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Iterative Greedy Algorithm for Solving the FIR
Paraunitary Approximation Problem
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Abstract—In this paper, a method for approximating a multi-
input multi-output (MIMO) transfer function by a causal finite-im-
pulse response (FIR) paraunitary (PU) system in a weighted least-
squares sense is presented. Using a complete parameterization of
FIR PU systems in terms of Householder-like building blocks, an
iterative algorithm is proposed that is greedy in the sense that the
observed mean-squared error at each iteration is guaranteed to not
increase. For certain design problems in which there is a phase-
type ambiguity in the desired response, which is formally defined in
the paper, a phase feedback modification is proposed in which the
phase of the FIR approximant is fed back to the desired response.
With this modification in effect, it is shown that the resulting itera-
tive algorithm not only still remains greedy, but also offers a better
magnitude-type fit to the desired response. Simulation results show
the usefulness and versatility of the proposed algorithm with re-
spect to the design of principal component filter bank (PCFB)-like
filter banks and the FIR PU interpolation problem. Concerning
the PCFB design problem, it is shown that as the McMillan de-
gree of the FIR PU approximant increases, the resulting filter bank
behaves more and more like the infinite-order PCFB, consistent
with intuition. In particular, this PCFB-like behavior is shown in
terms of filter response shape, multiresolution, coding gain, noise
reduction with zeroth-order Wiener filtering in the subbands, and
power minimization for discrete multitone (DMT)-type transmul-
tiplexers.

Index Terms—Filter bank optimization, greedy algorithm, inter-
polation, principal components filter bank.

I. INTRODUCTION

THE problem of approximating in the least-squares sense a
desired response, say , by a causal finite-impulse

response (FIR) filter of length was first considered
by Tufts and Francis in 1970 [19]. In essence, the goal is to
minimize a possibly weighted mean-squared error between the
desired and FIR filter responses given by the following:

(1)

Here, is a nonnegative weight function that is used to em-
phasize the design of certain frequency ranges of interest over
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others. For example, may be the response of an ideal low-
pass filter that we may want to approximate over certain regions
withanFIRfilter .Usingthe trickofcompletingthesquare
[4], it can be shown that the filter coefficients of , which
minimize from (1), can be obtained in closed form after calcu-
lating an appropriate matrix inverse [19]. Due to the completely
arbitrary nature of the desired response , the least-squares
method for FIR filter design can be applied to a myriad of design
problems. The method can even easily be generalized to the mul-
tiple-inputmultiple-output(MIMO)caseinwhichthedesiredand
FIR filter responses are, in general, both matrices.

In many applications, we may require further constraints on
the approximant, in addition to the inherent FIR assumption.
If these additional constraints are linear, for example, then it
turns out that the least-squares approach can be easily modified
to accommodate these conditions [14]. In general, however, it
may be difficult or even impossible to solve the least-squares
problem with the constraints in effect.

One constraint that has received much attention from the
signal processing community on account of its various appli-
cations in data compression and digital communications has
been the paraunitary (PU) or orthonormal constraint [23].
This condition frequently arises in the design of multirate
filter banks. One such example is the -channel maximally
decimated filter bank shown in Fig. 1(a). Here, the input signal

may represent a speech signal on which we would like to
perform lossy data compression. For this example, the subband
processors would typically be scalar quantizers operating
at a lower bit rate than the original input signal [13]. In order
to introduce the PU constraint on the filter bank, we must first
represent the filter bank in polyphase form [23]. If we consider
the following -fold polyphase decompositions [23] of the
analysis filters and synthesis filters

Type II

Type I

then the system of Fig. 1(a) can be redrawn as in Fig. 1(b), where
we have

The filter bank is then said to be a perfect reconstruction (PR)
PU or orthonormal filter bank iff we have

(2)

where for any transfer function
[23]. Here, the first part of (2) is the PU condition on , and
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Fig. 1. (a) Typical maximally decimated filter bank system. (b) Polyphase representation of filter bank.

the second part ensures that we have PR (in the absence of the
subband processors ). Orthonormal filter banks have many
interesting properties, which have made them very popular for
use in numerous applications. For example, a PU filter bank is
lossless, meaning that the energy observed in the subband sig-
nals in Fig. 1(b) is precisely equal to that of the input
signal [23]. Furthermore, if the synthesis polyphase matrix

is FIR, then the corresponding analysis polyphase matrix
is also necessarily FIR as well. Orthonormal filter

banks have been used to generate wavelet bases [23] and have
even been used for wavelet-based data compression such as that
used by JPEG 2000 [13].

In this paper, we consider the weighted least-squares FIR
filter design problem for the general MIMO case with the PU
constraint in effect. Since the PU constraint from (2) imposes a
quadratic constraint on the filter coefficients, there is no closed-
form expression for the optimal FIR approximant. However,
by using a complete parameterization of all FIR PU systems
in terms of Householder-like degree-one building blocks [28],
it will be shown that optimizing one set of parameters can be
done in closed form, assuming all other parameters are fixed.
This will lead to an iterative algorithm in which a different
set of parameters is optimized at each iteration. Since a given
set of parameters is optimized at each iteration, the observed
mean-squared error is guaranteed to not increase as a function

of iteration. As such, the algorithm is greedy, since we optimize
one set of parameters while ignoring the rest.

In cases where the MIMO desired response has what we shall
refer to as a phase-type ambiguity, which will be discussed in
Section III, we propose a phase feedback modification to the de-
sired response. With this modification, the “phase” of the FIR
approximant is fed back to the desired response. Using this mod-
ification, it can be shown that the iterative algorithm not only
still remains greedy, but also offers a better magnitude-type fit
to the desired response. Simulation results provided here show
the merit of the phase feedback modification.

Due to the arbitrary nature of the weighting function and
desired response, the same proposed algorithm can be used
to solve a variety of problems. In particular, by appropriately
choosing the weight function , we can apply the iterative
algorithm to the FIR PU interpolation problem discussed in
Section I-A-2). As opposed to the traditional FIR interpolation
problem, which has been well studied and can be solved easily
[4], the FIR PU interpolation problem is far more difficult and
has not yet been solved [26]. The iterative algorithm proposed
here can be used to obtain valuable insight into the FIR PU
interpolation problem, as simulation results in Section IV-B
show.

Prior to analyzing the FIR PU approximation problem, we
first introduce two applications in which this problem arises.
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A. Motivation

1) Principal Component Filter Banks: Consider again the
filter bank system of Fig. 1(b) in which the filter bank satisfies
the PU condition of (2). Suppose that the blocked input signal
vector is wide sense stationary (WSS) with power spectral
density (psd) . This is tantamount to saying that the scalar
input signal is cyclo-WSS with period (abbreviated
CWSS ) [12]. Recently, it has been shown that a special type
of PU filter bank matched to the input statistics known
as the principal component filter bank (PCFB) [18] is simulta-
neously optimal for a variety of objective functions [1]. Among
these objectives are included several important data compres-
sion objectives such as mean-squared error under the presence
of quantization noise [7] (for any bit allocation) and coding gain
[24], [25] (with optimal bit allocation). By definition, a PCFB
for an input psd and for a class of filter banks, if it
exists, is one whose subband variance vector

(3)

majorizes [4] any other subband variance vector arising
from any other filter bank from . (Recall that a vector

with

is said to majorize [4] a vector with
iff we have

)

In addition to being optimal for coding gain and mean-squared
error in the presence of quantization noise, the PCFB has also
been shown to be optimal for any concave objective function of

[1].
The only problem is that for general input power spectra,

PCFBs only exist for special classes of filter banks. One no-
table exception to this is for the special case where ,
in which case a PCFB always exists for any class of PU filter
banks [1]. For general , however, PCFBs are known to exist
only for two special classes. If is the class of all transform
coders , in which is a constant unitary matrix , then
the PCFB exists and is the Karhunen–Loève transform (KLT)
for the input process (i.e., diagonalizes the autocorrela-
tion matrix ) [1], [5]. Furthermore, if is the class of all
(unconstrained order) PU filter banks , then the PCFB exists
and is the pointwise in frequency KLT for [1], [24], [25].
By this, we mean that diagonalizes (i.e., totally decorre-
lates) for every such that the frequency-dependent
eigenvalues are always arranged in decreasing order, which is
a property called spectral majorization [24]. For many practical
cases of inputs (for example, if the scalar input signal is
itself WSS), the corresponding analysis and synthesis filters are
ideal bandpass filters called compaction filters [21], [22], [24].
As such, they are unrealizable in practice and serve only to com-
pute an upper bound on the performance that we can expect from
a PU filter bank.

The problem with the class of FIR PU filter banks in which
has finite memory (or more appropriately finite McMillan

degree [23]) is that it is believed that a PCFB does not exist

[1], [6], [8], although this has not yet been formally proven. In-
stead, for this class, is typically chosen to optimize a spe-
cific objective for a given input psd, such as coding gain [2], [3],
[9], [29], rate distortion [10], or a multiresolution energy com-
paction criterion [11]. All such methods require the numerical
optimization of nonlinear and nonconvex objective functions,
which offer little insight into the behavior of the solutions as
the filter order (i.e., the memory of ) increases. Another
common approach is to calculate an optimal FIR compaction
filter [15], [20] (for the first filter ) and then obtain the
rest of the filters via an appropriate filter bank completion for
a multiresolution criterion [11], [16]. Although this approach is
elegant in the sense that the filter bank design problem is tan-
tamount to calculating an FIR compaction filter followed by
an appropriate KLT, it suffers from the ambiguity caused by
the nonuniqueness of the FIR compaction filter. Different com-
paction filter spectral factors lead to different filter banks, which
in turn yield different performances. As such, all such spectral
factors need to be tested for their performance [16], which is ex-
ponentially computationally complex with respect to the order
of the compaction filter.

In this paper, the approach that will be taken to obtain a suit-
able signal-adapted FIR PU filter bank will be to find the one that
best approximates the unconstrained or infinite order PCFB so-
lution in the mean-squared sense. Intuitively, we should expect
that as the McMillan degree of the FIR PU system increases,
the filter banks designed become more and more like the infi-
nite-order PCFB. This will indeed be seen through simulations
in Section IV-A in terms of objectives such as filter response
shape, multiresolution, and coding gain. Along with these data-
compression-type objectives, this PCFB-like behavior is also
shown for noise reduction with zeroth-order Wiener filtering
in the subbands, and power minimization for discrete multitone
(DMT)-type transmultiplexers. In contrast with the methods of
[11] and [16], all of the synthesis filters with this method are
computed simultaneously, avoiding the need to compare the per-
formance of different spectral factors of a given FIR compaction
filter [16].

It should be noted that the infinite-order PCFB has a phase-
type ambiguity or nonuniqueness (see Section III). As such,
using the proposed iterative algorithm, it is not clear which in-
finite-order PCFB desired response will yield the overall best
FIR PU approximant. To alleviate this dilemma, the phase of
the desired response is mixed with that of the FIR approximant,
a process that we refer to here as phase feedback. This modi-
fication allows the iterative algorithm to find a better FIR PU
approximant to an infinite-order PCFB than without it, as will
be shown in the simulation results in Section IV-A.

2) The FIR PU Interpolation Problem: In certain applica-
tions, it may be necessary for an FIR PU system, say ,
to take on a prescribed set of values over a prescribed set of
frequencies. For example, suppose that for the frequencies

, we require

(4)

Evidently, the matrices must be unitary in light of the
PU assumption on . The problem of finding an FIR PU
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system of a certain degree that satisfies (4) is known as the FIR
PU interpolation problem [26].

In the traditional FIR interpolation problem, in which the only
restriction made on the interpolant is the FIR constraint, we can
always find an interpolant of length at most equal to the number
of interpolation conditions by using the Lagrange interpolation
formula [4]. However, for the FIR PU interpolation problem of
(4), in general, it is not known whether there even exists an inter-
polant of finite degree that will satisfy all conditions from (4).
For the special case in which is scalar, it is known that
in general, only one condition from (4) can be satisfied (since in
this case, is necessarily a pure delay [26]).

Although there is no known solution to the FIR PU interpola-
tion problem, the proposed iterative algorithm can offer valuable
insight into the problem. Through proper choice of the weight
function, the iterative algorithm can be used to find an FIR PU
system of a particular degree that best approximates the inter-
polation conditions of (4) in a weighted least-squares sense. By
observing the behavior of the mean-squared error at each itera-
tion, we can conjecture whether or not an interpolant exists for
the given interpolation conditions and degree. If the error tends to
zero as the number of iterations increases, we can claim that such
an interpolant indeed exists by construction. Simulation results
for the FIR PU interpolation problem given in Section IV-B show
the merit of the proposed iterative algorithm for this problem.

B. Outline of Paper

In Section II, we analyze the FIR PU approximation problem.
Using the Householder-like parameterization of FIR PU sys-
tems given in [28], we show how to obtain the optimal param-
eters in Sections II-A and II-B. The iterative greedy algorithm
for obtaining the FIR PU approximant is formally introduced
in Section II-C. In Section III, we introduce the phase feedback
modification to the iterative algorithm for cases in which the
desired response has a phase-type ambiguity. Simulation results
for the design of infinite-order PCFB-like FIR PU filter banks
and for the FIR PU interpolation problem are presented in Sec-
tions IV-A and IV-B, respectively. Finally, concluding remarks
are made in Section V.

II. THE FIR PU APPROXIMATION PROBLEM

Let be any desired response matrix that we wish
to approximate with a causal FIR PU system of
McMillan degree . Note that we require in order to
satisfy the PU condition . Here, we opt to choose

to minimize a weighted mean-squared Frobenius norm
error between and given by

(5)

Here, is a scalar nonnegative weight function as in (1),
and denotes the Frobenius norm of any matrix given
by [4].

Expanding (5) and using the PU condition
on yields the following:

(6)
Note that the quantity in (6) is simply a constant and that the
only quantity that depends on the system is the last term of
(6). Hence, with the PU constraint in effect, the error is linear
in . This will greatly simplify the optimization problem, as
will soon be shown.

To help solve this optimization problem with the PU con-
straint on , we exploit the complete parameterization of
causal FIR PU systems in terms of Householder-like degree-one
building blocks [23], [28]. In particular, is a causal FIR PU
system of McMillan degree iff it is of the form

(7)
where is a PU matrix consisting of de-
gree-one Householder-like building blocks of the form

(8)

where the vectors are unit norm vectors, i.e., for
all . In addition, the matrix is some unitary matrix, i.e.,

.
Although it is difficult to jointly optimize the parameters

and which minimize from (6), it will be shown that opti-
mizing each parameter separately while holding all other param-
eters fixed is very simple. This will lead to the proposed iterative
algorithm whereby the parameters are individually optimized at
each iteration.

A. Optimal Choice of

Substituting (7) into (6) yields the following:

(9)

(10)
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Note that minimizing from (10) is equivalent to maximizing
. To find the optimal unitary matrix that maximizes ,

we must exploit the singular value decomposition (SVD) [4] of
. Suppose that has the following SVD:

(11)

Here, and are, respectively, and unitary ma-
trices. The quantity is a diagonal matrix of the form

(12)

where rank and is a diagonal matrix of the
singular values of . In other words, we have

where are the singular values
of which satisfy for all . Substituting
(11) into (10) yields the following:

(13)

Note that the matrix is unitary, i.e.,
. Using (12) in (13) yields

(14)

Since is a unitary matrix, we have

(15)

with equality iff and , as the
columns of form an orthonormal set of vectors [4]. In light
of (15) and the fact that for all , from (14), we have

(16)

with equality iff for . Since
is unitary, we have equality iff

(17)

where is an arbitrary unitary matrix, i.e.,
. As , we have ,

and so the optimum and corresponding optimal value of is
given by (16) and (10) to be the following:

with as in (17)

(18)

In the special case where (i.e., as full rank), we have

Since the matrices and from (18) depend on , the
choice of from (18) is optimal for fixed , , and

.

B. Optimal Choice of

In order to find the optimal choice of assuming that all
other parameters are fixed, we must cleverly extract only those
portions of that depend on . For simplicity, let us define the
following matrices:

(19)

(20)

Note that and are, respectively, the left and right
neighbors of the matrix for appearing in

from (8). In other words, we have

(21)

Also note that by construction, we have
. Substituting (21) and (8) into (7) and (6) yields (22)–(24),

shown at bottom of the next page. Here, the quantity defined
in (22) depends on all of the parameters except . Hence, to
minimize with respect to , we must minimize the quan-
tity from (24). Note, however, that is simply a
quadratic form corresponding to the Hermitian matrix [4]. As

must satisfy , it follows from Rayleigh’s principle
[4] that the optimal must be a unit norm eigenvector corre-
sponding to the smallest eigenvalue of . If denotes the
smallest eigenvalue of and is any unit norm eigenvector
corresponding to , then the optimum choice of and cor-
responding optimal are given by (24) to be the following:

(25)

Note that since from (25) depends on , , and
, it follows that the choice of from (25) is optimal for fixed

, , , and all for which .
In summary, finding the optimal parameters corresponding to

the Householder-like factorization of causal FIR PU systems is
simple if the parameters are optimized individually. The process
of updating the individual parameters to their optimal values
forms the basis of the proposed iterative algorithm for solving
the FIR PU approximation problem, which we now present.

C. Iterative Greedy Algorithm for Solving the
Approximation Problem

For the iterative algorithm presented below, each set of
Householder-like parameters is optimized in a random order.
Furthermore, a complete set of parameters is optimized
before moving on to a new set of parameters. This is explained
mathematically below as follows.

Let denote the mean-squared error at the th iteration for
. In addition, let denote a random permutation of

the integers for any . Then, the iterative
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algorithm for solving the FIR PU approximation problem is as
follows.

Initialization:

Generate a random unitary matrix
and random unit norm vec-

tors , .

Iteration: For , do the following.

1) If , calculate the
optimal unitary matrix and corre-
sponding using (18), (11), and (9).
Otherwise, if for

some , calculate the optimal
unit norm vector and corresponding

using (25), (24), (23), and (22).
2) Increment by and return to

Step 1).

Since at each stage in the iteration, we are globally optimizing
one parameter while fixing the rest, the above technique is a
greedy algorithm. As such, the mean-squared error is guar-
anteed to be monotonic nonincreasing as a function of the it-
eration index . Furthermore, as has a lower bound (i.e.,

we always have ), is guaranteed to have a limit as
[23]. Thus, the algorithm is guaranteed to converge

monotonically to a local optimum. Simulation results provided
in Section IV verify this monotonic and limiting behavior.

1) Fast Iterative Greedy Algorithm: For the special case in
which the random permutation is simply for all , we
can exploit the order of the parameter updates to obtain a slight
improvement in the computational complexity of the algorithm.
This results in what we refer to as the fast iterative greedy algo-
rithm described below.

Initialization:

1) Generate a random unitary matrix
and random unit norm vec-

tors , .
2) Compute the matrix using (20).

Iteration: For , do the following.

1) If is a multiple of :
a) Calculate the optimal and cor-

responding using (18), (11), and
(9) with .

b) Compute and .

(22)

(23)

(24)
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Otherwise, if where
:

a) From (19), update the left matrix
as .

b) Calculate the optimal and
corresponding using (25), (24),
(23), and (22).

c) From (20), update the right ma-
trix as .

2) Increment by 1 and return to
Step 1).

As the iterations progress, the left matrix is shortened by the
old optimal vectors , whereas the right matrix is lengthened
by the newly computed ones. After all of the s have been
optimized, the left matrix assumes the value of the right matrix,
while the right matrix is then refreshed to be the identity matrix.
This offers a slight improvement in the overall computational
complexity of the algorithm, as the left and right matrices need
not be completely recalculated at each iteration, as is required in
the general case from above. As is shown through simulations in
Section IV, in addition to being faster than the general random
update algorithm, the fast algorithm performs nearly identically
to the general one.

Prior to presenting the simulation results, we first introduce
the phase feedback modification to the iterative algorithm for
cases in which the desired response has a phase-type
ambiguity, which we will define shortly.

III. PHASE FEEDBACK MODIFICATION

A. Phase-Type Ambiguity

Referring back to Fig. 1(b), suppose that we would like to
design an FIR PU synthesis polyphase matrix approximant to
that of the infinite-order PCFB as described in Section I-A-1).
In this case, the desired response is any system that
totally decorrelates and spectrally majorizes the blocked input
signal (i.e., diagonalizes for every
in such a way that the eigenvalues are arranged in descending
order [1], [24]). This implies a nonuniqueness for the desired
response . To see this, note that must contain the
unit norm eigenvectors of arranged in some order to
preserve the spectral majorization property. Partitioning
into its columns as

(26)

it follows that is a unit norm eigenvector of
for all . As any unit magnitude scale factor of a unit norm
eigenvector is itself a unit norm eigenvector, it follows that any
system of the form

(27)

where is a
valid desired response for an infinite-order PCFB. If the eigen-
values of are distinct for all , then all valid desired
responses are related to each other as in (27). On the other hand,

if the eigenvalues are not distinct at some frequency, say , then
at that frequency, the columns of any one desired response cor-
responding to the nondistinct eigenvalues can be expressed as a
unitary combination of the same columns of any other desired
response. As an example, suppose that at , the largest eigen-
value of has multiplicity 2. Then, given any desired
response of the form given in (26), we can obtain an-
other desired response in which we have

...
. . .

. . .
...

...
...

. . .
. . .

...

where is a 2 2 unitary matrix. In general, for an eigen-
value with multiplicity , the corresponding eigenvectors of one
desired response can be related in terms of any other via a
unitary matrix.

Any desired response that has a nonuniqueness
of the form

(28)

where is some given desired response and
is an block diagonal matrix of unitary matrices will be said
to have a phase-type ambiguity, since the phases of the columns
are arbitrary in this case. (In the PCFB example described here,
the number of blocks of is equal to the number of distinct
eigenvalues of and the size of each block is equal to
the multiplicity of each of these eigenvalues.) When the desired
response has a phase-type ambiguity, some desired responses
may yield a better overall FIR PU approximant than others. The
reason for this is that the causal FIR constraint we assume here
imposes severe restrictions on the allowable phase of the FIR PU
approximant. Since we do not know the best desired response
to choose a priori, we propose a phase feedback modification to
the iterative greedy algorithm of Section II-C in order to learn
the proper desired response.

B. Derivation of the Phase Feedback Modification

Suppose that we are given a desired response with a
phase-type ambiguity as in (28). In addition, suppose that the
matrix from (28) corresponds only to a simple phase-
type ambiguity of the form

(29)

The question then arises as to how to choose the phases
to minimize the mean-squared error in (5) with the desired re-
sponse replaced by given to be

(30)
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To solve this problem, we partition the old given desired re-
sponse and the FIR PU approximant as follows:

Then, from (30), it can easily be shown that we have

(31)
Note that we can minimize from (31) by minimizing each term
of the summation pointwise in frequency. This can be done here
since the phases are independent functions of that
have arbitrary response (in terms of ). Hence, minimizing is
tantamount to minimizing

(32)

for each . Upon expanding in (32), we get the following:

(33)

Expressing as

(34)

then we have ,
and so from (33), we get

(35)

Hence, to minimize , we must choose as follows:

(36)

Thus, from (34), it can be seen that the optimal thing to do for
each column of the desired response is to mix its phase with that
of the FIR PU approximant. In other words, the phase of the
FIR PU approximant must be fed back to the desired response
in order to minimize the mean-squared error.

C. Greediness of the Phase Feedback Modification

With the phase feedback modification of (36) in effect, it can
be shown that the iterative algorithm from Section II-C still re-
mains greedy. To see this, suppose that a phase feedback is per-
formed at the th iteration and let and denote,
respectively, the error before and after the phase feedback. Note
that and are given by (5) and (30), respectively.
For simplicity of notation, let denote the th column

Fig. 2. Input psd S (e ) of the AR(4) process x(n).

of at the th iteration and let denote the phase
of the inner product as in (34). Using (35)
and (32) in (31), we get

since the integrand from above is always nonnegative. Hence,
it follows that . As ,
since the unmodified algorithm is greedy, we have

.Thus, thealgorithmremainsgreedyevenwith thephase
feedbackmodification ineffect.AswillbeshowninSectionIV-A
regarding the design of PCFB-like FIR PU filter banks, the phase
feedback modification can offer a better magnitude-type fit to the
desired response than the unmodified algorithm.

IV. SIMULATION RESULTS

A. Design of PCFB-Like FIR PU Filter Banks

Recall that the proposed iterative algorithm can be used to de-
sign a PCFB-like filter bank when the desired response
is the synthesis polyphase matrix of any infinite-order PCFB
for the psd of the blocked filter bank input from
Fig. 1(b). Suppose that the unblocked scalar input signal
from Fig. 1 is a real WSS autoregressive order 4 (AR(4)) process
whose psd is as shown in Fig. 2. (As is itself
WSS, it follows that the psd of the blocked process is a
pseudocirculant matrix [23] formed from the scalar psd .)
In the case where the scalar input signal is WSS, the syn-
thesis filters corresponding to any infinite-order PCFB
are ideal bandpass compaction filters corresponding to
and its peeled spectra [24]. (Because of the orthnormality con-
dition of (2), it follows that the corresponding analysis filters

are also ideal compaction filters.)
To test the proposed iterative greedy algorithm, we chose the

following input parameters:

• , , ;
• 512 uniformly spaced frequency samples for numerical

integration;
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Fig. 3. Mean-squared error � as a function of the iteration index m for the
unmodified and phase feedback modified general and fast algorithms. (a) Plot
of KN = 3000 iterations. (b) Magnified plot of the first 20 iterations.

TABLE I
AVERAGE TIME REQUIRED PER ITERATION FOR THE ITERATIVE

GREEDY ALGORITHMS PROPOSED. (744 MHz INTEL

PENTIUM III RUNNING MATLAB WAS USED.)

• total iterations for some integer .1

This implies that the synthesis filters are causal and
FIR of length .

In Fig. 3(a), we have plotted the observed mean-squared error
as a function of the iteration index for both the unmodi-

fied and phase feedback modified methods employing both the
general as well as fast algorithms. As can be seen in all cases,
the error decreased monotonically with iteration, as expected. In
addition, the fast algorithm performed nearly identically to the
general algorithm for both cases, and the phase feedback mod-
ified methods yielded a lower overall error than the unmodified
ones. A magnified view of the observed error for the first 20 it-
erations is shown in Fig. 3(b). It can be seen that even though
all of the algorithms exhibited similar initial errors, the errors of
the phase feedback modified methods decreased more quickly
than those of the unmodified algorithms.

In Table I, we have listed the processing time required per it-
eration for all of the algorithms proposed here. The processor
used was an Intel Pentium III operating at 744 MHz running
Matlab. As can be seen from Table I, there is a slight improve-
ment in processing time required for the fast algorithms as op-
posed to the general ones. For a large number of iterations, this
improvement becomes quite noticeable. In addition, as will soon
be shown, the performance of the fast algorithms is nearly iden-
tical to those of the general ones, further justifying their use in
practice.

1We opted for an integer multiple of N iterations to ensure that all of the
parameters were optimized the same number of times. In addition, for all of the
simulation results presented in this section, unless otherwise stated, we chose
K = d3000=Ne.

Fig. 4. (a) Average mean-squared error � and (b) average error variance �
as a function of the iteration index m for a total of L = 30 trial runs.

1) Convergence Analysis: To analyze the convergence prop-
erties of the iterative algorithms, as well as their sensitivity with
respect to random initial conditions, the algorithms were run
several times, each time with a different initial condition. Sup-
pose that each algorithm was run a total of times and that

denotes the observed mean-squared error of the th trial at
the th iteration, where here . To gauge the
behavior of the algorithms, we opted to calculate the average
mean-squared error per iteration as well as the average error
variance per iteration defined as follows:

(37)

(38)

In Fig. 4(a) and (b), we have plotted, respectively, the average
error per iteration and average error variance per iteration

for a total of 30 trial runs and for 1000 iterations. As
can be seen from Fig. 4(a), all methods yielded a monotonic
decreasing error and that the phase feedback modified methods
outperformed the unmodified ones. In addition, the performance
of the fast algorithms can be seen to be nearly identical to that
of the general ones. More important, however, it can be seen
from Fig. 4(b) that the variance of the error becomes very small
once the number of iterations is large enough. At 1000, we
had , , , and

for the fast unmodified, general unmodified, fast
phase feedback, and general phase feedback methods, respec-
tively. Although the variances of the phase feedback methods
are larger than those of the unmodified algorithms, they are still
relatively small given the inherent additional amount of random-
ness of the phase feedback methods over the unmodified ones.
This suggests that the algorithm is relatively insensitive with re-
spect to the choice of the initial condition. Furthermore, this sug-
gests that the local optimality guaranteed by the iterative greedy
algorithms is perhaps close to being global.

2) Filter Response Results: To see the effects of the phase
feedback modification more clearly, in Figs. 5 and 6, we have
plotted, respectively, the magnitude squared responses of the
resulting synthesis filters for the unmodified and
phase feedback modified general algorithms together with the
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Fig. 5. Magnitude-squared responses of the PCFB and FIR PU synthesis
filters using the unmodified general iterative algorithm: (a) F (z); (b) F (z);
(c) F (z); and (d) F (z).

Fig. 6. Magnitude-squared responses of the PCFB and FIR PU synthesis filters
using the phase feedback modified general iterative algorithm: (a) F (z); (b)
F (z); (c) F (z); and (d) F (z).

responses of the infinite order PCFB synthesis filters. (Due
to the phase-type ambiguity present in here, only the
magnitude has been plotted since the infinite order PCFB filters
can have arbitrary phase.) As can be seen, the FIR synthesis
filters designed with the phase feedback modification offer a
better magnitude-type fit to the infinite-order PCFB filters than
those designed with the unmodified algorithm. Due to this ob-
served phenomenon, we opted to carry out the rest of the PCFB
simulations using the phase feedback modification. It should
also be noted that the remainder of the PCFB simulations in
this section were carried out for the real AR(4) process
with psd as in Fig. 2.

Fig. 7. Proportion of the total variance P (L) as a function of the number of
subbands kept L for an M = 4 channel system with (a) N = 3 and (b) N =
10.

Fig. 8. Proportion of the total variance P (L) as a function of the number of
subbands kept L for an M = 8 channel system with (a) N = 3 and (b) N =
10.

3) Multiresolution Optimality Results: Referring to Fig. 1,
recall from Section I-A-1) that by definition, the PCFB, if it
exists for a class of filter banks, is such that its subband vari-
ance vector from (3) majorizes the subband variance vector
of any other filter bank in the class under consideration [1], [8].
As such, it is optimal in a multiresolution sense in that it suc-
cessively compacts as much of the signal energy as possible into
each subband starting with the first [18]. One suitable measure
of multiresolution optimality is the proportion of the partial sub-
band variances to the total. By preserving only out of sub-
bands, this proportion is given by

Because of the subband majorization property of the PCFB, the
PCFB maximizes for all .

Using the proposed iterative algorithm for the design of a
PCFB-like filter bank for the real AR(4) process consid-
ered here, a plot of the observed proportion as a function
of the number of subbands preserved is shown in Fig. 7 for

and . Included in Fig. 7 are the performances
of the zeroth-order PCFB (namely the KLT) as well as the infi-
nite-order one. As can be seen, both FIR filter banks designed
outperform the KLT. Furthermore, by comparing Fig. 7(a) and
(b), it can be seen that as the filter order increased, the subband
variances came closer to those of the infinite-order PCFB.

To show another example of this phenomenon, we considered
the design of an channel system. For this case, a plot
of as a function of is shown in Fig. 8(a) and (b) for

and , respectively. As before, it can be seen that
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Fig. 9. Observed coding gain G as a function of the FIR PU filter order
parameter N .

as the filter order increased, the subband variances of the FIR
filter banks came closer to those of the infinite-order PCFB.2

This is in accordance with intuition that states that as the filter
order increases, the designed FIR PU filter banks should behave
more and more like the infinite-order PCFB. Upon considering
other objectives for which the PCFB is optimal, this PCFB-like
behavior for the optimized FIR filter banks will become more
apparent.

4) Coding Gain Results: Recall from Section I-A-1) that the
PCFB, if it exists, is simultaneously optimal for a variety of ob-
jective functions of the vector of subband variances from (3).
In particular, it is optimal for coding gain with optimal bit allo-
cation in the subbands [1], [8]. Assuming optimal bit allocation,
the coding gain is given by [23]

In other words, the coding gain is the arithmetic mean/geometric
mean (AM/GM) ratio of the subband variances in this case. The
coding gain is lower bounded by unity (because of the AM/GM
inequality) and upper bounded by the gain produced by the
PCFB.

Here, the proposed iterative algorithm was used to design an
channel PCFB-like filter bank in which the synthesis

polyphase matrix length was varied from 1 to 10. A plot of
the coding gain observed as a function of is shown in Fig. 9. In
addition, we have included the coding gain of the KLT (2.1276
dB) along with that of the infinite- order PCFB (8.3081 dB).
From Fig. 9, we can see that even at small filter orders, the FIR
PU filter banks designed yielded a much larger coding gain than
the KLT. Furthermore, the optimized FIR filter banks exhibited
a monotonically increasing coding gain. This is consistent with
intuition, which dictates that as the filter order increases, the FIR
filter banks designed should become more and more PCFB-like.
From Fig. 9, it appears as though the coding gain of the FIR

2It should be noted that this phenomenon continues to hold true for largerM ;
however, the results become less dramatic since the gap between the KLT and
infinite-order PCFB shrinks as M increases.

Fig. 10. Noise reduction performance (� from (39)) with zeroth-order subband
Wiener filters as a function of the FIR PU filter order parameterN for (a) noise
variance (� ) of 1 and (b) noise variance of 4.

filter banks will asymptotically achieve the infinite-order PCFB
performance as .

5) Noise Reduction Using Zeroth-Order Wiener Filters: In
addition to being optimal for coding gain, the PCFB, if it exists,
is optimal for any concave objective of [1]. One such objective
is noise reduction with zeroth-order Wiener filters in the sub-
bands if the input noise is white [1]. In other words, if the input
to the filter bank of Fig. 1(a) is , where
is a pure signal and is a white noise process, and if the sub-
band processors are taken to be zeroth-order Wiener fil-
ters (i.e., multipliers), then the PCFB for (which is also the
PCFB for in this case) is optimal in terms of minimizing the
mean-squared value of the error [1]. With
the presence of zeroth-order Wiener filters, the mean-squared
error is in general given by

(39)

where denotes the variance of the th subband when the
input is the desired signal and denotes the variance of
the white noise process . As is a concave function of the
subband variance vector from (3), the PCFB for , if it
exists, is optimal for this objective function [1].

Using the same FIR PU filter banks as those computed in Sec-
tion IV-A-4), the observed mean-squared error from (39) as a
function of is shown in Fig. 10 for (a) and (b) .
As can be seen in both cases, the FIR filter banks significantly
outperform the KLT Furthermore, it can be seen that the error
monotonically decreased as increased, in accordance with in-
tuition. Asymptotically, it appears as though the optimized FIR
filter bank is trying to emulate the behavior of the infinte order
PCFB.

6) Power Minimization for DMT-Type Transmultiplexers:
In addition to applications in data-compression-related objec-
tives, the theory of PCFBs has also been found useful in digital
communications involving the design of optimal DMT-type
PU transmultiplexers [27]. A typical nonredundant PU trans-
multiplexer [23] in polyphase form is shown in Fig. 11. We
distinguish nonredundant transmultiplexers from redundant
ones such as those used in typical DMT transceivers in which
the polyphase matrix is with . The system
of Fig. 11 represents a digital communications system in which

users transmit data over a common path. Prior to
receiving the data and separating the users at the receiver, the
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Fig. 11. Uniform PU nonredundant transmultiplexer.

incoming signal undergoes a linear distortion in the form of
the channel , and a noise process is added to it. To
undo the effects of the channel, we assume that a zero-forcing
equalizer [27] of has been used, as can be seen in
Fig. 11.

Assuming that the th input signal consists of pulse-
amplitude-modulated (PAM) symbols with bits and power

, then if the noise is Gaussian, the probability of error
in detecting the symbol is given by [27] to be

(40)

Here, is the Marcum function, which is frequently used
in communications. In addition, denotes the noise power
seen at the th output . Solving (40) for yields

where

As is a linear function of , it follows that the total power
given by

(41)

is a convex function of the variances . As such, this power
is minimized iff the PU filter bank is chosen to be a
PCFB for the effective noise process seen at the input to the
receiver. If is a WSS process with psd , then
the effective noise seen at the receiver input is WSS with psd

Hence, the total power from (41) is
minimized iff is a PCFB for the psd .

As an example, suppose that the desired probability of error
is for all . In addition, suppose that we have

, , , and . It should be noted that this
is a not an optimal bit allocation [27] and is only chosen here
as such for simplicity. Finally, suppose that the effective noise

Fig. 12. Nonredundant DMT-type transmultiplexer total required power P as
a function of the FIR PU filter order parameter N .

psd is simply the psd shown in
Fig. 2. Then, using the proposed iterative algorithm, the re-
quired powers as a function of the synthesis polyphase order
is shown in Fig. 12. As can be seen, the FIR filter banks designed
here significantly outperform the KLT and exhibit a monotoni-
cally decreasing power as a function of , in accordance with
intuition. Furthermore, as before, the optimized FIR filter bank
appears to be approaching the performance of the infinite-order
PCFB as the order increases.

B. FIR PU Interpolation Problem

Recall from Section I-A-2) that the FIR PU interpolation
problem involves finding an FIR PU system of a certain
McMillan degree, say , which takes on a prescribed set
of values, say , over a prescribed set of
frequencies, say . In other words, we seek an
FIR PU of a certain degree such that for all

. (Clearly, the matrices must be unitary.)
As mentioned in Section I-A-2), there is no known solution to
the FIR PU interpolation problem. However, for this problem,
the proposed iterative algorithm can be used to approximate
an interpolant. In this case, the desired response is as
follows:

do not care otherwise.
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As we do not care about the response at all frequencies not in
the set , it only makes sense that these regions be given
no weight in the approximation problem. One weight function
that accommodates this need is the interpolation weight function

, given by the following:

(42)

Here, the s are discrete weight parameters used to emphasize
the design of some interpolation conditions over others, which
satisfies

In other words, is a discrete probability density function
(pdf). Substituting (42) into the expression for the weighted
mean-squared error from (5) yields

Hence, with the interpolation weight function from
(42), the mean-squared error integral becomes a discrete sum-
mation. This simplifies the proposed algorithm since no numer-
ical integration is required.

1) Example 1: As an example, suppose that we seek a 3
2 FIR PU system such that for ,
where are randomly chosen 3 2 unitary matrices.
Furthermore, suppose that the frequencies are chosen as

Since there are four interpolation conditions, we might expect
that we need for the FIR PU interpolant in general. Using
the proposed iterative algorithm for , the observed av-
erage mean-squared error from (37) and average error vari-
ance from (38) are shown in Fig. 13(a) and (b), respectively,
for both the fast and general algorithms using a total of 30 trial
runs of each method. Here, we used
(i.e., uniform weighting) and iterations, where we chose

1000 . From Fig. 13(b), the error appears to be rather
insensitive with respect to the choice of initial condition. Here,
we have and at 1000
for the fast and general algorithms, respectively. This suggests
that the algorithms perhaps converge to a global optimum, al-
though there is no proof of this statement. As the error appears
to have saturated at a nonzero value (in this case,
for both algorithms), this suggests that there may not exist an
FIR PU system with , which satisfies the desired inter-
polation conditions. Despite this, the algorithms have found a
good approximant to the desired interpolant.

2) Example 2: To further test the performance of the pro-
posed iterative algorithm, we can use it to obtain an FIR PU

Fig. 13. FIR PU interpolation problem—Example 1: (a) Average
mean-squared error � and (b) average error variance � as a function
of the iteration index m for a total of KN = 1000 iterations and L = 30 trial
runs.

Fig. 14. FIR PU interpolation problem—Example 2: (a) Average
mean-squared error � and (b) average error variance � as a function
of the iteration index m for a total of KN = 50 iterations and L = 30 trial
runs.

system for which we know that an interpolant exists. For ex-
ample, suppose that we seek a 3 2 FIR PU system such
that

Here, is an arbitrary 3 1 unit norm vector, and is a 3
2 arbitrary unitary matrix. As there are two interpolation condi-
tions, we expect that in general, we need here. Clearly,
for , the choice

(43)

satisfies the desired interpolation conditions. Using the pro-
posed iterative algorithm, we can see if the algorithm can
converge to an interpolant similar to the one from (43).
For this simulation, we chose and and

(i.e., uniform weighting). A plot of the observed
average mean-squared error and average error variance
is shown in Fig. 14(a) and (b), respectively, for both the fast
and general algorithms using a total of 30 trial runs of both
methods. Here, the number of iterations chosen was with

50 . As we can see, it appears as though the algo-
rithm does in fact converge to desired interpolant. At 50,
we have and for the fast
and general algorithms, respectively, both of which are very
close to zero. Furthermore, we have
and , respectively, for the fast and general
algorithms at 50. This strongly suggests that the proposed
algorithms indeed converge to a global optimum in this case.
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In summary, even though there is no general solution to the
FIR PU interpolation problem, the proposed algorithms offer a
way to approximate a suitable interpolant.

V. CONCLUDING REMARKS

In this paper, we proposed an iterative greedy algorithm to
solve the FIR PU approximation problem using the complete
parameterization of such systems in terms of Householder-like
building blocks. Furthermore, we proposed a phase feedback
modification to our algorithm for cases in which the desired re-
sponse has a phase-type ambiguity as discussed in Section III.

Simulation results presented showed the usefulness of the
proposed iterative algorithm for designing PCFB-like filter
banks. As opposed to other methods, which compute the first
filter required (an FIR compaction filter) and then complete
the filter bank via an appropriate KLT [11], [16], this method
simultaneously calculates all of the filters at once. This has
the advantage that we do not have to worry about different
filter banks formed from different spectral factors of the FIR
compaction filter. The FIR PU filter banks designed here were
shown to behave more and more like the PCFB as the filter
order increased, in terms of numerous objective functions.

In addition to designing PCFB-like filter banks, we showed
that the proposed iterative algorithm could also be used for the
FIR PU interpolation problem. Although there is no known so-
lution for this problem, the proposed algorithm can always pro-
vide a way to approximate an interpolant. As the iterative algo-
rithm is only guaranteed to reach a local optimum, it cannot be
used to solve the FIR PU interpolation problem, except for cases
in which the mean-squared error goes to zero.

There are still several open problems that remain. For many
practical filter banks, a linear phase constraint on the anal-
ysis/synthesis filters is desired in addition to the PU condition
imposed here. At this time, it is unclear as to how to generalize
the iterative algorithm to account for a linear phase constraint
and how the resulting algorithm would behave with the phase
feedback modification in effect. In addition to the FIR PU
interpolation problem mentioned previously, the problem of
generalizing the iterative algorithm to the multidimensional
case still remains open. This is because in the general mul-
tidimensional case, there is no known way to completely
parameterize FIR PU systems using Householder-like building
blocks [23]. The reason for this is that the notion of poles
and zeros does not exist in the multidimensional case. Such
problems may not exist if we restrict our attention to special
classes of FIR PU systems, such as separable systems. These
open problems are currently the subject of further research.

Matlab code for the proposed iterative algorithm presented
here is available online at [17].
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