
380 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 54, NO. 1, JANUARY 2006

[3] G. V. Moustakides and S. Theodoridis, “Fast newton transversal fil-
ters-a new class of adaptive estimation algorithms,” IEEE Trans. Signal
Process., vol. 39, no. 10, pp. 2184–2193, Oct. 1991.

[4] B. F. Boroujeny, “Fast LMS/newton algorithms based on autoregres-
sive modeling and their application to acoustic echo cancellation,” IEEE
Trans. Signal Process., vol. 45, no. 8, pp. 1987–2000, Aug. 1997.

[5] J. Benesty, T. Gansler, D. R. Morgan, M. M. Sondhi, and S. L. Gay,
Advances in Network and Acoustic Echo Cancellation. New York:
Springer-Verlag, 2001.

[6] G. A. Clark, S. K. Mitra, and S. R. Parker, “Block implementation of
adaptive digital filters,” IEEE Trans. Acoust., Speech, Signal Process.,
vol. ASSP-29, no. 3, pp. 744–752, Jun. 1981.

[7] S. Narayan, A. M. Peterson, and M. J. Narasimha, “Transform domain
LMS algorithm,” IEEE Trans. Acoust. Speech, Signal Process., vol.
ASSP-31, no. 3, pp. 609–615, Jun. 1983.

[8] J. Benesty and P. Duhamel, “A fast exact least mean square adaptive
algorithm,” IEEE Trans. Signal Process., vol. 40, no. 12, pp. 2904–2920,
Dec. 1992.

[9] K. Berberidis and S. Theodoridis, “A new fast block adaptive algorithm,”
IEEE Trans. Signal Process., vol. 47, no. 1, pp. 75–87, Jan. 1999.

[10] D. T. M. Slock and K. Maouche, “The fast subsampled-updating recur-
sive least-square (FSU-RLS) algorithm for adaptive filtering based on
displacement structure and FFT,” Signal Process., vol. 40, pp. 5–20, Oct.
1994.

[11] M. Tanaka, S. Makino, and J. Kojima, “A block exact fast affine projec-
tion algorithm,” IEEE Trans. Speech Audio Process., vol. 7, no. 1, pp.
79–86, Jan. 1999.

[12] G. Rombouts and M. Moonen, “A sparse block exact affine projection
algorithm,” IEEE Trans. Speech Audio Process., vol. 10, no. 2, pp.
100–108, Feb. 2002.

[13] F. Albu and H. K. Kwan, “Fast block exact Gauss–Seidel pseudo
affine projection algorithm,” IEE Electron. Lett., vol. 40, no. 22, pp.
1451–1453, Oct. 2004.

[14] Z. J. Mou and P. Duhamel, “Fast FIR filtering: Algorithms and imple-
mentation,” Signal Process., vol. 377–384, Dec. 1987.

[15] Z. J. Mou and P. Duhamel, “Short-length FIR filters and their use in fast
nonrecursive filtering,” IEEE Trans. Signal Process., vol. 39, no. 6, pp.
1322–1332, Jul. 1991.

[16] Y. Zhou, S. C. Chan, and K. L. Ho, “A new block exact fast LMS/newton
adaptive filtering algorithm,” in Proc. IEEE 2004 47th Midwest Symp.
Circuits Systems, Hiroshima, Japan, Jul. 25–28, 2004, pp. II-29–II-32.

[17] Digital Network Echo Cancellers, ITU-T Recommendation G.168,
2000.

[18] K. Ikeda, S. Tanaka, and Y. Wang, “Convergence rate analysis of fast
predictor-based least squares algorithm,” IEEE Trans. Circuits Syst. II:
Analog Digit. Signal Process., vol. 49, no. 1, pp. 11–15, Jan. 2002.

[19] Y. Wang, K. Ikeda, and K. Nakayama, “A numerically stable fast
Newton-type adaptive filter based on order recursive least squares
algorithm,” IEEE Trans. Signal Process., vol. 51, no. 9, pp. 2357–2368,
Sep. 2003.

On the Spectral Factor Ambiguity of FIR Energy
Compaction Filter Banks

Andre Tkacenko and P. P. Vaidyanathan

Abstract—This paper focuses on the design of signal-adapted finite-im-
pulse response (FIR) paraunitary (PU) filter banks optimized for energy
compaction (EC). The design of such filter banks has been shown in the
literature to consist of the design of an optimal FIR compaction filter
followed by an appropriate Karhunen–Loève transform (KLT). Despite
this elegant construction, EC optimal filter banks have been shown to
perform worse than common nonadapted filter banks for coding gain,
contrary to intuition. Here, it is shown that this phenomenon is most
likely due to the nonuniqueness of the compaction filter in terms of its
spectral factors. This nonuniqueness results in a finite set of EC optimal
filter banks. By choosing the spectral factor yielding the largest coding
gain, it is shown that the resulting filter bank behaves more and more like
the infinite-order principal components filter bank (PCFB) in terms of
numerous objectives such as coding gain, multiresolution, noise reduction
with zeroth-order Wiener filters in the subbands, and power minimization
for discrete multitone (DMT)-type nonredundant transmultiplexers.

Index Terms—Compaction filter, energy compaction, multirate filter
bank, principal components filter bank.

I. INTRODUCTION

A signal-adapted filter bank is any multirate filter bank whose filters
depend on the nature or statistics of its input. The problem of the design
of optimal signal-adapted multirate filter banks has been of interest to
the signal processing community on account of its applications in data
compression, signal denoising, and digital communications [11], [15],
[16]. A typical model for the filter bank used is the M -channel maxi-
mally decimated filter bank [14] shown in Fig. 1(a). Here, the subband
processors fPkg need not be linear and are typically scalar quantizers,
constant multipliers, or threshold devices.

An equivalent polyphase representation [14] of the filter bank of
Fig. 1(a) is shown in Fig. 1(b). The analysis filters fHk(z)g and
synthesis filters fFk(z)g are, respectively, related to the analysis
polyphase matrix H(z) and synthesis polyphase matrix F(z) as
follows [14]:

[H0(z) H1(z) � � � HM�1(z)]
T =H(zM)a(z)

[F0(z) F1(z) � � � FM�1(z)] =a(z)F(z
M): (1)

Here, a(z) denotes the M � 1 advance chain vector given by

a(z) = [1 z � � � zM�1]T

and the tilde notation denotes the paraconjugate [14] of any system
(i.e., A(z)

�
= A

y(1=z�) for any A(z)).
From here on, we will assume that theM -fold blocked signal vector

x(n) from Fig. 1(b) is wide sense stationary (WSS) with a known

Manuscript receivedAugust 6, 2004; revised January 19, 2005. Thisworkwas
supported in part by the NSF grant CCF-0428326, ONR grant N00014-06-1-
0011, and the California Institute of Technology. The associate editor coordi-
nating the review of this manuscript and approving it for publication was Prof.
Trac D. Tran.

A. Tkacenko was with the Department of Electrical Engineering, California
Institute of Technology, Pasadena, CA 91125 USA. He is now with the Digital
Signal Processing Research Group, Jet Propulsion Laboratory, Pasadena, CA
91109 USA (e-mail: andre@systems.caltech.edu).

P. P. Vaidyanathan is with the Department of Electrical Engineering,
California Institute of Technology, Pasadena, CA 91125 USA (e-mail:
ppvnath@systems.caltech.edu).

Digital Object Identifier 10.1109/TSP.2005.861060

1053-587X/$20.00 © 2006 IEEE



IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 54, NO. 1, JANUARY 2006 381

Fig. 1. (a) Typical M -channel maximally decimated filter bank system. (b)
Polyphase implementation of filter bank.

power spectral density (psd) Sxx(z). This is equivalent to saying that
the scalar input signal x(n) is cyclo-WSS with period M (abbreviated
CWSS(M )) [14].

We will restrict our attention to paraunitary (PU) or orthonormal
filter banks in which we have

H(z) = F(z); F(z)F(z) = I 8 z:

Orthonormal filter banks have been shown to be useful on account of
their ease of design and energy preserving properties [14]. In fact, such
filter banks are used to generate wavelet bases [14] and have even been
used for wavelet-based lossy data compression such as that used by
JPEG 2000 [10].

A. Principal Components Filter Bank

Recently, it has been shown that a special type of PU filter bank
known as the principal components filter bank (PCFB) [11], if it exists
for a particular filter bank class, is simultaneously optimal for a variety
of data-compression-type objectives [1], including mean-squared error
under the presence of quantization noise [5] (for any bit allocation) and
coding gain [15] (with optimal bit allocation). By definition, a PCFB
for an input psd Sxx(z) and a class C of filter banks, if it exists, is one
whose subband variance vector

���
�
= �

2

w �
2

w � � � �
2

w

T

(2)

majorizes [2] any other subband variance vector arising from any other
filter bank from C. (Recall that a vector a

�
= [a0 a1 � � � aP�1]

T with
a0 � a1 � � � � � aP�1 � 0 is said to majorize [2] a vector b

�
=

[b0 b1 � � � bP�1]
T with b0 � b1 � � � � � bP�1 � 0 iff we have

p

k=0

ak �

p

k=0

bk 8 0 � p � P � 2;

P�1

k=0

ak =

P�1

k=0

bk:)

In addition to being optimal for coding gain and mean-squared error in
the presence of quantization noise, the PCFB has also been shown to
be optimal for any concave objective function of ��� [1].
1) Classes for Which PCFB’s Exist: For general input power

spectra, PCFBs are only known to exist for certain classes of filter
banks. One notable exception is special case where M = 2, in
which case a PCFB always exists for any class of PU filter banks
[1]. For general M , however, PCFBs are known to exist only for two
special classes. If C is the class of all transform coders Ct, in which
F(z) is a constant unitary matrix T, then the PCFB exists and is the
Karhunen–Loève transform (KLT) for x(n) (i.e., T diagonalizes the
autocorrelation matrixRxx(0)) [1], [3]. Furthermore, if C is the class
of all (unconstrained order) PU filter banks Cu, then the PCFB exists
and is the pointwise in frequency KLT for x(n) [1], [15], [16]. By this,
we mean thatF(ej!) diagonalizes (i.e., totally decorrelates) Sxx(ej!)
for every ! such that the frequency-dependent eigenvalues are always
arranged in decreasing order, which is a property called spectral
majorization [15]. For many practical cases of inputs (for example, if
the scalar input x(n) is itself WSS), the corresponding analysis and
synthesis filters are ideal bandpass filters called compaction filters
[13], [15]. As such, they are infinite order and, hence, unrealizable in
practice and serve only to compute an upper bound on the performance
that we can expect from a PU filter bank.
2) ProblemsWith the Class of FIR PUFilter Banks: For the class of

FIR PU filter banks in whichF(z) has a certain finiteMcMillan degree
[14], it is believed that a PCFB does not exist [1], [4], [6] although
this has not yet been formally proven. Instead, for this class, F(z) is
typically chosen to optimize a specific objective such as coding gain
[7], [18] or rate distortion [8]. All such methods require the numerical
optimization of nonconvex functions which offer little insight into the
behavior of the solutions as the filter order or degree ofF(z) increases.
Although we might expect these filter banks to behave increasingly
like the infinite-order PCFB as we increase the order, this has not been
shown in the literature.

B. Main Contributions of Paper

In this paper, we focus on the design of FIR PU filter banks opti-
mized for an energy compaction (EC) criterion originally considered
in [9]. This elegant method only requires the computation of an FIR
compaction filter followed by an appropriate KLT as we review in Sec-
tion II-C. Although such filter banks were shown to perform poorly in
terms of coding gain in [9], contrary to intuition, we show here that
this is most likely due to the nonuniqueness of the compaction filter
in terms of its spectral factors. This nonuniqueness leads to a finite set
of EC optimal filter banks. By choosing the spectral factor yielding
the largest coding gain, we show that there are numerous benefits to
be reaped. In particular, we show that this solution exhibits a tendency
toward the infinite-order PCFB as the filter order is increased. This ten-
dency is shown in terms of coding gain, multiresolution, noise reduc-
tion with zeroth-order Wiener filters in the subbands, and power mini-
mization for discrete multitone (DMT)-type nonredundant transmulti-
plexers. Such PCFB-like behavior has not previously been reported in
the literature.

II. THE ENERGY COMPACTION CRITERION

Referring to Fig. 1(a), in [9], Moulin and Mıhçak opted to design
an FIR PU signal-adapted filter bank according to the following EC
criterion.
EC Criterion:

1) Maximize �2w subject to

F0(z)F0(z)
#M

= 1 (Compaction Filter Problem):
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2) For i = 1; 2; . . . ;M � 1 successively maximize �2w subject to

Fi(z)Fi(z)
#M

=1 (Nyquist(M) Criterion)

Fk(z)Fi(z)
#M

=0 8 0 � k � i� 1 (Orthogonality Criterion):

The PCFB, if it exists for a particular filter bank class, is optimal
for energy compaction [1], [11]. For the FIR class, it can be shown
that using the complete parameterization of FIR PU systems in terms
of Householder-like building blocks [14], [17], which we review in
Section II-B, the entire filter bank can be completed via an appropriate
KLT once an optimal compaction filter has been found (Step 1 from
above). This is shown in Section II-C. In the next section, we briefly
review the compaction filter problem.

A. Compaction Filter Problem

For the special case in which the input x(n) is WSS with psd
Sxx(e

j!), which we will henceforth assume to be the case, the
compaction filter problem (Step 1 of the EC criterion) becomes the
following [15]:

Maximize �2w =
1

2�

2�

0

Sxx(e
j!) F0(e

j!)
2

d!

subject to F0(e
j!)

2

#M

= 1 8 !: (3)

This problem is only a function of the magnitude of F0(e
j!) and not

on its phase. As such, the solution to (3) is not unique. In particular, any
spectral factor of a given optimal F0(e

j!) is itself an optimal solution.
If no order constraint is made onF0(z), the optimal compaction filter

has an ideal bandpass response that depends on Sxx(e
j!) [15]. For

the unconstrained order PCFB, the analysis/synthesis filters are ideal
compaction filters for Sxx(ej!) and its peeled spectra [15]. As such,
these filters are infinite order and unrealizable. This is why the uncon-
strained-order PCFB is often referred to as the infinite-order PCFB.

If we impose an FIR constraint on F0(z), the design of an optimal
compaction filter becomes more complicated and must be done nu-
merically. In [12], Tuqan and Vaidyanathan proposed a semidefinite
programming (SDP) method based on a state–space description of the
compaction filter that was shown to be globally optimal. It is for this
reason that this method was used for all of the simulations presented
here.

B. Complete Parameterization of FIR PU Systems

Once Step 1 of the EC criterion (the FIR compaction filter problem)
is completed, Step 2 can be easily carried out upon exploiting the
complete parameterization of the FIR PU synthesis polyphase matrix
in terms of Householder-like building blocks [14], [17]. Suppose that
F(z) is a p� r causal FIR system with p � r. Then, F(z) is PU with
McMillan degree (N � 1) iff it can be expressed as [14], [17]

F(z) = VN�1(z)VN�2(z) � � �V1(z)

V(z)

U (4)

whereU is a unitary p�rmatrix andVk(z) is a p�pHouseholder-like
PU degree-one system with

Vk(z) = Ip � vkv
y

k + z
�1
vkv

y

k; 1 � k � N � 1 (5)

and vk is a p � 1 unit norm vector for all k.
In general, the matrix U from (4) is unique [14]. When r > 1, the

vectors vk from (5) are in general not unique. In contrast to this, when

r = 1, i.e., when F(z) is a vector system, the diadic terms vkv
y

k ap-
pearing in (5) are unique [14], [17]. This uniqueness in the vector case,
as we will soon show, greatly facilitates the design of an EC optimal
FIR filter bank once a suitable compaction filter has been designed.

C. Simplifying the EC Criterion for FIR PU Filter Banks

Suppose that Step 1 of the EC criterion has been completed. In other
words, suppose a causal FIR compaction filter F0(z) of length MN

has been computed. Then, this is equivalent to saying that we know
f0(z), the first column ofF(z). This is because, from (1), we have [14]

F0(z) =a(z)f0(z
M)() [f0(z)]k

= z
k
F0(z)

#M
; 0 � k �M � 1:

However, recall now that F(z) is an FIR PU system of the form as
shown in (4). Thus, we have

f0(z) = V(z)u0 (6)

where u0 is the first column of the matrix U given in (4). Hence, (6)
is a Householder-like parameterization of the FIR PU vector system
f0(z) and so the matrixV(z) from (6) is unique. In other words, once
F0(z) has been found, we can uniquely determine the matrix V(z)
appearing in the parameterization of F(z). Furthermore, we know the
first column of the matrix U appearing in this parameterization.

To obtain the remaining degrees of freedom, from Step 2 of the EC
criterion, it can be easily shown [9] that the matrix U can be obtained
by computing the KLT corresponding to the psd V(z)Sxx(z)V(z).
Hence, the entire filter bank can be easily completed once a suitable
compaction filter has been computed.

To summarize, with an FIR constraint in effect, an EC optimal filter
bank can be constructed as follows.
Computing An FIR EC Optimal Filter Bank:

1) Calculate an optimal FIR compaction filter F0(z).
2) Obtain the unique matrix V(z) corresponding to the vector of

polyphase components of F0(z).
3) Compute the matrix U to be the KLT for the process with psd

V(z)Sxx(z)V(z).

Through simulations, we will show that different spectral factors of
a given compaction filter yield the same performance for Step 1 of the
EC criterion but varying performance for Step 2, as we might expect.

III. SIMULATION RESULTS FOR EC DESIGNED FIR PU FILTER BANKS

In [9], only the minimum-phase compaction filter was used to con-
struct an EC optimal filter bank. There, despite the use of a nearly
optimal compaction filter, the resulting filter banks performed poorly
in terms of coding gain, contrary to intuition. Here, by evaluating the
performance of all spectral factors and choosing the one yielding the
largest coding gain, we can obtain a filter bank with a significant im-
provement in coding gain. Furthermore, this filter bank exhibits an in-
creasingly PCFB-like behavior in terms of numerous objectives as we
increase the order, as shown here. Although this exhaustive search im-
plies an increase in complexity that is exponential in the filter order,
this is often mitigated by the fact that we may only seek a real coef-
ficient compaction filter and that an optimal compaction filter consists
of many unit circle zeros.

For all simulations, the inputx(n)was chosen to be a real autoregres-
sive order 4 (AR(4)) process whose psd Sxx(ej!) is shown in Fig. 2.
We opted to design anM = 4 channel system. The synthesis polyphase
matrix orderN was varied from 1 to 10 in order to gauge the behavior
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Fig. 2. Input psd S (e ) of the AR(4) process x(n).

of the filter banks designed. For the design of the FIR compaction filter,
the globally optimal SDP method of [12] was used.

A. Coding Gain Results

Recall that for any PU filter bank with optimal bit allocation, the
coding gain is given by [14]

Gcode =

1

M

M�1

k=0

�2w

M�1

k=0

�2w

:

In Fig. 3, we have plotted the observed coding gain as a function of
N for the minimum-phase and coding gain optimized EC filter banks.
Also included is the coding gain of the KLT and infinite-order PCFB.
As can be seen, the coding gain optimized filter bank exhibited a notice-
able improvement over the one yielded by the minimum-phase spectral
factor. Furthermore, the coding gain optimized EC filter bank exhibited
a monotonically increasing coding gain, as opposed to that of the min-
imum-phase spectral factor.

The zero locations of the optimal compaction filter spectral factor
are shown in Fig. 4. Clearly, this factor is not minimum phase. Alhough
the total number of spectral factors to check is 2MN�1, many can be
ignored due to unit circle zeros and complex coefficient solutions. From
Fig. 4, it is clear that for the case N = 10, of the 239 possible spectral
factors, only 25 = 32 distinct real coefficient factors exist.

It should be noted from Fig. 3 that even though the optimized filter
bank exhibited a monotonic increase in coding gain with order, the
gain was always well below that of the infinite-order PCFB. This is
most likely due to the stringent ideal bandpass requirements of the
PCFB filters. In Figs. 5 and 6, we have plotted, respectively, the mag-
nitude-squared responses of the synthesis filters corresponding to the
minimum-phase and coding gain optimal spectral factors for N = 10.
As can be seen, with the exception of the compaction filter F0(z), the
FIR filters represent poor approximations to the PCFB ones. For the
optimized filter bank, the second filter F1(z) comes close to the per-
formance of that of the PCFB, but to a lesser extent than the FIR com-
paction filter. This suggests that the EC criterion, which places nearly
all of the design emphasis on the first filter F0(z), may be too restric-
tive to yield an adequate coding gain.

Fig. 3. Observed coding gain G as a function of the synthesis polyphase
order N .

Fig. 4. Zero locations of the optimal spectral factor forN = 10 (MN �1 =
39).

B. Multiresolution Optimality Results

One measure of multiresolution optimality is the proportion of par-
tial subband variances to the total. By preserving only L out ofM sub-
bands, this quantity is given by

P (L) =

L�1

k=0

�2w

M�1

k=0

�2w

; 1 � L �M:

The PCFB, if it exists, maximizesP (L) for allL due to its majorization
property (see Section I-A).

In Fig. 7, we have plotted the observed P (L) versus L for the pre-
viously designed EC filter banks for (a) N = 2 and (b) N = 10.
As we increase N from 2 to 10, it can be seen that both FIR EC filter
banks are trying to emulate the behavior of the infinite order PCFB,
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Fig. 5. Synthesis filter magnitude- squared responses for the minimum-phase
spectral factor for N = 10. (a) First channel. (b) Second channel. (c) Third
channel. (d) Fourth channel.

Fig. 6. Synthesis filter magnitude-squared responses for the coding gain
optimal spectral factor for N = 10. (a) First channel. (b) Second channel.
(c) Third channel. (d) Fourth channel.

in line with intuition. Although both FIR filter banks exhibit similar
performance, the coding gain optimized one always performed at least
as well as the minimum-phase one (expect for a slight discrepancy at
L = 3 for N = 2). As can be seen, the FIR filter banks appear to con-
verge slowly to the PCFB limit for L = 2. This is probably due to the
multiple narrow passband regions of the second PCFB filter as can be
seen in Figs. 5(b) and 6(b).

Fig. 7. Proportion P (L) of the total variance as a function of the number of
subbands kept L for (a) N = 2 and (b) N = 10.

Fig. 8. Mean-squared error with zeroth-order subband Wiener filters � as a
function of N for (a) � = 1 and (b) � = 4.

C. Noise Reduction Using Zeroth-Order Wiener Filters

Suppose that the input to the filter bank of Fig. 1 is x(n) = s(n) +
�(n), where s(n) is a pure CWSS(M) signal and �(n) is a white noise
process with variance �2. If the subband processors fPkg are zeroth-
order Wiener filters [14], the mean-squared error � of the filter bank is
given by [1]

� =
1

M

M�1

k=0

�2w �2

�2w + �2

where �2w is the kth subband variance of the desired signal s(n). As
� is a concave function of the subband variance vector ��� from (2), the
PCFB for s(n), if it exists, is optimal for minimizing � [1].

In Fig. 8, we have plotted the observed error � as a function of the
filter order parameter N for the previously designed filter banks for
a noise variance of (a) �2 = 1 and (b) �2 = 4. As expected, the
FIR filter banks come closer to the infinite-order PCFB performance as
we increase the order. Here, the coding gain optimized EC filter bank
always matched or exceeded the performance of the minimum-phase
solution.

D. Power Minimization for DMT-Type Nonredundant
Transmultiplexers

In addition to data compression, the theory of PCFBs has been found
useful for digital communications. To see this, consider the DMT-type
transmultiplexer shown in Fig. 9. If the noise �(n) is Gaussian and the
kth input xk(n) consists of independent identically distributed (i.i.d.)
pulse-amplitude-modulated (PAM) symbols with bk bits and powerPk ,
the symbol error probability in detecting xk(n) is given by [16]

Pe(k) = 2(1� 2�b )Q
3Pk

(22b � 1)�2q
: (7)
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Fig. 9. Uniform PU nonredundant DMT-type transmultiplexer with a
zero-forcing equalizer (ZFE) implemented.

Fig. 10. Total required power P for the nonredundant DMT-type
transmultiplexer as a function of the order parameter N .

Here, Q(x) is the MarcumQ function [16], and �2q denotes the noise
power seen at the kth output xk(n). Solving (7) for Pk , we have that
Pk = �(Pe(k); bk)�

2

q , where �(Pe(k); bk) is a quantity that does
not depend on �2q . Hence, the total required power P is given by

P =

M�1

k=0

Pk =

M�1

k=0

� (Pe(k); bk)�
2

q

which is a convex (and concave) function of f�2q g. Hence, P is
minimized iff F(z) is a PCFB for the effective noise process seen
at the receiver. If �(n) has psd S��(e

j!), the effective noise has psd
(S��(e

j!)=jC(ej!)j2).
As an example, suppose the effective noise psd is simply Sxx(ej!)

from Fig. 2. In addition, suppose Pe(k) = 10�9 for all k and b0 = 2,
b1 = 3, b2 = 4, and b3 = 5. (This is not an optimal bit allocation
and only chosen as such for simplicity.) Then, the total power P using
the designed filter banks is shown in Fig. 10 as a function of the order
parameter N . As can be seen, both FIR EC-designed filter banks ap-
proach the power of the PCFB but not monotonically. Despite this, the
coding gain optimized spectral factor always performed at least as well
as the minimum-phase solution and often noticeably better. The coding
gain optimized solution appears to asymptotically approach the perfor-
mance of the PCFB, in line with intuition.

IV. CONCLUDING REMARKS

In this paper, we showed via simulations that the nonuniqueness of
the compaction filter in terms of its spectral factors led to different EC
optimal FIR filter banks yielding varying performances in terms of nu-
merous objectives. For the filter banks designed (coding gain optimized
and minimum phase), we showed an increased tendency toward the in-
finite-order PCFB as the filter order was increased. However, this ten-
dency was shown to behave slowly for many important objectives such
as coding gain and multiresolution. This suggests that the EC criterion,
despite its elegant simplicity, is not well suited for these objectives, per-
haps due to its predominant focus on the design of the first filter only.
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