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Deep-Space Optical Transceiver Uplink Detection
Analysis

Andre Tkacenko∗, Kevin J. Quirk∗, and Meera Srinivasan∗

In this memo, we develop and analyze an uplink signal detection technique for the

Deep-Space Optical Transceiver (DOT). Here, the detection is carried out using a set of

test statistics obtained from up-down counter (UDC) photon detection systems.

Specifically, we address two sets of statistics: the count outputs from a bank of uniformly

temporally spaced UDCs as well as the counts from a single UDC that cycles through

multiple timing phases. From these test statistics, we derive the Neyman-Pearson decision

rule under certain input conditions and analyze the performance of this hypothesis test.

We show the performance trade-offs associated with both sets of test statistics, which can

then be used to determine which set to use as well as the number of UDCs or timing

phases required for implementation.

I. Introduction

In order to receive an uplink communication from an Earth-based beacon, the Deep-Space

Optical Transceiver (DOT) flight terminal will use a focal plane array [1] of photon

counting detector pixels (possibly of size 128× 128). While the Earth and beacon together

will occupy a varying amount of pixels depending upon the distance between the DOT and

Earth, the system is designed for the beacon to occupy a certain minimum region of pixels

(possibly 2× 2). This is illustrated in Fig. 1.

For spatial acquisition, the DOT flight terminal will employ up-down counter (UDC)

photon detection systems at each pixel. Using UDCs provides a low complexity detection

method when combined with appropriate modulation to be able to distinguish between

uplink telemetry from the beacon on Earth and background illumination from the Earth

as well as ambient background illumination. When a telemetry waveform is incident on a

pixel, the UDCs will tend to yield a non-zero output, whereas when only background
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Figure 1. DOT focal plane array with Earth and the uplink beacon present.

illumination is received, the UDCs will have a zero net count on average. As the symbol

timing offset of the uplink beacon telemetry waveform will not be known to the DOT a

priori, UDC count statistics at several timing phases will be required in general. Two ways

in which this can be accommodated and which we will analyze here are as follows. Either

a bank of uniformly temporally spaced UDCs can be used or a single UDC can be used

multiple times at uniformly spaced timing phases. For either case, the temporal spacing is

with respect to the uplink symbol interval, which is assumed to be known at the DOT.

A. Outline

In Sec. I-B, we describe the notations that will be used in this memo, whereas in Sec. I-C,

we provide a convenient list of terms that will be used throughout the paper. An overview

of the uplink detection signal model that we will be focusing on here is provided in Sec. II.

In Sec. III, we detail the UDC test statistics that will be considered here and introduce the

chip interval counts used to canonically describe them. The probabilistic modeling of the

chip interval counts is derived in Sec. III-A, which is then used to determine the

probabilistic modeling of the multiple UDC, single phase and single UDC, multiple phase

statistics in Secs. III-B and III-C, respectively. A description of the Neyman-Pearson

hypothesis test that will be used for detection is given in Sec. IV, along with a symbol

timing offset conditional variant as detailed in Sec. IV-A. In Sec. V, we analyze several

important special cases of the unconditional Neyman-Pearson hypothesis test, including

the single UDC, single phase case in Sec. V-A, the dual UDC, single phase case in Sec.

V-B, and the single UDC, dual phase case in Sec. V-C. There, we see the difficulties in

deriving the unconditional Neyman-Pearson hypothesis test in general and shift our focus

to detection tests conditioned on the symbol timing offset. Specifically, in Sec. VI, we

analyze the detection performance for a worst case scenario (WCS) symbol timing offset

for both the multiple UDC, single phase system in Sec. VI-A as well as the single UDC,

multiple phase system in Sec. VI-B. In Sec. VII, we touch on some of the pros and cons

between the two proposed UDC-based uplink signal detection schemes. Concluding

remarks are made in Sec. VIII. Finally, in the Appendix, we simplify a certain multivariate

Gaussian distribution [2] integral over a hyperspherical region, a result which is used to

assess the WCS symbol timing offset detection performance.
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B. Notations

Most notations are as in [2]. In particular, parentheses and subscripts are respectively used

to denote continuous and discrete function arguments. For example, g(x) would denote a

continuous function for x ∈ R, whereas hn would denote a discrete function for n ∈ Z.

Vector/matrix notations are as in [3]. Specifically, boldface lowercase letters (such as v) are

used to denote vectors, whereas boldface uppercase letters (such as A) represent matrices.

The k-th component of a vector v will be denoted [v]k, whereas the (k, `)-th element of a

matrix A is denoted as [A]k,`. In addition, the transpose operator will be represented by

the superscript T and the determinant of a square matrix S is expressed as det (S).

Random variables are denoted via a non-italicized font, while instances of random variables

are expressed using an italicized font. As an example, v may denote a random variable,

whereas an instance of v would be expressed as v. Vectors are denoted using a bold font.

For example, v may denote a random vector, while v would denote an instance of v.

A probability density function (pdf) [2] will be denoted by the letter f subscripted by the

random variable or vector. For instance, fv(v) and fv(v) would denote pdfs of the random

variable v and random vector v, respectively.

The notation N
(
µ, σ2

)
will be used to denote a random variable with a normal or

Gaussian distribution [2] with mean µ and variance σ2. If a random variable v has such a

distribution, we will write v ∼ N
(
µ, σ2

)
. We will use φ(x) and Φ(x) to respectively denote

the pdf and cumulative distribution function (cdf) [2] of the standard normal distribution

[2] (i.e., N (0, 1)). These are given by the following expressions [2]:

φ(x) ,
1√
2π
e−

x2

2 , Φ(x) ,
∫ x

−∞
φ(y) dy =

1√
2π

∫ x

−∞
e−

y2

2 dy .

It can be shown that if x ∼ N
(
µ, σ2

)
and fx(x) and Fx(x) denote, respectively, the pdf

and cdf of x, then we have [2]

fx(x) =
1

σ
φ

(
x− µ
σ

)
, Fx(x) = Φ

(
x− µ
σ

)
. (1)

Similar to the univariate case, the notation Np(µ,Σ) will be used to denote a p× 1

random vector with a multivariate normal or Gaussian distribution [2] with p× 1 mean

vector µ and p× p covariance matrix Σ. If a random vector v has such a distribution, we

will write v ∼ Np(µ,Σ). In this case, we have [2]

fv(v) =
1

(2π)
p
2 (det (Σ))

1
2

e−
1
2 (v−µ)TΣ−1(v−µ) . (2)

Finally, we will use the notation zNCχ2(x; p, λ) to denote the cdf of a noncentral

chi-square distribution with p degrees of freedom and non-centrality parameter λ evaluated

at x [4]. In addition, we will use the notation z−1
NCχ2(P ; p, λ) to denote the quantile

function [2] (i.e., the inverse of the cdf) of a noncentral chi-square distribution with p

degrees of freedom and non-centrality parameter λ evaluated at P .

3



C. Summary of Terms

A list of frequently used terms is provided below for convenience.

M − pulse position modulation (PPM) [1, 5] data symbol order,

P − number of inter-symbol guard time (ISGT) [6] slots used,

G − number of UDCs in a multiple UDC, single phase system or the number of

timing phases of a single UDC, multiple phase system,

λs − average detected signal photon arrival rate,

λb − average detected background and dark [1] photon arrival rate,

Ts − slot time interval,

Ks − mean number of signal photon counts per signal slot (i.e., Ks , λs (M + P )Ts),

Kb − mean number of background photon counts per slot (i.e., Kb , λbTs),

Nsym − number of symbols observed for a multiple UDC, single phase system,

Nspp − number of symbols per timing phase observed for a single UDC, multiple

phase system,

Tsym − symbol time interval (i.e., Tsym , (M + P )Ts),

Td − detection time interval (i.e., Td = NsymTsym for a multiple UDC, single phase

system and Td = NsppGTsym for a single UDC, multiple phase system).

II. Uplink Detection Signal Model

The uplink signal model is characterized by a received photon intensity function, which we

denote here by i(t). From UDC test statistics based upon this received signal, we must

infer whether or not telemetry has been sent. For the DOT, we assume that a transmitted

telemetry signal will consist of symbols, each formed from the concatenation of the

following components:

• an M -ary PPM data symbol,

• a set of P ISGTs.

Whether or not a telemetry signal was transmitted, we will assume that there is a

background illumination present at the receiver. This leads to the following expression for

the received laser intensity waveform i(t):

i(t) =


λs (M + P )

[ ∞∑
n=−∞

p

(
t

Ts
− ε− dn − (M + P )n

)]
+ λb , telemetry present

λb , telemetry absent

,

(3)
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Figure 2. Sample plot of the received photon intensity waveform i(t) when telemetry is present.

where we have

ε , symbol timing offset (normalized by Ts),

In general, we have ε0 ≤ ε < ε0 + (M + P ) for any ε0 ∈ R.

{dn} , M -ary PPM data sequence,

Here, dn ∈ {0, 1, . . . ,M − 1}.

Also, we will assume that {dn} is an independent, identically distributed

(iid or i.i.d.) sequence [2] with

Pr {dn = m} =
1

M
, ∀ 0 ≤ m ≤M − 1, n ∈ Z .

p(x) , telemetry transmit pulse shape.

Here, we assume p(x) is rectangular as follows:

p(x) =

 1 , 0 ≤ x < 1

0 , otherwise
.

A sample plot of the received photon intensity signal i(t) in the case of telemetry being

present is shown in Fig. 2. As only one of the M -ary PPM data slots will be active for

each composite symbol, consisting of (M + P ) slot intervals total, it follows that the

average signal arrival rate will be λs.

Another signal of interest which will simplify subsequent statistical analysis of the UDC

hypothesis test metrics will be the photon intensity function averaged over the random

PPM data. This signal, which we will denote by i(t), is given by the following expression:

i(t) =


λs

(M + P )

M

∞∑
n=−∞

p

(
t
Ts
− ε− (M + P )n

M

)
+ λb , telemetry present

λb , telemetry absent

. (4)

A sample plot of the data-averaged received photon intensity function i(t) when telemetry

is present is shown in Fig. 3. As can be seen, i(t) is similar to i(t) as shown in Fig. 2,

except that the random data present in i(t) is averaged to produce the wide non-random

rectangular pulse present in i(t). The signal component of this wide pulse has an

amplitude which is M times smaller than that when random data is present, due to

averaging of the data.
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Figure 3. Sample plot of the data-averaged received photon intensity waveform i(t) with telemetry present.

III. Up-Down Counter Test Statistics

As mentioned above, the uplink detection problem is to determine whether or not a

telemetry signal was transmitted. Thus, from (3) we have two hypotheses as described

below:

H0 : i(t) = λb

H1 : i(t) = λs (M + P )

[ ∞∑
n=−∞

p

(
t

Ts
− ε− dn − (M + P )n

)]
+ λb

, (5)

where, H0 and H1 correspond, respectively, to the cases in which telemetry is absent and

present. We will refer to H0 as the null hypothesis, whereas H1 will be referred to as the

present hypothesis.

Here, a decision will be made as to whether H0 or H1 is true based on one of two possible

sets of G UDC statistics. For the multiple UDC, single phase case, the test statistics will

consist of the count outputs of a bank of G uniformly temporally staggered UDCs,

whereas for the single UDC, multiple phase case, the test statistics will consist of the

count outputs of a single UDC applied G times at uniformly spaced timing offset phases.

To formally introduce both sets of test statistics, let us first define the following chip time

interval Tc:

Tc ,
Tsym

2G
=

(M + P )Ts
2G

(chip time interval) . (6)

Then, let us define the random variable Nk as follows:

Nk , # of photon counts over the time interval t ∈ [kTc, (k + 1)Tc) , ∀ k ∈ Z . (7)

From these count random variables, we form our G UDC test statistics for both the

multiple UDC, single phase and single UDC, multiple phase cases. Let Nsym and Nspp

denote, respectively, the number of symbols observed for the multiple UDC, single phase

case and the number of symbols per phase observed for the single UDC, multiple phase

case (see Sec. I-C). The UDC test statistics {g`}G−1
`=0 for both cases are then

g` ,


1

Nsym

Nsym−1∑
q=0

(2G)−1∑
r=0

(−1)b
r−`
G cN(2G)q+r , (multiple UDC, single phase case)

1

Nspp

Nspp−1∑
q=0

(2G)−1∑
r=0

(−1)b
r−`
G cN(2G)(q+`Nspp)+r , (single UDC, multiple phase case)

.

(8)
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Figure 4. Pictorial view of the formation of the UDC test statistics for G = 3: (a) multiple UDC, single

phase case and (b) single UDC, multiple phase case (up counts in green and down counts in red).

A pictorial view of how the UDC statistics are formed in both cases is shown for G = 3 in

Fig. 4. As can be seen from Fig. 4(a), for the multiple UDC, single phase case, the

statistics overlap in time, whereas from Fig. 4(b), for the single UDC, multiple phase case,

there is no temporal overlap of the test statistics. For both cases, however, it is evident

that the test statistics represent G time intervals uniformly offset across the total symbol

interval length Tsym.

A comment is in order here regarding the single UDC, multiple phase test statistics from

(8). By construction, these statistics span contiguous, non-overlapping time intervals.

Specifically, from (8), (7), and (6), it can be seen that g` represents up-down photon

counts over the time interval t ∈ [`NsppTsym, (`+ 1)NsppTsym), the set of which, for all `,

is contiguous and non-overlapping. However, as will be seen subsequently in Sec. III-C, the

probabilistic characterization of this set of test statistics will be the same as those for

which the time intervals are only non-overlapping. Hence, instead of the contiguous and

non-overlapping single UDC, multiple phase statistics from (8), we could also use a set of

test statistics that are only non-overlapping. In essence, there is no loss of generality in

assuming a contiguous form as in (8) and this was merely chosen as such here for

notational simplicity.

For notational convenience, we will define the G× 1 random vector g to be the vector of

UDC test statistics given by

g ,
[

g0 g1 · · · gG−1

]T
. (9)

In accordance with the notational conventions adopted here (see Sec. I-B), we will denote

an instance of g by g.
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A. Probabilistic Modeling of the Chip Interval Counts

The photon detection counting process [1] is assumed to be a Poisson process [2]. Let λk

denote the average arrival rate [1] corresponding to the chip count variable Nk. From (7),

we have

λk ,
1

Tc

∫ (k+1)Tc

kTc

i(t) dt , (10)

where i(t) is as in (3). Conditioned on λk, it follows that Nk is Poisson with mean λkTc.

Specifically, this means that we have [2]

Pr {Nk = m |λk} =
(λkTc)

m
e−(λkTc)

m!
um , m ∈ Z ,

where um is the Heaviside step sequence [2]. Furthermore, as Nk and N` represent counts

across non-overlapping time intervals for all k 6= ` (as evidenced from (7)), it follows that

Nk |λk and N` |λ` are independent for all k 6= `.

When telemetry is present, it can be shown that the arrival rate λk will be a deterministic

function of the symbol timing offset ε, when averaged over the random PPM data. For the

case in which telemetry is absent, it follows that λk = λb and so it is trivially a

deterministic function of ε. Thus, analogously to (10), if we define the average arrival rate

λk(ε) for both the null and present hypotheses as

λk(ε) ,
1

Tc

∫ (k+1)Tc

kTc

i(t) dt , (11)

where i(t) is as in (4), then we have

Nk | ε ∼ Poisson
(
λk(ε)Tc

)
. (12)

In other words, the random variable Nk | ε is Poisson with mean λk(ε)Tc. Furthermore, as

Nk and N` represent non-overlapping count time intervals for all k 6= `, it follows that

Nk | ε and N` | ε are independent for all k 6= `.

One noteworthy property of λk(ε) that can be deduced from (11) and (4) is that

λk(ε) = λk mod (2G)(ε) , ∀ k ∈ Z . (13)

This follows from the fact that i(t) is periodic with period Tsym = (2G)Tc (for both

hypotheses) and that the integration region in (11) is over an interval of length Tc. This

implies that there are at most (2G) distinct values of λk(ε) for fixed ε. As such, from (12)

and (13), we have the following:

Nk | ε ∼ Poisson
(
λk mod (2G)(ε)Tc

)
. (14)

In other words, as k varies, the distribution of the count variable Nk, conditioned on the

symbol timing offset ε, is only a function of the remainder of k when divided by (2G).
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B. Probabilistic Modeling of the Multiple UDC, Single Phase Statistics

To statistically characterize the multiple UDC, single phase test statistics from (8), note

that we can express the normalized count random variable g` as

g` =

(2G)−1∑
r=0

(−1)b
r−`
G c Cr , where Cr ,

1

Nsym

Nsym−1∑
q=0

N(2G)q+r . (15)

Now, to analyze the random variable Cr, first note that from (14) that

N(2G)q+r | ε ∼ Poisson
(
λr(ε)Tc

)
.

In other words, for fixed r,
{

N(2G)q+r | ε
}Nsym−1

q=0
have identical distribution. Furthermore

as
{

N(2G)q+r | ε
}Nsym−1

q=0
are independent, it follows

{
N(2G)q+r | ε

}Nsym−1

q=0
are iid. As the

variance of N(2G)q+r | ε is equal to λr(ε)Tc (since N(2G)q+r | ε is Poisson with mean λr(ε)Tc

[2]), it follows by the central limit theorem [2] that for large Nsym, we have

Cr | ε ∼ N
(
λr(ε)Tc,

λr(ε)Tc
Nsym

)
. (16)

Furthermore, as Cr is formed from non-overlapping count random variables for varying r

as evident from (15), it follows that Ck | ε and C` | ε are independent for all k 6= `, where

k, ` ∈ {0, 1, . . . , (2G)− 1}.

To further simplify the probabilistic model of the multiple UDC, single phase test

statistics, note that from (15) that we have the following:

g` =

G−1∑
r=0

(−1)b
r−`
G c Cr +

(2G)−1∑
r=G

(−1)b
r−`
G c Cr ,

=

G−1∑
r=0

(−1)b
r−`
G c Cr +

G−1∑
m=0

(−1)b
m−`
G +1c CG+m , (17)

=

G−1∑
r=0

(−1)b
r−`
G c Cr −

G−1∑
r=0

(−1)b
r−`
G c CG+r =

G−1∑
r=0

(−1)b
r−`
G c (Cr − CG+r) , (18)

=

G−1∑
r=0

(−1)b
r−`
G cDr , where Dr , Cr − CG+r , 0 ≤ r ≤ G− 1 . (19)

Here, (17) follows from the substitution m = r −G in the second summation and (18)

follows from the fact that bx+ nc = bxc+ n for any n ∈ Z [7]. From (16) and the fact that

Cr | ε and CG+r | ε are independent for all 0 ≤ r ≤ G− 1, it can be shown that we have [2]

Dr | ε ∼ N

((
λr(ε)− λG+r(ε)

)
Tc,

(
λr(ε) + λG+r(ε)

)
Tc

Nsym

)
. (20)

Furthermore, from (19), it can be seen that Dk | ε and D` | ε are independent for all k 6= `

with k, ` ∈ {0, 1, . . . , G− 1}.
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Returning to the multiple UDC, single phase test statistics, note that from (19) that we

have the following:

D` =


g` − g`+1

2
, 0 ≤ ` ≤ G− 2

gG−1 + g0

2
, ` = G− 1

. (21)

Conditioned on the symbol timing offset ε, the relationship given in (21) expresses the

multiple UDC, single phase test statistics {g`}G−1
`=0 in terms of a set of independent

Gaussian random variables, namely {D` | ε}G−1
`=0 . Also, as the mapping between {g`}G−1

`=0

and {D`}G−1
`=0 is one-to-one [2], they are equivalent sets of statistics [8]. Hence, {D`}G−1

`=0

represents a canonical decomposition of the multiple UDC, single phase test statistics and

will be used for all subsequent analysis here for this case.

To formally introduce the canonical multiple UDC, single phase test statistics, we will

define the G× 1 random vector D as

D ,
[

D0 D1 · · · DG−1

]T
. (22)

From (21) and (9), we can express D in (22) as follows:

D = Ag ,

where A is the G×G matrix

A ,



1
2 − 1

2 0 · · · 0

0 1
2 − 1

2

. . .
...

...
. . .

. . .
. . . 0

0 · · · 0 1
2 − 1

2

1
2 0 · · · 0 1

2


.

In summary, from (20), the canonical multiple UDC, single phase test statistic vector D

from (22) satisfies

D | ε ∼ NG
(
µD|ε,ΣD|ε

)
, (23)

where we have[
µD|ε

]
k

=
(
λk(ε)− λG+k(ε)

)
Tc , 0 ≤ k ≤ G− 1 , (24)

[
ΣD|ε

]
k,`

=


(
λk(ε) + λG+k(ε)

)
Tc

Nsym
, k = `

0 , k 6= `

, 0 ≤ k, ` ≤ G− 1 . (25)

Conforming to the notational conventions used here, we will denote an instance of D by D.

C. Probabilistic Modeling of the Single UDC, Multiple Phase Statistics

Analogous to the multiple UDC, single phase case, to statistically characterize the single

UDC, multiple phase test statistics from (8), note that we can express the normalized
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count random variable g` as

g` =

(2G)−1∑
r=0

(−1)b
r−`
G c C`,r , where C`,r ,

1

Nspp

Nspp−1∑
q=0

N(2G)(q+`Nspp)+r . (26)

As with the random variable Cr defined in (15), the central limit theorem can be applied

to C`,r conditioned on the symbol timing offset ε, for large Nspp. In this case, we have

C`,r | ε ∼ N
(
λr(ε)Tc,

λr(ε)Tc
Nspp

)
. (27)

Furthermore, as C`,r is formed from non-overlapping count random variables for varying `

and r as evident from (26), it follows that C`0,r0 | ε and C`1,r1 | ε are independent for all

`0 6= `1 or r0 6= r1, where `0, `1 ∈ {0, 1, . . . , G− 1} and r0, r1 ∈ {0, 1, . . . , (2G)− 1}.

To further simplify the probabilistic model of the single UDC, multiple phase test

statistics, note that from (26) that we have

g` =

G−1∑
r=0

(−1)b
r−`
G cD`,r , where D`,r , C`,r − C`,G+r , 0 ≤ `, r ≤ G− 1 . (28)

From (27) and the fact that C`,r | ε and C`,G+r | ε are independent for all ` and

0 ≤ r ≤ G− 1, it can be shown that we have [2]

D`,r | ε ∼ N

((
λr(ε)− λG+r(ε)

)
Tc,

(
λr(ε) + λG+r(ε)

)
Tc

Nspp

)
. (29)

Furthermore, from (28), it can be seen that D`0,r0 | ε and D`1,r1 | ε are independent for all

`0 6= `1 or r0 6= r1, where `0, `1, r0, r1 ∈ {0, 1, . . . , G− 1}. Using this result in (28), it

follows that gk | ε and g` | ε are independent for all k 6= ` with k, ` ∈ {0, 1, . . . , G− 1}.
Combining this latest fact with (29), it follows that the single UDC, multiple phase test

statistic vector g from (9) satisfies the following [2]:

g | ε ∼ NG
(
µg|ε,Σg|ε

)
, (30)

where we have[
µg|ε

]
k

=

G−1∑
r=0

(−1)b
r−k
G c (λr(ε)− λG+r(ε)

)
Tc , 0 ≤ k ≤ G− 1 , (31)

Σg|ε =

(
G−1∑
r=0

(
λr(ε) + λG+r(ε)

)
Tc

Nspp

)
IG . (32)

Here, IG denotes the G×G identity matrix [3].

IV. Neyman-Pearson Hypothesis Test

In this setting, a decision will be made as to whether the null or present hypothesis,

namely H0 or H1 respectively from (5), is true based on the Neyman-Pearson hypothesis

11



test [2, 8]. This test compares the likelihood ratio (or equivalently the log likelihood ratio

as we will use here [2]) to a threshold value, which we will denote by η. If the ratio is lower

than η, then H0 is selected, whereas if the ratio exceeds η, then H1 is chosen. In the event

that the ratio equals η, then either H0 or H1 is randomly selected according to the prior

distribution of the hypotheses, which will either be assumed to be known or modeled as

uniformly distributed if not. Specifically for the Neyman-Pearson test, the threshold η is

chosen such that the false alarm probability [2], which we denote here by PFA, equals some

prescribed value, say α. By the Neyman-Pearson lemma [2, 8], the such a threshold test is

the most powerful test [2] of size α for a threshold η.

To quantitatively introduce the Neyman-Pearson hypothesis test, we will first formally

define the log likelihood ratio. The log likelihood ratio Λ(x) is defined as follows [2]:

Λ(x) , log

[
fx |H1

(x)

fx |H0
(x)

]
. (33)

In (33), fx |H0
(x) and fx |H1

(x) denote, respectively, the pdfs of the observed UDC test

statistic vector x (either D from (22) for the multiple UDC, single phase case or g from

(9) for the single UDC, multiple phase case) under hypotheses H0 and H1. Here, fx |H1
(x)

will be marginalized over the random symbol timing offset, which we will denote here by ε.

Specifically, fx |H1
(x) is calculated as

fx |H1
(x) =

∫
Rε

fx |H1,ε(x | ε) fε(ε) dε , (34)

where, fε(ε) denotes the pdf of the random symbol timing offset ε and Rε represents the

region of support of this pdf. In addition, fx |H1,ε(x | ε) denotes the conditional pdf of the

UDC test statistic vector x given the timing offset ε. From the discussion in Sec. II, we

will assume here that ε is uniformly distributed [2] across a symbol interval. With this

assumption, without loss of generality, the expression in (34) becomes

fx |H1
(x) =

1

(M + P )

∫ (M+P )

0

fx |H1,ε(x | ε) dε . (35)

With the log likelihood ratio introduced as such, we are now ready to state the

Neyman-Pearson hypothesis test. This test is described below as follows [2, 8]:

Λ(x)
H1

≷
H0

η , where PFA , Pr {Λ(x) > η |H0} = α . (36)

The probability of false alarm can be calculated via the following expression:

PFA =

∫
RH1

fx |H0
(x) dx , (37)

where RH1
is the decision region corresponding to the present hypothesis H1 defined as

RH1
, {x : Λ(x) > η} . (38)

Using (35), (37), and (38), we can derive the Neyman-Pearson hypothesis test in (36) for

uplink signal detection. To evaluate the performance of this test, we can compute the

12



missed detection probability [2, 8], denoted by PMD and given by the following expression:

PMD =

∫
RH0

fx |H1
(x) dx , (39)

where RH0
is the decision region corresponding to the null hypothesis H0 defined as

RH0
, {x : Λ(x) < η} . (40)

The ultimate measure of performance of a hypothesis test would be the probability of error

[2, 8], denoted by PE . This can be expressed in terms of the false alarm probability PFA

and the probability of missed detection PMD as follows [2]:

PE = PFAPH0
+ PMDPH1

,

where PH0
and PH1

denote, respectively, the a priori probabilities of the hypotheses H0

and H1. However, as PH0 and PH1 will not be known in general and since the error

probability PE will typically be dominated by the false alarm probability PFA by design

here, it will be more insightful to assess the performance of the Neyman-Pearson

hypothesis test in terms of the missed detection probability PMD from (39).

A. Symbol Timing Offset Conditional Test

As will be subsequently shown in Sec. V, calculating the log likelihood ratio Λ(x) from

(33) can often be difficult and intractable due to the form of the marginalized pdf

fx |H1
(x) from (34). In such cases, it will be more insightful to derive the Neyman-Pearson

hypothesis test conditioned on a specific value of the symbol timing offset, say ε0. For this

type of test, we calculate the conditional log likelihood Λ(x | ε0) defined as

Λ(x | ε0) , log

[
fx |H1,ε(x | ε0)

fx |H0
(x)

]
. (41)

From this, the conditional Neyman-Pearson hypothesis test is given as follows:

Λ(x | ε0)
H1

≷
H0

η , where PFA , Pr {Λ(x | ε0) > η |H0} = α . (42)

The false alarm probability PFA and missed detection probability PMD are then given by

PFA =

∫
RH1

fx |H0
(x) dx , where RH1

, {x : Λ(x | ε0) > η} , (43)

and

PMD =

∫
RH0

fx |H1,ε(x | ε0) dx , where RH0
, {x : Λ(x | ε0) < η} . (44)

In Sec. VI, we derive and assess the performance of the Neyman-Pearson hypothesis test

for a worst case symbol timing offset in which the offset lies in between two UDC timing

phases.
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Table 1. Possible operating point conditions for a Mars-to-Earth communication link.

Ts 65.536 µs

λb 1× 106 p/s

λs 50× 103 p/s

V. Unconditional Hypothesis Test Detection Analysis for Important Special Cases

In this section, we will focus on uplink signal detection using the unconditional

Neyman-Pearson hypothesis test for certain special cases for which much of the analysis is

tractable. For the DOT uplink signaling format, suggested values for the PPM order and

number of ISGT slots have been M = 2 and P = 2, respectively. These values will be used

for the remainder of this article.

A set of possible operating point conditions for a Mars-to-Earth communication link is

shown in Tbl. 1. Note that from these values, as well as the suggested PPM order and

number of ISGT slots that we have Ks = 13.1072 and Kb = 65.536. These parameters will

be used throughout the memo.

A suggested value for the false alarm probability is PFA = 10−3, which will be used for the

remainder of this paper, while a possible maximum target value for the missed detection

probability is PMD = 10−6. Also, all PMD results will be plotted as a function of the

detection time Td, although a target value for the number of symbols Nsym = 255 has been

suggested.

Finally, for subsequent notational simplicity, we will define the following standard

deviation [2] type quantities:

σb ,



√
4Kb

GNsym
, multiple UDC, single phase case√

4Kb

Nspp
, single UDC, multiple phase case

, (45)

σs,b ,



√
Ks + 4Kb

GNsym
, multiple UDC, single phase case√

Ks + 4Kb

Nspp
, single UDC, multiple phase case

. (46)

These quantities will be used throughout the memo.

A. Single UDC, Single Phase Case

Here, we have G = 1, and so for this degenerate case, the multiple UDC, single phase and

single UDC, multiple phase systems are identical. Thus, from (9) and (19), we get

g = g = g0 = D0 .
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Figure 5. Plots of λ0(ε) and λ1(ε) from (48) as a function of ε for 0 ≤ ε < 4.

Hence, from (20), it follows that we have

g | ε ∼ N

((
λ0(ε)− λ1(ε)

)
Tc,

(
λ0(ε) + λ1(ε)

)
Tc

Nsym

)
, (47)

where we have Tc = 2Ts from (6). From (11) and (4), it can be shown that we have the

following for λ0(ε) and λ1(ε), respectively, in the case of telemetry being present:

λ0(ε) = λs |ε− 2|+ λb

λ1(ε) = λs (2− |ε− 2|) + λb

 0 ≤ ε < 4 . (48)

Plots of λ0(ε) and λ1(ε) from (48) as a function of ε are shown in Fig. 5. As can be seen,

λ0(ε) and λ1(ε) sum up to a constant value of 2 (λs + λb) and λ1(ε) is simply a cyclically

shifted version of λ0(ε) (as λ0(ε) and λ1(ε) are periodic functions of ε with period 4 here).

From (48), we have the following:

(
λ0(ε)− λ1(ε)

)
Tc =

 0 , under H0

Ks (|ε− 2| − 1) , under H1

,

(
λ0(ε) + λ1(ε)

)
Tc

Nsym
=


4Kb
Nsym

, under H0

Ks+4Kb
Nsym

, under H1

.

Thus, from (47) and (1), we have

fg |H0
(g) =

1√
4Kb
Nsym

φ

 g√
4Kb
Nsym

 , (49)

fg |H1,ε(g | ε) =
1√

Ks+4Kb
Nsym

φ

g −Ks (|ε− 2| − 1)√
Ks+4Kb
Nsym

 , 0 ≤ ε < 4 . (50)

Substituting (50) into (35), it can be shown that we have the following after some

algebraic manipulation:

fg |H1
(g) =

1

2Ks

Φ

 g +Ks√
Ks+4Kb
Nsym

− Φ

 g −Ks√
Ks+4Kb
Nsym

 . (51)
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Figure 6. Single UDC, single phase pdf plots: (a) fg |H0
(g) and (b) fg |H1

(g). (Here, Ks = 13.1072,

Kb = 65.536, and Nsym = 255.)

Using (45) and (46) in (49) and (51), yields

fg |H0
(g) =

1

σb
φ

(
g

σb

)
, (52)

fg |H1
(g) =

1

2Ks

[
Φ

(
g +Ks

σs,b

)
− Φ

(
g −Ks

σs,b

)]
. (53)

Plots of the pdfs fg |H0
(g) and fg |H1

(g) from (52) and (53) are shown in Fig. 6(a) and (b),

respectively, for the parameters mentioned at the beginning of this section. As can be seen

from Fig. 6(b), in the presence of telemetry, the UDC test statistic g will have zero mean

as it does for the case of telemetry being absent, but will have a larger variance due to the

presence of signal illumination.

Heuristically, it appears from Fig. 6(b) that fg |H1
(g) is approximately uniformly

distributed over the interval [−Ks,Ks). For the case in which Nsym is large, we can show

that this will approximately be true. To show this, we first note that as the variance of a

normal cdf goes to zero, the cdf will approach a step function [2]. In other words, from (1),

it can be shown that we have

lim
σ→0

Φ

(
x− µ
σ

)
= u(x− µ) , (54)

where u(x) is the Heaviside step function [2] defined as

u(x) ,

 0 , x < 0

1 , x ≥ 0
.

Now, from (46), it is clear that σs,b → 0 as Nsym gets larger. Hence, using (54) in (53), we
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Figure 7. Plot of the exact log likelihood ratio Λ(g) along with its approximation in (56) for the single UDC,

single phase case (Ks = 13.1072, Kb = 65.536, and Nsym = 255).

get the following approximation for the present hypothesis pdf:

fg |H1
(g) ≈ 1

2Ks
[u(g +Ks)− u(g −Ks)] =


0 , g < −Ks

1
2Ks

, −Ks ≤ g < Ks

0 , g ≥ Ks

. (55)

Thus, g is approximately uniform over the interval [−Ks,Ks), which we will express as

g ∼ U [−Ks,Ks).

Continuing further, it can be seen from (52) and (53) that a closed form expression for the

log likelihood ratio Λ(g) given in (33) does not exist. However, by using the uniform

distribution approximation for fg |H1
(g) as given in (55), a closed form approximate

expression can be obtained. Upon using (55) and (52) with (33), we obtain the following

approximation for the log likelihood ratio:

Λ(g) ≈


∞ , g < −Ks

g2

2σ2
b
− log

(
2Ks√
2πσ2

b

)
, −Ks ≤ g < Ks

∞ , g ≥ Ks

. (56)

A plot of the exact log likelihood ratio Λ(g) along with its approximation in (56) is shown

in Fig. 7 for the above suggested parameters. As can be seen, the approximate log

likelihood ratio is a very good fit to the exact expression for −Ks ≤ g < Ks.

To return to the Neyman-Pearson hypothesis test from (36), we will use the log likelihood

ratio approximation from (56). Assuming that the threshold value η from (36) is in the

region where Λ(g) is finite, then from (56), (40), and (38) we have

RH0 = {g : |g| < r0} , RH1 = {g : |g| > r0} , (57)
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where r0 is a threshold value that is a function of the original threshold η. Using (57) and

(52) in (37), the false alarm probability PFA can be shown to be

PFA = 2

[
1− Φ

(
r0

σb

)]
.

Enforcing the constraint that PFA = α as required for the Neyman-Pearson hypothesis

test leads to the following for the threshold value r0:

r0 = σbΦ
−1
(

1− α

2

)
, (58)

where Φ−1(x) is the quantile function of the standard normal distribution (i.e., the inverse

of the standard normal cdf Φ(x)) [2]. In terms of the threshold r0, the missed detection

probability PMD can be expressed as follows using (39), (57), and (53) after some

algebraic manipulation:

PMD =

[
Φ

(
r0 +Ks

σs,b

)
+ Φ

(
r0 −Ks

σs,b

)
− 1

]
+

r0

Ks

[
Φ

(
r0 +Ks

σs,b

)
− Φ

(
r0 −Ks

σs,b

)]
+
σs,b
Ks

[
φ

(
r0 +Ks

σs,b

)
− φ

(
r0 −Ks

σs,b

)] .

(59)

This results follows from exploiting the following properties of the φ(x) and Φ(x) functions

[2]:

φ(−x) = φ(x) , Φ(−x) = 1− Φ(x) ,

∫
Φ(x) dx = xΦ(x) + φ(x) .

Using the threshold value for r0 from (58) in (59), we then have an expression for PMD as

a function of Kb, Ks, Nsym, and α. A plot of the missed detection probability PMD as a

function of the detection time Td for the parameters mentioned at the beginning of this

section is shown in Fig. 8. As can be seen, the probability of missed detection is

excessively large here and well above the maximum target value of 10−6. This shows that

for this possible operating point that a single UDC, single phase system will not be

sufficient for uplink signal detection.

B. Dual UDC, Single Phase Case

Here, we have G = 2, and so from (23), (24), and (25), we get

D | ε ∼ N2

(
µD|ε,ΣD|ε

)
, (60)

where we have

µD|ε =

 (λ0(ε)− λ2(ε)
)
Tc(

λ1(ε)− λ3(ε)
)
Tc

 , (61)

ΣD|ε =

 (λ0(ε)+λ2(ε))Tc
Nsym

0

0
(λ1(ε)+λ3(ε))Tc

Nsym

 . (62)
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Figure 8. Plot of the missed detection probability PMD as a function of the detection time Td for the single

UDC, single phase case (Ks = 13.1072, Kb = 65.536).

Here, Tc = Ts from (6). To obtain the symbol timing offset dependent arrival rates{
λr(ε)

}3

r=0
, note that from (11) and (4) that we have λr(ε) = λb for all r under H0. Under

H1, it can be shown that we have the following:

λ0(ε) =



λs2 (1− ε) + λb , 0 ≤ ε < 1

λb , 1 ≤ ε < 2

λs2 (ε− 2) + λb , 2 ≤ ε < 3

2λs + λb , 3 ≤ ε < 4

,

λ1(ε) =



2λs + λb , 0 ≤ ε < 1

λs2 (2− ε) + λb , 1 ≤ ε < 2

λb , 2 ≤ ε < 3

λs2 (ε− 3) + λb , 3 ≤ ε < 4

,

λ2(ε) =



λs2ε+ λb , 0 ≤ ε < 1

2λs + λb , 1 ≤ ε < 2

λs2 (3− ε) + λb , 2 ≤ ε < 3

λb , 3 ≤ ε < 4

,

λ3(ε) =



λb , 0 ≤ ε < 1

λs2 (ε− 1) + λb , 1 ≤ ε < 2

2λs + λb , 2 ≤ ε < 3

λs2 (4− ε) + λb , 3 ≤ ε < 4

.

(63)

Plots of
{
λr(ε)

}3

r=0
from (63) as a function of ε are shown in Fig. 9. Similar to the single

UDC case shown in Fig. 5, it can be seen from Fig. 9 that λ(r+1) mod 4(ε) is simply a

cyclically shifted version of λr(ε) for 0 ≤ r ≤ 3.
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Figure 9. Plots of
{
λr(ε)

}3

r=0
from (63) as a function of ε for 0 ≤ ε < 4.

Combining (63), (45), and (46) with (61) and (62) leads to the following:

µD|ε =



 0

0

 , under H0 Ks
2 µD0

(ε)

Ks
2 µD1

(ε)

 , under H1

, ΣD|ε =

 σ2
b I2 , under H0

σ2
s,bI2 , under H1

, (64)

where µD0
(ε) and µD1

(ε) are defined as

µD0
(ε) ,



1− 2ε , 0 ≤ ε < 1

−1 , 1 ≤ ε < 2

−1 + 2 (ε− 2) , 2 ≤ ε < 3

1 , 3 ≤ ε < 4

,

µD1
(ε) ,



1 , 0 ≤ ε < 1

1− 2 (ε− 1) , 1 ≤ ε < 2

−1 , 2 ≤ ε < 3

−1 + 2 (ε− 3) , 3 ≤ ε < 4

.

(65)

Using (64) in (60), it follows that under H0, we have

fD |H0
(D) = fD0,D1 |H0

(D0, D1) =
1

σ2
b

φ

(
D0

σb

)
φ

(
D1

σb

)
, (66)

whereas under H1, we have

fD |H1,ε(D | ε) = fD0,D1 |H1,ε(D0, D1 | ε) =
1

σ2
s,b

φ

(
D0 − Ks

2 µD0
(ε)

σs,b

)
φ

(
D1 − Ks

2 µD1
(ε)

σs,b

)
.

(67)

Substituting (67) and (65) into (35), it can be shown that we have the following after
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Figure 10. Dual UDC, single phase pdf plots: (a) fD0,D1 |H0
(D0, D1) and (b) fD0,D1 |H1

(D0, D1). (Here,

Ks = 13.1072, Kb = 65.536, and Nsym = 255.)

much algebraic manipulation:

fD0,D1 |H1
(D0, D1) =

1

2

{
1

Ks

[
Φ

(
D0 + Ks

2

σs,b

)
− Φ

(
D0 − Ks

2

σs,b

)]

× 1

2

[
1

σs,b
φ

(
D1 + Ks

2

σs,b

)
+

1

σs,b
φ

(
D1 − Ks

2

σs,b

)]

+
1

Ks

[
Φ

(
D1 + Ks

2

σs,b

)
− Φ

(
D1 − Ks

2

σs,b

)]

×1

2

[
1

σs,b
φ

(
D0 + Ks

2

σs,b

)
+

1

σs,b
φ

(
D0 − Ks

2

σs,b

)]}
. (68)

Plots of the pdfs fD0,D1 |H0
(D0, D1) and fD0,D1 |H1

(D0, D1) from (66) and (68) are shown

in Fig. 10(a) and (b), respectively, for the parameters stated at the beginning of this

section. As can be seen, fD0,D1 |H0
(D0, D1) is concentrated near the origin, whereas

fD0,D1 |H1
(D0, D1) is concentrated along an L∞ norm circle of radius Ks

2 [8].

A plot of the log likelihood ratio Λ(D0, D1) given by (33), (68), and (66) is shown in Fig.

11 for the above mentioned parameters. As can be seen, the behavior of the log likelihood

ratio is difficult to deduce and there does not appear to be a tractable form for the decision

regions RH0 and RH1 from (40) and (38), respectively, for a given threshold value η.

From the view of the present hypothesis pdf fD0,D1 |H1
(D0, D1) shown in Fig. 10(b) as well

as that of the log likelihood ratio Λ(D0, D1) for small arguments given in Fig. 11, it

appears as though an approximate log likelihood ratio decision based rule is as follows:

||D||∞ = max {|D0| , |D1|}
H1

≷
H0

η , (69)

where ||x||∞ denotes the L∞ norm of a vector x [8].
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Figure 11. Plot of the log likelihood ratio Λ(D0, D1) for the dual UDC, single phase case (Ks = 13.1072,

Kb = 65.536, and Nsym = 255).

C. Single UDC, Dual Phase Case

Once again, we have G = 2, and so from (30), (31), and (32), we have the following:

g | ε ∼ N2

(
µg|ε,Σg|ε

)
, (70)

where we have

µg|ε =

 (
λ0(ε)− λ2(ε)

)
Tc +

(
λ1(ε)− λ3(ε)

)
Tc

−
(
λ0(ε)− λ2(ε)

)
Tc +

(
λ1(ε)− λ3(ε)

)
Tc

 ,
Σg|ε =

[(
λ0(ε) + λ2(ε)

)
Tc

Nspp
+

(
λ1(ε) + λ3(ε)

)
Tc

Nspp

]
I2 .

As before, we have Tc = Ts here. Using (63), along with (45) and (46), we get

µg|ε =



 0

0

 , under H0 Ksµg0
(ε)

Ksµg1
(ε)

 , under H1

, Σg|ε =

 σ2
b I2 , under H0

σ2
s,bI2 , under H1

, (71)

where µg0
(ε) and µg1

(ε) are defined as

µg0
(ε) ,



1− ε , 0 ≤ ε < 1

1− ε , 1 ≤ ε < 2

ε− 3 , 2 ≤ ε < 3

ε− 3 , 3 ≤ ε < 4

, µg1
(ε) ,



ε , 0 ≤ ε < 1

2− ε , 1 ≤ ε < 2

2− ε , 2 ≤ ε < 3

ε− 4 , 3 ≤ ε < 4

. (72)

Using (71) in (70), it follows that under H0, we have

fg |H0
(g) = fg0,g1 |H0

(g0, g1) =
1

σ2
b

φ

(
g0

σb

)
φ

(
g1

σb

)
, (73)
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Figure 12. Single UDC, dual phase pdf plots: (a) fg0,g1 |H0
(g0, g1) and (b) fg0,g1 |H1

(g0, g1). (Here,

Ks = 13.1072, Kb = 65.536, and Nspp = 128.)

whereas under H1, we have

fg |H1,ε(g | ε) = fg0,g1 |H1,ε(g0, g1 | ε) =
1

σ2
s,b

φ

(
g0 −Ksµg0

(ε)

σs,b

)
φ

(
g1 −Ksµg1

(ε)

σs,b

)
. (74)

Substituting (74) and (72) into (35), it can be shown that we have the following after

much algebraic manipulation:

fg0,g1 |H1
(g0, g1) =

1

2

 1

Ks

√
2

Φ


(
g0+g1√

2

)
+ Ks√

2

σs,b

− Φ


(
g0+g1√

2

)
− Ks√

2

σs,b


× 1

2

 1

σs,b
φ


(
g0−g1√

2

)
+ Ks√

2

σs,b

+
1

σs,b
φ


(
g0−g1√

2

)
− Ks√

2

σs,b


+

1

Ks

√
2

Φ


(
g0−g1√

2

)
+ Ks√

2

σs,b

− Φ


(
g0−g1√

2

)
− Ks√

2

σs,b


× 1

2

 1

σs,b
φ


(
g0+g1√

2

)
+ Ks√

2

σs,b

+
1

σs,b
φ


(
g0+g1√

2

)
− Ks√

2

σs,b



.

(75)

Plots of the pdfs fg0,g1 |H0
(g0, g1) and fg0,g1 |H1

(g0, g1) from (73) and (75) are shown in

Fig. 12(a) and (b), respectively, for the parameters stated at the beginning of this section.

In order make the detection time approximately commensurate between the single UDC,

dual phase case and the dual UDC, single phase case, we have opted to used

Nspp =
⌈

255
2

⌉
= 128. As can be seen, fg0,g1 |H0

(g0, g1) is concentrated near the origin,

whereas fg0,g1 |H1
(D0, D1) is concentrated along an L1 norm circle of radius Ks [8].

A plot of the log likelihood ratio Λ(g0, g1) given by (33), (75), and (73) is shown in Fig. 13

for the above mentioned parameters. As before with the dual UDC, single phase case, it
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Figure 13. Plot of the log likelihood ratio Λ(g0, g1) for the single UDC, dual phase case (Ks = 13.1072,

Kb = 65.536, and Nspp = 128).

can be seen that the behavior of the log likelihood ratio is not easily deduced and there

does not appear to be a tractable form for the decision regions RH0
and RH1

from (40)

and (38), respectively, for a given threshold value η.

From the view of the present hypothesis pdf fg0,g1 |H1
(g0, g1) shown in Fig. 12(b) as well

as that of the log likelihood ratio Λ(g0, g1) for small arguments given in Fig. 13, it appears

as though an approximate log likelihood ratio decision based rule is as follows:

||g||1 = |g0|+ |g1|
H1

≷
H0

η , (76)

where ||x||1 denotes the L1 norm of a vector x [8].

VI. Worst Case Scenario Symbol Timing Offset Hypothesis Test Detection Analysis

Perhaps the main problem with assessing the performance of the unconditional

Neyman-Pearson hypothesis test is that determining the respective likelihood decision

regions RH0
and RH1

from (40) and (38) is often very difficult, as evidenced for both the

dual UDC, single phase system in Sec. V-B as well as the single UDC, dual phase system

in Sec. V-C. This, in turn, makes enforcing the false alarm probability constraint and

calculating the resulting probability of missed detection intractable.

One way to circumvent this problem is to derive the Neyman-Pearson hypothesis test

conditioned on a specific symbol timing offset value, as described in Sec. IV-A. For

example, one possible value to consider which is of practical significance is a worst case

scenario (WCS) symbol timing offset, in which the offset is exactly in between two timing

phases. From the definition of the chip interval Tc in (6), it is clear that the following

symbol timing offsets represent WCS values:

εWCS =

(
M + P

2G

)
k +

(
M + P

4G

)
, 0 ≤ k ≤ (2G)− 1 .
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Without loss of generality, we can choose the first WCS offset, corresponding to k = 0. For

the case of M = P = 2 which we will focus on here, this then becomes εWCS = 1
G .

From (24), (25), (31), and (32), it is clear that the characteristics of the test statistics for

both the multiple UDC, single phase and single UDC, multiple phase systems depend on

the values of
(
λk(ε)− λG+k(ε)

)
and

(
λk(ε) + λG+k(ε)

)
for 0 ≤ k ≤ G− 1. Regardless of

the value of ε, under H0, we have
(
λk(ε)− λG+k(ε)

)
= 0 and

(
λk(ε) + λG+k(ε)

)
= 2λb for

all k. For the special case of εWCS = 1
G , it can be show that under H1, we have

λk(εWCS)− λG+k(εWCS) =

 0 , k = 0

2λs , 1 ≤ k ≤ G− 1
, (77)

λk(εWCS) + λG+k(εWCS) = 2 (λs + λb) = 2λs + 2λb ∀ 0 ≤ k ≤ G− 1 , (78)

Coupled with the fact that Tc = 2Ts
G here, we can use (77) and (78) to simplify the UDC

test statistics and derive and assess the performance of the Neyman-Pearson hypothesis

test for a WCS symbol timing offset.

A. Multiple UDC, Single Phase Case

Combining (77) and (78) with (23), (24), (25), and (2), it can be shown that we have

fD |H0
(D) =

1

(2π)
G
2
(
det
(
ΣD|H0

)) 1
2

e
− 1

2 (D−µD|H0
)
T

Σ−1
D|H0

(D−µD|H0
) , (79)

fD |H1,ε(D | εWCS) =
1

(2π)
G
2
(
det
(
ΣD|H1,ε

)) 1
2

e
− 1

2 (D−µD|H1,ε
)
T

Σ−1
D|H1,ε

(D−µD|H1,ε
) , (80)

where we have the following upon using (45) and (46):

µD|H0
= 0G×1 , ΣD|H0

= σ2
b IG , (81)[

µD|H1,ε

]
k

=

 0 , k = 0

Ks
G , 1 ≤ k ≤ G− 1

, ΣD|H1,ε = σ2
s,bIG . (82)

Upon using (80) and (79) in (41) and (42), we obtain the following likelihood rule after

much algebraic manipulation:

||D −DC ||2
H1

≷
H0

r2
0 , (83)

where DC is a G× 1 vector defined as

[DC ]k ,

 0 , k = 0

− 4Kb
G , 1 ≤ k ≤ G− 1

, (84)

and r0 is a threshold value that is a function of the original threshold η from (42). Also,

||x|| denotes the Euclidean or L2 norm of a vector x [8]. Note that from (83), the decision

rule boundary represents a G-dimensional hypersphere in RG [8] with center at DC and

radius r0. In addition, note that from (84) that the decision boundary center only depends
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on the mean background count Kb and the number of UDCs G and does not depend on

the number of symbols or the telemetry signal parameters. From (83), the decision regions

are as follows:

RH0
,
{
D : ||D −DC ||2 < r2

0

}
,RH1

,
{
D : ||D −DC ||2 > r2

0

}
.

To enforce the false alarm probability constraint PFA = α, we use (43), (79), and (81) to

get

PFA =

∫
RH1

fD |H0
(D) dD = 1−

∫
RH0

fD |H0
(D) dD = α .

From this, coupled with (79) and (81), we find

1− α =

∫
RH0

1

(2π)
G
2 σGb

e
− 1

2σ2
b

||D||2
dD . (85)

Consider the change of variables x , 1
σb
D. Then, we have D = σbx and so dD = σGb dx.

In addition, we have ||D||2 = σ2
b ||x||

2
, and so (85) becomes the following:

1− α =

∫
Rx

1

(2π)
G
2

e−
1
2 ||x||2 dx , (86)

where Rx is the region

Rx ,

{
x : ||x− xC ||2 <

r2
0

σ2
b

}
, where xC ,

1

σb
DC . (87)

Using the result from the Appendix given in (A-1) with (86) and (87) leads to the

following:

1− α = zNCχ2

(
r2
0

σ2
b

;G, ||xC ||2
)
.

Inverting this relation to obtain the threshold r2
0 yields

r2
0 = σ2

bz
−1
NCχ2

(
1− α;G, ||xC ||2

)
. (88)

To further simplify (88), note that from (87), (84), and (45) that we have

||xC ||2 =
1

σ2
b

||DC ||2 =
GNsym

4Kb
·
(
−4Kb

G

)2

· (G− 1) = (4Kb)Nsym

(
G− 1

G

)
.

Hence, (88) simplifies to

r2
0 =

(
4Kb

GNsym

)
z−1
NCχ2

(
1− α;G, (4Kb)Nsym

(
G− 1

G

))
. (89)

Note that this relation provides for a way to determine the decision threshold r2
0 to satisfy

the false alarm probability constraint PFA = α. Assuming that r2
0 has already been

obtained as such, we can calculate the associated missed detection probability PMD.

To compute PMD, we use (44), (80), and (82) to get

PMD =

∫
RH0

fD |H1,ε(D | εWCS) dD =

∫
RH0

1

(2π)
G
2 σGs,b

e
− 1

2σ2
s,b
||D−µD|H1,ε

||2
dD . (90)
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As before, consider the change of variables x , 1
σs,b

(
D − µD|H1,ε

)
. Then, we have

D = σs,bx+µD|H1,ε and so dD = σGs,bdx. Substituting this into (90) leads to the following:

PMD =

∫
Rx

1

(2π)
G
2

e−
1
2 ||x||2 dx , (91)

where Rx is the region

Rx ,

{
x : ||x− xC ||2 <

r2
0

σ2
s,b

}
, where xC ,

1

σs,b

(
DC − µD|H1,ε

)
. (92)

Exploiting the result from the Appendix given in (A-1) with (91) and (92) leads to the

following:

PMD = zNCχ2

(
r2
0

σ2
s,b

;G, ||xC ||2
)
. (93)

To further simplify (93), note that from (92), (84), (82), and (46) that we have

||xC ||2 =
1

σ2
s,b

∣∣∣∣∣∣DC − µD|H1,ε

∣∣∣∣∣∣2 =
GNsym

Ks + 4Kb
·
(
−4Kb

G
− Ks

G

)2

· (G− 1) ,

= (Ks + 4Kb)Nsym

(
G− 1

G

)
.

Hence, (93) simplifies to

PMD = zNCχ2

 r2
0[

Ks+4Kb
GNsym

] ;G, (Ks + 4Kb)Nsym

(
G− 1

G

) . (94)

The relations given in (89) and (94) provide a two-step process by which to assess the

performance of the Neyman-Pearson hypothesis test for a multiple UDC, single phase

system with a WCS symbol timing offset. First, the decision threshold parameter r2
0 is

computed using (89) to satisfy the false alarm probability constraint PFA = α and then

the missed detection probability is calculated as in (94). An alternate, simplified way to

determine the performance of the hypothesis test is to define the fictitious parameter β as

β , (GNsym) r2
0. Then, we can assess the performance of the Neyman-Pearson test as

follows here:

1) Compute β = (4Kb)z−1
NCχ2

(
1− α;G, (4Kb)Nsym

(
G− 1

G

))
,

2) Calculate PMD = zNCχ2

(
β

Ks + 4Kb
;G, (Ks + 4Kb)Nsym

(
G− 1

G

))
.

(95)

A plot of PMD given by (95) as a function of the detection time Td = NsymTsym is shown

in Fig. 14 for the parameters mentioned in Sec. V for various values of G. As can be seen,

the performance appears to asymptotically reach a limit as G→∞. This represents a

point of diminishing returns, as increasing G requires both an increase in hardware (in

terms of the number of UDCs required), as well as an increase in computational

complexity for implementing the hypothesis test specified by (83).
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Figure 14. Plot of the missed detection probability PMD given by (95) as a function of the detection time

Td for the multiple UDC, single phase case for a WCS symbol timing offset (Ks = 13.1072, Kb = 65.536,

PFA = 10−3).

For the suggested target of Nsym = 255 (see the beginning of Sec. V), we have

PMD ≈ 1.7628× 10−9 for G = 2, which is well below the possible maximum value of 10−6.

From this, we can conjecture that a dual UDC, single phase system would suffice for

uplink signal detection in this case.

B. Single UDC, Multiple Phase Case

As before, combining (77) and (78) with (30), (31), (32), and (2), it can be shown that we

have

fg |H0
(g) =

1

(2π)
G
2
(
det
(
Σg|H0

)) 1
2

e
− 1

2 (g−µg|H0
)
T

Σ−1
g|H0

(D−µg|H0
) , (96)

fg |H1,ε(g | εWCS) =
1

(2π)
G
2
(
det
(
Σg|H1,ε

)) 1
2

e
− 1

2 (g−µg|H1,ε
)
T

Σ−1
g|H1,ε

(g−µg|H1,ε
) , (97)

where we have the following upon using (45) and (46):

µg|H0
= 0G×1 , Σg|H0

= σ2
b IG , (98)[

µg|H1,ε

]
k

=
Ks

G

G−1∑
r=1

(−1)b
r−k
G c , 0 ≤ k ≤ G− 1 , Σg|H1,ε = σ2

s,bIG . (99)

It can be shown that we have

G−1∑
r=1

(−1)b
r−k
G c =

 G− 1 , k = 0

G− (2k − 1) , 1 ≤ k ≤ G− 1
,
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and so (99) simplifies to

[
µg|H1,ε

]
k

=

 Ks

(
G−1
G

)
, k = 0

Ks

(
G−(2k−1)

G

)
, 1 ≤ k ≤ G− 1

, Σg|H1,ε = σ2
s,bIG . (100)

Upon using (97) and (96) in (41) and (42), we obtain the following likelihood rule after

much algebraic manipulation:

||g − gC ||
2
H1

≷
H0

r2
0 , (101)

where gC is a G× 1 vector defined as

[gC ]k ,

 −4Kb

(
G−1
G

)
, k = 0

−4Kb

(
G−(2k−1)

G

)
, 1 ≤ k ≤ G− 1

, (102)

and r0 is a threshold value that is a function of the original threshold η from (42). As for

the multiple UDC, single phase case, note that from (101), the decision rule boundary

represents a G-dimensional hypersphere in RG with center at gC and radius r0. In

addition, note that from (102) that the decision boundary center only depends on the

mean background count Kb and the number of UDCs G and does not depend on the

number of symbols or the telemetry signal parameters. From (101), the decision regions

are as follows:

RH0
,
{
g : ||g − gC ||

2
< r2

0

}
,RH1

,
{
g : ||g − gC ||

2
> r2

0

}
.

To enforce the false alarm probability constraint PFA = α, we use (43), (96), and (98) to

get

PFA =

∫
RH1

fg |H0
(g) dg = 1−

∫
RH0

fg |H0
(g) dg = α .

From this, coupled with (96) and (98), we find

1− α =

∫
RH0

1

(2π)
G
2 σGb

e
− 1

2σ2
b

||g||2
dg . (103)

Consider the change of variables x , 1
σb
g. Then, we have g = σbx and so dg = σGb dx. In

addition, we have ||g||2 = σ2
b ||x||

2
, and so (103) becomes the following:

1− α =

∫
Rx

1

(2π)
G
2

e−
1
2 ||x||2 dx , (104)

where Rx is the region

Rx ,

{
x : ||x− xC ||2 <

r2
0

σ2
b

}
, where xC ,

1

σb
gC . (105)

Using the result from the Appendix given in (A-1) with (104) and (105) leads to the

following:

1− α = zNCχ2

(
r2
0

σ2
b

;G, ||xC ||2
)
.
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Inverting this relation to obtain the threshold r2
0 yields

r2
0 = σ2

bz
−1
NCχ2

(
1− α;G, ||xC ||2

)
. (106)

To further simplify (106), note that from (105), (102), and (45) that we have

||xC ||2 =
1

σ2
b

||gC ||
2

= (4Kb)Nspp

[(
G− 1

G

)2

+

G−1∑
k=1

(
G− (2k − 1)

G

)2
]
. (107)

The expression given in (107) can be simplified upon using the following relations [7]:

G−1∑
k=1

1 = G− 1 ,

G−1∑
k=1

k =
(G− 1)G

2
,

G−1∑
k=1

k2 =
(G− 1)G (2G− 1)

6
. (108)

Upon using (108) in (107), after some algebraic manipulation, we get

||xC ||2 = (4Kb)Nspp

(
G2 − 1

3G

)
.

Hence, (106) simplifies to

r2
0 =

(
4Kb

Nspp

)
z−1
NCχ2

(
1− α;G, (4Kb)Nspp

(
G2 − 1

3G

))
. (109)

Note that this relation provides for a way to determine the decision threshold r2
0 to satisfy

the false alarm probability constraint PFA = α. Assuming that r2
0 has already been

obtained as such, we can calculate the associated missed detection probability PMD.

To compute PMD, we use (44), (97), and (100) to get

PMD =

∫
RH0

fg |H1,ε(g | εWCS) dg =

∫
RH0

1

(2π)
G
2 σGs,b

e
− 1

2σ2
s,b
||g−µg|H1,ε

||2
dg . (110)

As before, consider the change of variables x , 1
σs,b

(
g − µg|H1,ε

)
. Then, we have

g = σs,bx+ µg|H1,ε and so dg = σGs,bdx. Substituting this into (110) leads to the following:

PMD =

∫
Rx

1

(2π)
G
2

e−
1
2 ||x||2 dx , (111)

where Rx is the region

Rx ,

{
x : ||x− xC ||2 <

r2
0

σ2
s,b

}
, where xC ,

1

σs,b

(
gC − µg|H1,ε

)
. (112)

Exploiting the result from the Appendix given in (A-1) with (111) and (112) leads to the

following:

PMD = zNCχ2

(
r2
0

σ2
s,b

;G, ||xC ||2
)
. (113)

To further simplify (113), note that from (112), (102), (100), (46), and (108) that we can

show that we have

||xC ||2 =
1

σ2
s,b

∣∣∣∣∣∣gC − µg|H1,ε

∣∣∣∣∣∣2 = (Ks + 4Kb)Nsym

(
G2 − 1

3G

)
.
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Hence, (113) simplifies to

PMD = zNCχ2

 r2
0[

Ks+4Kb
Nspp

] ;G, (Ks + 4Kb)Nsym

(
G2 − 1

3G

) . (114)

As with the multiple UDC, single phase system, the relations given in (109) and (114)

provide a two-step process by which to assess the performance of the Neyman-Pearson

hypothesis test for a single UDC, multiple phase system with a WCS symbol timing offset.

First, the decision threshold parameter r2
0 is computed using (109) to satisfy the false

alarm probability constraint PFA = α and then the missed detection probability is

calculated as in (114). An alternate, simplified way to determine the performance of the

hypothesis test is to define the fictitious parameter β as β , Nsppr
2
0. Then, we can assess

the performance of the Neyman-Pearson test as follows here:

1) Compute β = (4Kb)z−1
NCχ2

(
1− α;G, (4Kb)Nspp

(
G2 − 1

3G

))
,

2) Calculate PMD = zNCχ2

(
β

Ks + 4Kb
;G, (Ks + 4Kb)Nspp

(
G2 − 1

3G

))
.

(115)

A plot of PMD given by (115) as a function of the detection time Td = NsppGTsym is

shown in Fig. 15 for the parameters mentioned in Sec. V for various values of G. As can

be seen, the performance appears to asymptotically reach a limit as G→∞. This

represents a point of diminishing returns, as increasing G requires both an increase in

hardware (in terms of triggering and storing the count statistics for the number of timing

phases required), as well as an increase in computational complexity for implementing the

hypothesis test specified by (101).

For the suggested target of Nsym = 255, corresponding to a detection time of

Td = 66.84672 ms (see Sec. I-C as well as the beginning of Sec. V), we have

PMD ≈ 4.9696× 10−4 for G = 2, which is well above the possible maximum value of 10−6.

From this, we can conjecture that a single UDC, dual phase system would not suffice for

uplink signal detection in this case.

VII. Advantages and Disadvantages Between the Multiple UDC, Single Phase and

Single UDC, Multiple Phase Detection Systems

As mentioned in Sec. VI-A and VI-B, for the suggested operating point considered here

(see the beginning of Sec. V), a dual UDC, single phase system would suffice for uplink

signal detection in the case of a WCS symbol timing offset, whereas a single UDC, dual

phase system would not. This brings to light some of the trade-offs associated with both

the multiple UDC, single phase and single UDC, multiple phase detection schemes.

For a fixed detection time Td, a multiple UDC, single phase system will exhibit greater

detection performance than a single UDC, multiple phase system. Intuitively, the reason
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Figure 15. Plot of the missed detection probability PMD given by (115) as a function of the detection time

Td for the single UDC, multiple phase case for a WCS symbol timing offset (Ks = 13.1072, Kb = 65.536,

PFA = 10−3).

for this is that the former system has more information available to it to use for signal

detection than the latter one. To see this analytically, consider the conditional WCS

symbol timing offset detection results derived in Sec. VI. In the case where Td is fixed, we

have Nspp =
Nsym

G (see Sec. I-C), and so the performance of the Neyman-Pearson

hypothesis test for a WCS symbol timing offset for the single UDC, multiple phase system

from (115) becomes

1) Compute β = (4Kb)z−1
NCχ2

(
1− α;G, (4Kb)Nsym

(
G− 1

G

)(
G+ 1

3G

))
,

2) Calculate PMD = zNCχ2

(
β

Ks + 4Kb
;G, (Ks + 4Kb)Nsym

(
G− 1

G

)(
G+ 1

3G

))
.

(116)

Comparing (116) with (95), it is evident that the ratio of the respective non-centrality

parameters of the single UDC, multiple phase system to those of the multiple UDC, single

phase system is
(
G+1
3G

)
. For all G ∈ N, the factor

(
G+1
3G

)
is less than unity and decreases

monotonically with G. Asymptotically, we have
(
G+1
3G

)
→ 1

3 as G→∞. As
(
G+1
3G

)
< 1 for

all G ≥ 1, it follows that the respective non-centrality parameters of the single UDC,

multiple phase system are less than those of the multiple UDC, single phase one. Since it

can be shown that the missed detection probability PMD decreases as the respective

non-centrality parameters increase [4], it follows that the multiple UDC, single phase

system will always perform better than the corresponding single UDC, multiple phase one.

Furthermore, as
(
G+1
3G

)
is monotonic decreasing with G, it follows that the single UDC,

multiple phase system will reach a point of diminishing returns more rapidly than the

corresponding multiple UDC, single phase system [4]. This is evidenced upon comparing

Fig. 14 with Fig. 15.
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Despite the fact that a multiple UDC, single phase system outperforms a corresponding

single UDC, multiple phase type scheme for a fixed detection time, there are advantages to

using a single UDC, multiple phase system for signal detection. Specifically, if there is

some leeway with respect to increasing the detection time, then there are several benefits

to a single UDC, multiple phase type implementation. One such benefit is that while it is

difficult to increase the number of UDCs in a multiple UDC, single phase system in a

practical setting as it requires additional hardware, it is very simple to increase the number

of timing phases of a single UDC, multiple phase system, as the only changes required are

to trigger, store, and process the UDC test statistics at the different timing phases. At the

expense of an increase in detection time, the improvement in performance is dramatic and

is the result of both an increased detection time, as well as the number of timing phases.

For example, suppose that initially, G = 2 timing phases are used in a single UDC,

multiple phase system and that for some given detection time that the missed detection

probability is deemed excessively large. To improve the detection performance, we can, for

instance, trigger the UDC to accumulate additional statistics at 3 times finer resolution to

obtain an effective number of G = 6 timing phases. This only requires 6− 2 = 4 additional

UDC test statistics at different timing phases. In essence, from an initial detection time of

Td using G = 2 phases, we arrive at a final detection time of 3Td using G = 6 phases.

Thus, the benefits of an increased detection time are twofold: an inherent improvement in

performance as a result of the increased detection time as well as an additional

improvement due to the increased number of timing phases.

From a practical point of view, perhaps the most efficient manner in which to increase the

number of timing phases is to do so in powers of 2 until the missed detection probability

performance is deemed acceptable. Specifically, starting from G = 1 timing phase, we

double the timing resolution at each stage by accumulating additional UDC statistics as

required until the missed detection performance is below its target requirement. At the

k-th stage of such a detection scheme, the number of timing phases is G = 2k−1, while the

detection time is Td = 2k−1Td,0, where Td,0 denotes the nominal detection time per phase.

In summary, there are several pros and cons to using both of the proposed uplink signal

detection schemes. While a multiple UDC, single phase system offers improved

performance over a corresponding single UDC, multiple phase system for a fixed detection

time, it requires additional hardware and cannot easily accommodate increased timing

resolution. On the other hand, a single UDC, multiple phase system is amenable to

increased timing resolution, provided that there is sufficient leeway with regards to

increasing the detection time. Of course, with an implementation consisting of a fixed

number of multiple UDCs, improved performance could also be obtained by using multiple

timing phases instead of a single one. This would result in the most advantageous of all of

the schemes considered, as it would result in the most detection information for a given

detection time and number of UDCs.
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VIII. Concluding Remarks

In this article, we focused on uplink signal detection for the DOT using the

Neyman-Pearson hypothesis test. Specifically, we considered this hypothesis test for two

different sets of test statistics: those from a multiple UDC, single phase system as well as

those from a single UDC, multiple phase type implementation. Conditioned on a WCS

symbol timing offset, we derived the performance of the Neyman-Pearson test for both sets

of statistics, and assessed the advantages and disadvantages of both detection schemes.

For specific test cases (namely the dual UDC, single phase and single UDC, dual phase

systems), we showed the problems inherent with deriving the performance of the bona fide

unconditional Neyman-Pearson test. In particular, we showed that determining the

decision regions based on the likelihood criterion was intractable for both cases. Future

work involves assessing the performance of a suboptimal Neyman-Pearson type test using

the conjectured decision regions given by (69) and (76) for the dual UDC, single phase and

single UDC, dual phase schemes, respectively. In addition, it would be worthwhile carrying

out similar analysis for the more general multiple UDC, single phase and single UDC,

multiple phase systems.
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Appendix: Multivariate Gaussian Distribution Integral Over a Hypersphere

In this section, we prove the following result:∫
x∈RG:||x−xC ||2<r2

1

(2π)
G
2

e−
1
2 ||x||2 dx = zNCχ2

(
r2;G, ||xC ||2

)
. (A-1)

Note that the integrand in (A-1) is the pdf of a multivariate Gaussian or normal

distribution with NG(0, I), which is a generalization of the standard normal distribution to

the multivariate case [2]. Also, it should be noted that the region of integration in (A-1) is

a hypersphere in RG [8]. As seen in Sec. VI, this integral arises when deriving and

assessing the performance of the Neyman-Pearson hypothesis test for uplink signal

detection, conditioned on a particular value of the symbol timing offset.

In deriving (A-1), we will use the following result regarding the change of variables of a

multidimensional integral [7]. Suppose that u and v are two G× 1 vectors in RG related

by v = ϕ(u), where ϕ is an injective, differentiable function with continuous partial

derivatives [7]. Furthermore, suppose U and V are two open sets in RG such that

ϕ : U → V . Then, we have the following [7]:∫
V

f(v) dv =

∫
U

f(ϕ(u)) |det(J(ϕ(u)))| du , (A-2)

where J(ϕ(u)) is the G×G Jacobian matrix [7] of the transformation v = ϕ(u) whose

(k, `)-th element is given by

[J(ϕ(u))]k,` =
∂ [v]k
∂ [u]`

, 0 ≤ k ≤ G− 1 , 0 ≤ ` ≤ G− 1 .

To begin deriving (A-1), consider the transformation y , U (x− xC), where U is a

unitary, Householder transformation matrix [3] given by

U , I− 2wwT , where w ,
xC + ||xC || e0

||xC + ||xC || e0||
, (A-3)

where e0 denotes the 0th unit vector [3] which is unity in the 0th component and zero

otherwise. (More generally, ek denotes the k-th unit vector [3] which is unity in the k-th

component and zero otherwise.) As U is a real unitary matrix, we have UTU = UUT = I

[3], and so x = UTy + xC = UT (y − yC), where yC , −UxC . From this relation, it is

clear that the Jacobian matrix is J(ϕ(y)) = UT , and so |det(J(ϕ(y)))| = 1 as U is unitary

[3]. Letting I denote the left hand side of (A-1) and appealing to (A-2), we get

I ,
∫
x∈RG:||x−xC ||2<r2

1

(2π)
G
2

e−
1
2 ||x||2 dx =

∫
y∈RG:||y||2<r2

1

(2π)
G
2

e−
1
2 ||y−yC ||2 dy . (A-4)

To simplify (A-4), note that the vector yC has all zeros in it except for the 0th component.
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In order to show this, recall that yC = −UxC and so from (A-3) we have

yC = −xC + 2
(
wTxC

)
w = −xC +

2
[
||xC ||2 + ||xC || [xC ]0

]
||xC + ||xC || e0||

w ,

= −xC +
2
[
||xC ||2 + ||xC || [xC ]0

]
||xC + ||xC || e0||2

[xC + ||xC || e0] ,

= −xC +
2
[
||xC ||2 + ||xC || [xC ]0

]
2
[
||xC ||2 + ||xC || [xC ]0

] [xC + ||xC || e0] = −xC + xC + ||xC || e0 .

Thus, we have yC = ||xC || e0, and so indeed the only nonzero component of yC is its 0th

component. Substituting this into (A-4) and defining yk , [y]k for all 0 ≤ k ≤ G− 1 for

notational convenience leads to

I =

∫
y∈RG:||y||2<r2

1

(2π)
G
2

e−
1
2 ||y−||xC ||e0||2 dy ,

=

∫
y∈RG:||y||2<r2

1

(2π)
G
2

e−
1
2 (||y||2−2||xC ||y0+||xC ||2) dy . (A-5)

To evaluate (A-5), consider the following hyperspherical coordinate system [8]

transformation:

y0 = ρ cos(φ0) ,

y1 = ρ sin(φ0) cos(φ1) ,

y2 = ρ sin(φ0) sin(φ1) cos(φ2) ,

...

yG−2 = ρ sin(φ0) sin(φ1) · · · sin(φG−3) cos(φG−2) ,

yG−1 = ρ sin(φ0) sin(φ1) · · · sin(φG−3) sin(φG−2) .

Here, ρ denotes the radial coordinate, while φ0, φ1, . . . , φG−2 represent the angular

coordinates. In a more compact form, we have

yk =


ρ

[
k−1∏
`=0

sin(φ`)

]
cos(φk) , 0 ≤ k ≤ G− 2

ρ

[
k−1∏
`=0

sin(φ`)

]
, k = G− 1

, (A-6)

where all empty products are assumed to be equal to unity here. With the transformation

given in (A-6), it can be shown that the differential dy satisfies [8]

dy = ρG−1 sinG−2(φ0) sinG−3(φ1) · · · sin2(φG−4) sin(φG−3) dρ dφ0 dφ1 · · · dφG−2 ,

which can be expressed more compactly as

dy = ρG−1

[
G−2∏
`=0

sinG−2−`(φ`)

]
dρ

(
G−2∏
`=0

dφ`

)
. (A-7)
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Using (A-6) and (A-7) in (A-5) and noting that ||y||2 < r2 corresponds to the region

0 ≤ ρ < r, 0 ≤ φ0 < π, 0 ≤ φ1 < π, . . . , 0 ≤ φG−3 < π, 0 ≤ φG−2 < 2π leads to

I =

∫ r

ρ=0

∫ π

φ0=0

∫ π

φ1=0

· · ·
∫ π

φG−3=0

∫ 2π

φG−2=0

1

(2π)
G
2

e−
1
2 (ρ2−2||xC ||ρ cos(φ0)+||xC ||2)

× ρG−1

[
G−2∏
`=0

sinG−2−`(φ`)

]
dρ

(
G−2∏
`=0

dφ`

)
.

This can be simplified to

I =

∫ r

ρ=0

ρG−1

(2π)
G
2

e−
1
2 (ρ2+||xC ||2)

∫ π

φ0=0

e||xC ||ρ cos(φ0) sinG−2(φ0)

×

[
G−3∏
`=1

∫ π

0

sinG−2−`(φ`) dφ`

](∫ 2π

0

1 dφG−2

)
dφ0 dρ ,

which in turn can be simplified to the following:

I = 2π

(
G−3∏
`=1

∫ π

0

sin` x dx

)[∫ r

0

ρG−1

(2π)
G
2

e−
1
2 (ρ2+||xC ||2)

(∫ π

0

e||xC ||ρ cosφ sinG−2φdφ

)
dρ

]
.

(A-8)

In order to continue further with the simplification of I, we will first use the following

result from [7, pg. 397]:∫ π

0

sinν−1x cos (ax) dx =
π cos

(
aπ
2

)
2ν−1νB

(
ν+a+1

2 , ν−a+1
2

) , Re [ν] > 0 ,

where B(x, y) is the beta function [7]. Setting ν = `+ 1 and a = 0 yields∫ π

0

sin` x dx =
π

2` (`+ 1)B
(
`
2 + 1, `2 + 1

) . (A-9)

But from [7, pg. 909], we have B(x, y) = Γ(x)Γ(y)
Γ(x+y) , where Γ(x) is the gamma function [7],

and so B(x, x) = (Γ(x))2

Γ(2x) . By the doubling formula for the gamma function [7, pg. 896], we

have Γ(2x) = 22x−1
√
π

Γ(x) Γ
(
x+ 1

2

)
, and thus B(x, x) =

√
π Γ(x)

22x−1Γ(x+ 1
2 )

. Substituting this into

(A-9) leads to ∫ π

0

sin` x dx =

√
π Γ
(
`+1

2 + 1
)(

`+1
2

)
Γ
(
`
2 + 1

) .
Now, as Γ(x+ 1) = xΓ(x) [7, pg. 895], we have∫ π

0

sin` x dx =
√
π

Γ
(
`−1

2 + 1
)

Γ
(
`
2 + 1

) , (A-10)

and hence
G−3∏
`=1

∫ π

0

sin` x dx = π(G2 − 3
2 ) · Γ(1)

Γ
(
G
2 −

1
2

) =
π(G2 − 3

2 )

Γ
(
G
2 −

1
2

) . (A-11)

Here, (A-11) follows from the fact that the gamma function terms in (A-10) form a

telescoping product [7] and the fact that Γ(1) = 1 [7, pg. 897].
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Returning to (A-8), it follows that substituting (A-11) yields the following:

I =
2π(G2 − 1

2 )

Γ
(
G
2 −

1
2

) ∫ r

0

ρG−1

(2π)
G
2

e−
1
2 (ρ2+||xC ||2)

(∫ π

0

e||xC ||ρ cosφ sinG−2φdφ

)
dρ . (A-12)

To simplify the inner integral, note that from [7, pg. 491] that we have∫ π

0

e±β cos x sin2νx dx =
√
π

(
2

β

)ν
Γ

(
ν +

1

2

)
Iν(β) , Re [ν] > −1

2
,

where Iν(x) is the modified Bessel function of the first kind of order ν [7]. Setting

β = ||xC || ρ and ν = G
2 − 1 yields

∫ π

0

e||xC ||ρ cosφ sinG−2φdφ =
√
π

(
2

||xC || ρ

)G
2 −1

Γ

(
G

2
− 1

2

)
IG

2 −1(||xC || ρ) .

Substituting this result into (A-12) leads to

I = ||xC ||−
G
2 +1

∫ r

0

ρ
G
2 e−

1
2 (ρ2+||xC ||2)IG

2 −1(||xC || ρ) dρ . (A-13)

Let u , ρ2, so that ρ =
√
u and thus dρ = 1

2u
− 1

2 du. Then, with this change of variables

applied to (A-13), we get

I =

∫ r2

0

1

2
e−

1
2 (u+||xC ||2)

(
u

||xC ||2

)G
4 − 1

2

IG
2 −1

(√
||xC ||2 u

)
︸ ︷︷ ︸

fNCχ2(u;G,||xC ||2)

du ,

where fNCχ2

(
u;G, ||xC ||2

)
is the pdf of a noncentral chi-square distribution evaluated at

u with G degrees of freedom and non-centrality parameter ||xC ||2 [4]. As the cdf of any

distribution is simply the integral of the associated pdf from −∞ to the point of interest

[2], and since the region of support of a noncentral chi-square random variable is [0,∞) [4],

we have

I = zNCχ2

(
r2;G, ||xC ||2

)
, (A-14)

and so (A-14) and (A-4) imply (A-1). This completes the proof.
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