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Abstract – The design of time-domain equalizers or TEQs for
discrete multitone modulation (DMT) systems has recently received
much attention. In this paper, we present a generalization of one
such design method which takes into account the noise observed
in a DMT channel. Furthermore, we show how this generaliza-
tion can be used for the design of fractionally spaced equalizers or
FSEs. Experimental results are presented showing that our design
method performs better than other known techniques. 1

I. INTRODUCTION

One problem which has been of great interest in recent
years has been the design of time-domain equalizers or TEQs
for discrete multitone modulation or DMT systems [1, 4, 6].
Due to the long impulse response of typical channels encoun-
tered in DMT systems such as twisted pair telephone lines [7],
TEQs are necessary to shortenthe overall channel response to
one sample more than the length of the cyclic prefix used.

Many of the methods proposed for the design of such TEQs
deal with the design of the effective channel (i.e. the cascade of
the channel and equalizer) [1, 4] and not the equalizer coef-
ficients directly. In these methods, the equalizer coefficients
must then be chosen to best fit the desired optimal effective
channel. Recently, however, a new method was proposed [6],
which deals directly with the equalizer coefficients. The ob-
jective of this method is to minimize the delay spread of the
overall channel. This method was shown to localize the tempo-
ral spread of the effective channel more so than other methods
and was shown to be less sensitive to synchronization errors
as well. However, this method does not take into account the
noise present in the system.

In this paper, we consider generalizing the method of [6] to
include the effects due to noise. The optimum equalizer filter
coefficients will be found to be related to the components of an
eigenvector of a particular matrix. Furthermore, we will show
that our results can be extended for the design of fractionally
spaced equalizers or FSEs. Although FSEs have not been used
as TEQs for DMT systems, the results obtained here give merit
to their possible future use in such systems.

1Work supported in part by the ONR grant N00014-99-1-1002, USA.
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Fig. 1. SIMO-MISO channel and equalizer model.

A. Notations

All notations are as in [11]. In particular, any transfer func-
tion H(z) can be decomposed into one of the following types
of polyphase decompositions for any positive integer M .

H(z) =
M−1∑
k=0

z−kEk(zM ) (Type I)

H(z) =
M−1∑
k=0

zkRk(zM ) (Type II)

where we have,

ek(n) = h(Mn+k) , rk(n) = h(Mn−k) , 0 ≤ k ≤ M −1 .

II. THE TEQ DESIGN PROBLEM

Suppose that we have the single-input multiple-output (SIMO)
channel and multiple-input single-output (MISO) equalizer model
as shown in Figure 1. When K = 1 we obtain the classical
symbol spaced equalizer (SSE) model. In Section IV we will
show that the fractionally spaced equalizer (FSE) is a special
case of this model. We make the following assumptions here.

• The channel C(z) is FIR of length Lc.

• The equalizer H(z) is FIR of length Le.

• The noise vector sequence η(n) is a WSS random pro-
cess with psd matrix Sηη(ejω).

For simplicity, we denote the impulse responses of C(z) and
H(z) by c(n) and h(n), respectively. The effective channel is



ceff(n) = h(n) ∗ c(n) and has length Lc + Le − 1. Note that
the output x̂(n) can be expressed as follows.

x̂(n) = xs(n) + w(n)

where xs(n) and w(n) are, respectively, the output signal and
output noise sequences given by the following.

xs(n) = ceff(n) ∗ x(n)
w(n) = h(n) ∗ η(n)

We wish to choose the coefficients of the equalizer to accom-
plish the following goals.

• Shorten the effective channel ceff(n).
• Minimize the noise power σ2

w with respect to the signal
power σ2

xs
.

To that end, we propose to choose the coefficients of h(n) to
minimize the following objective function J .

J � αJshort + (1 − α)Jnoise , 0 ≤ α ≤ 1 (1)

where Jshort and Jnoise are defined as follows.

Jshort �

∑
n

f(n − nmid)|ceff(n)|2∑
n

|ceff(n)|2
(2)

Jnoise � σ2
w

σ2
xs

=
σ2

w

σ2
x

∑
n

|ceff(n)|2
(3)

Here, the quantity Jshort represents a channel shortening objec-
tive function whereas Jnoise is the noise-to-signal ratio (under
the assumption that the input signal x(n) is white). The pa-
rameter nmid denotes the desired midpoint or “centroid” of the
effective channel. In addition, the function f(n) is a “penalty”
function which is any nonnegative function used to penalize
values of ceff(n) that are away from n = nmid. Examples of
penalty functions that we will consider here are shown below.

f(n) = n2 (Quadratic)

f(n) = |n| (Linear)

The special case in which K = 1, α = 1, and f(n) = n2 was
analyzed previously by Schur and Speidel [6]. Since the pri-
mary design goal of a TEQ for DMT systems is to shorten the
overall channel to one sample more than the length of the cyclic
prefix, we will also consider the following penalty function.

f(n) =

{
0 , n ∈ [−NCP

2 , NCP
2

]
1 , otherwise

(4)

where NCP is the length of the cyclic prefix (assumed to be
even here). Note that J is a convex combinationof the objec-
tive functions Jshort and Jnoise, and that J ≥ 0. Here, the pa-
rameter α represents a tradeoff parameter between shortening
the effective channel and minimizing the output noise-to-signal
ratio. We will now proceed to analyze the objective function J .

III. ANALYSIS OF THE OBJECTIVE FUNCTION J

First we will analyze Jshort. To do so, we define the follow-
ing vectors and matrices.

ceff �
[

ceff(0) ceff(1) · · · ceff(Lc + Le − 2)
]

h �
[

h(0) h(1) · · · h(Le − 1)
]

C �


c(0) c(1) · · · c(Lc − 1) 0 · · · 0

0 c(0) c(1) · · · c(Lc − 1)
.
.
.

.

.

.

.

.

.

.
.
.

.
.
.

.
.
.

.
.
. 0

0 · · · 0 c(0) c(1) · · · c(Lc − 1)
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√

f(0 − nmid) 0 · · · 0

0
√

f(1 − nmid)
.
.
.

.

.

.

.

.

.

.
.
.

.
.
. 0

0 · · · 0
√

f((Lc + Le − 2) − nmid)


These quantities have the following sizes.

• ceff : 1 × (Lc + Le − 1)
• h : 1 × KLe

• C : KLe × (Lc + Le − 1)
• Λ : (Lc + Le − 1) × (Lc + Le − 1)

Note that ceff is given by convolution to be the following.

ceff = hC

Using this and the definition of Jshort given in (2), we have,

Jshort =
(ceffΛ)(ceffΛ)†

ceffc
†
eff

=
hCΛΛ†C†h†

hCC†h† (5)

Now, assuming KLe ≤ Lc + Le − 1 and that C has a full rank
of KLe, then the matrix A � CC† is strictly positive definite.
As such, there exists a Cholesky decomposition[5] of A as,

A = U†U

where U is a KLe×KLe nonsingular upper triangular matrix.
Using this decomposition, we can express Jshort as a Rayleigh
quotient [5]. Defining the KLe×1 column vector v as follows,

v � Uh† ⇐⇒ h = v†(U−1)† (6)

we have from (5),

Jshort =
v†(U−1)†CΛΛ†C†(U−1)v

v†v
=

v†Pv
v†v

(7)

where P � (U−1)†CΛΛ†C†(U−1). Evidently, P is Hermi-
tian and thus Jshort has been expressed as a Rayleigh quotient
in terms of the vector v. We now proceed to analyze the noise
objective function Jnoise. From (3), we have,

Jnoise =
σ2

w

σ2
xhCC†h† (8)



where σ2
w is given by,

σ2
w =

1
2π

∫ π

−π

Sww(ejω) dω

As w(n) = h(n) ∗ η(n), we have the following.

Sww(ejω) = H(ejω)Sηη(ejω)H†(ejω)

=
∑
m,n

h(m)
[
Sηη(ejω)ejω(n−m)

]
h†(n)

σ2
w =

∑
m,n

h(m)
[

1
2π

∫ π

−π

Sηη(ejω)ejω(n−m) dω

]
︸ ︷︷ ︸

Rηη(n−m)

h†(n)

Defining the KLe × KLe matrix Rη as follows,

Rη �


Rηη(0) Rηη(1) · · · Rηη(Le − 1)

Rηη(−1) Rηη(0)
. . .

.

.

.
.
.
.

. . .
. . . Rηη(1)

Rηη(−(Le − 1)) · · · Rηη(−1) Rηη(0)


we can express σ2

w in terms of the vector h as shown below.

σ2
w =

∑
m,n

h(m)Rηη(n − m)h†(n) = hRηh† (9)

Using (9) and (6) in (8) yields the following.

Jnoise =
v†

[
1

σ2
x
(U−1)†Rη(U−1)

]
v

v†v
=

v†Qv
v†v

(10)

where Q � 1
σ2

x
(U−1)†Rη(U−1). Since Rη is Hermitian (as

R†
ηη(−k) = Rηη(k)), it follows that Q is also Hermitian.

Thus, we have expressed Jnoise as a Rayleigh quotient in terms
of the vector v. Combining (7) and (10), we obtain from (1),

J =
v† [αP + (1 − α)Q]v

v†v
=

v†Tv
v†v

where T � αP + (1 − α)Q. Since α is real and P and Q
are Hermitian, it follows that T is also Hermitian. As such,
it follows by Rayleigh’s principle[5] that as v varies over all
nonzero vectors, the minimum value of the objective function J
is λmin, where λmin denotes the smallest eigenvalue of T. This
minimum value is achieved if v = vmin, where vmin denotes
an eigenvector of T corresponding to λmin. (More generally,
the minimum value of J is achieved iff v is in the eigenspace
corresponding to λmin. However, for sake of clarity, we will ig-
nore this scenario.) Hence, if Jopt and hopt denote the optimum
value of the objective function J and optimizing equalizer co-
efficients, respectively, then we have,

Jopt = λmin

hopt = v†
min(U

−1)†
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Fig. 2. Discrete-time model of a K-fold FSE.

The vector hopt is referred to as an eigenfilter[9, 6] as its el-
ements are filter coefficients derived from an eigenvector of a
matrix. We now proceed to show that the FSE is simply a spe-
cial case of the structure in Figure 1.

IV. RELATION TO FRACTIONALLY SPACED EQUALIZERS

The discrete-time model of a K-fold FSE is shown in Fig-
ure 2 [8, 10]. Here, CK(z) and HK(z) represent, respectively,
a K-fold oversampled version of our original channel and equal-
izer. The noise process η(n) is similarly a K-fold oversampled
version of our original noise process. Consider the following
polyphase decompositions [11] of CK(z) and HK(z) below.

CK(z) =
K−1∑
k=0

zkRk(zK) (Type II)

HK(z) =
K−1∑
k=0

z−kEk(zK) (Type I)

Using the noble identities[11], the structure in Figure 2 can be
redrawn as in Figure 1 where we have,

[C(z)]k,0 = Rk(z)
[H(z)]0,k = Ek(z)
[η(n)]k,0 = η(Kn − k)

for 0 ≤ k ≤ K − 1. As such, if our goal is to choose the co-
efficients of the equalizer HK(z) to jointly shorten the overall
channel and minimize the noise-to-signal ratio, then they can
be found using the eigenfilter approach of the previous section.

V. EXPERIMENTAL RESULTS

We now proceed to analyze how our design method com-
pares with other known methods. One important figure of merit
used to measure the performance of a TEQ in a DMT system,
such as the one shown in Figure 3, is the maximum achievable
bit rate. In order to achieve the maximum possible bit rate, bits
are allocated to different components of ŝ(n) depending upon
the strength of the signal with respect to the noise and intersym-
bol interference (ISI). Assuming that the input noise is Gaus-
sian and that the components of ŝ(n) are spectrally isolated and
sufficiently of narrow bandwidth, which is only approximately
true here, the subchannels of ŝ(n) can be viewed as indepen-
dent parallel Gaussian channels [7]. In this case, the number
of bits per real dimension to allocate in the k-th component of
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Fig. 3. Traditional DMT system.

ŝ(n), denoted here by bk, is simply the following [7].

bk =
1
2

log2

(
1 +

SNRk

Γ

)
Here, Γ is a “gap” quantity that depends on the coding and
modulation format used as well as the desired probability of
error. (For uncoded PAM and QAM constellations, Γ = 9.8 dB
for a symbol error probability of 10−7 [7].)

To test our TEQ design method in a practical setting, such
as the downstream link of an asymmetric digital subscriber line
(ADSL) system, we have made the following assumptions.

• Input signal s(n) consists of QAM symbols.

• Desired probability of error is 10−7.

• Discrete Fourier Transform (DFT) size is NDFT = 512.

• Length of cyclic prefix is NCP = 32.

As the input consists of two-dimensional QAM symbols, the
number of bits to allocate in the k-th subchannel of ŝ(n) is,

bk =
⌊
log2

(
1 +

SNRk

Γ

)⌋
, 0 ≤ k ≤ NDFT − 1

with Γ = 9.8 dB here. Under the approximate assumption
that the subchannels are mutually isolated from each other and
sufficiently narrowband, we have, from [2],

SNRk =
σ2

x|Cdes(ejωk)|2
σ2

x|Cres(ejωk)|2 + Sww(ejωk)
, ωk =

2πk

NDFT

for 0 ≤ k ≤ NDFT − 1. Here Cdes(z) denotes the desired
shortened channel response, i.e. a window of the NCP +1 most
significant samples of ceff(n), and Cres(z) denotes the resid-
ual channel response given by Cres(z) = Ceff(z) − Cdes(z).
The numerator term corresponds to the observed signal power
(before the FEQ), while the denominator terms correspond, re-
spectively, to the ISI and noise powers (again before the FEQ).

Data for the channel and noise was obtained from the Mat-
lab DMTTEQ Toolbox developed by G. Arslan, B. Lu, and
B. L. Evans [3]. We used the following parameters here.

• Input power is σ2
x = 14 dBm.

• Length of equalizer is Le = 16.
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Fig. 4. Original and equalized channel impulse responses (α =
0.0028, nmid = 39, f(n) = |n|).
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Fig. 5. Original and equalized channel magnitude responses
(α = 0.0028, nmid = 39, f(n) = |n|).

• Carrier Service Area (CSA) loop # 1 was the channel.
• Input noise consists of near-end crosstalk (NEXT) noise

plus additive white noise with power density −110 dBm/Hz.
• Sampling frequency is fs = 2.208 MHz.

From this, the bit rate Rb was calculated using,

Rb =
fs

(NDFT + NCP)

NDFT−1∑
k=0

bk

We varied the tradeoff parameter α and desired midpoint nmid,
as well as the penalty function f(n), in order to obtain the
greatest possible rate Rb. The best SSE that we obtained was
for α = 0.0028, nmid = 39, and f(n) = |n|. Plots of the orig-
inal and equalized channel impulse responses and magnitude
responses are shown in Figures 4 and 5, respectively.

In addition to testing our proposed TEQ design method, we
also considered the following methods.

• Delay spread minimization method of Schur and Speidel
[6] (Special case of our method with K = 1, α = 1, and
f(n) = n2).

• Eigenapproach of Farhang-Boroujeny and Ding [4].
• Geometric SNR maximization method of Al-Dhahir and

Cioffi [1].

A plot of bk as a function of the subcarrier index k for our
equalizer is shown in Figure 6. Note that only the subcarrier
indices k = 0, . . . , NDFT/2 are shown due to the mirror sym-
metry inherent in bk due to the fact that the channel, equalizer,
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Fig. 6. Plot of bk versus k using proposed method (α = 0.0028,
nmid = 39, f(n) = |n|).
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Fig. 7. Plot of bk versus k using the method of [4].

and noise are all real here. In contrast to this, in Figure 7 we
have plotted bk versus k for the equalizer designed using the
method of [4]. Although both methods do not allocate any bits
for higher frequencies (near ω = π), our method is able to al-
locate more bits for lower frequencies than the method of [4].

The observed bit rates for the various TEQs considered here
are shown in Table 1. From the table, we can see that the SSE
designed using our method yielded a higher bit rate than each
of the other SSEs considered. More impressive, however, was
the fact that the FSE TEQ designed using the proposed method
yielded a much higher bit rate than any of the TEQs consid-
ered here. As before, α, nmid, and f(n) were chosen to yield
the highest rate. It should be noted that the oversampled chan-
nel and noise shaping filters were created using the interp1
command in Matlab. This example helps to justify the use of
FSEs as TEQs for DMT systems. This improved performance
is, of course, offset by the fact that the equalizer must operate
at twice the rate of a normal TEQ.

VI. CONCLUDING REMARKS

We have shown that in terms of achievable bit rate, the
TEQs designed using our approach were superior to those of
other traditional methods. In particular, it was seen that of all
of the methods considered, the FSE designed here performed
the best. This helps to justify the future use of FSEs as TEQs in
DMT systems. Use of a modified quadratic objective function
and different choices for the penalty function f(n) to further
increase the bit rate are the subject of ongoing research.

Method Rb (Mb/s)

Eigenfilter Method - SSE
(α = 0.0028, nmid = 39, f(n) = |n|) 2.525

Schur & Speidel [6]
(nmid = 42)

2.176

Farhang-Boroujeny & Ding [4] 1.956

Al-Dhahir & Cioffi [1] 1.729

Eigenfilter Method - FSE
(K = 2, Le = 8, α = 0.998,

nmid = 36, f(n) as in (4))

5.236

Table 1. Observed bit rates (Rb) for various equalizer methods.
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