ≥ 0 ,

L−1∑
l=0

αl = 1

With this, it can be shown that choosing F(z) to maximize J is
equivalent to the above energy compaction problem with,

Sww(z) =

L−1∑
l=0

αlXl(z)X̃l(z)

5. SIMULATION RESULTS

To test our proposed design method, we used it for a set of L =
4 images shown in Figure 5. Each image is from a fingerprint
database and the goal is to design an optimal synthesis bank for
the class of such images. The images were converted to one-
dimensional signals via a raster scan. Equal weighing was used for
each signal (i.e. αl = 1

L
∀ l). Minimizing J in (9) subject to (7)

is equivalent to maximizing a quadratic form subject to quadratic
constraints. As such, nonlinear optimization techniques were used.

In order to see the merit of our approach, we applied a model
signal, shown in Figure 6(a), to a variety of our optimally designed
synthesis banks. We considered the following filter banks.

• (Integer nonuniform) P = 2, mk = 1 ∀ k, n0 = 2, n1 = 4

• (Uniform) P = 3, mk = 1, nk = 4 ∀ k

• (Integer single channel) P = 1, m0 = 1, n0 = 2

For simplicity, we chose the length of all filters to be 4. The results
of applying the model signal to the above optimally designed filter
banks are shown in Figure 6(b), (c), and (d), respectively.

From Figure 6, we can see that all methods yielded outputs
similar in appearance to the given model signal, although the single
channel case appears to have Moiré patterns when viewed at full
size [8]. To quantitatively compare the methods, we calculated
the peak signal-to-noise ratio (PSNR) of the output signals, which
can be found in the caption of Figure 6. Here, the uniform case
performed the best, while the single channel case was the worst.
Though the uniform case performed better than the nonuniform
one, this was at the expense of having another channel. This brings
to light the tradeoff between signal fidelity and computational load.

(a) (b)

(c) (d)

Fig. 6. (a) Original model signal, (b) Nonuniform case
(PSNR = 40.18 dB), (c) Uniform case (PSNR = 47.90 dB),
(d) Single channel case (PSNR = 34.05 dB).

6. CONCLUDING REMARKS

In this paper, we considered the least squares approximation model
for rational nonuniform synthesis banks and showed the equiva-
lence of the paraunitarity of the matrix F(z) and the orthonormal-
ity of the synthesis filters. We also introduced the notion of deter-
ministic compaction filters for a class or collection of signals and
showed the merit of our method with examples. Future research
includes studying the effects of quantizing the optimal driving sig-
nals {ck(n)} for the purpose of further compression.
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