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Abstract

The problem of estimating the frequencies of sinusoids buried in noise has been one of great
interest to the signal processing community for many years, especially to those involved in the
field of array processing. While many methods have been proposed to solve this problem, most

involve processing in the fullband. In this paper, we investigate the effects of carrying out
estimation in the subbands of an analysis bank of a multirate filter bank and show that there
are some benefits to be reaped. In particular, we observe that with properly chosen analysis
filters, the local signal-to-noise ratio (SNR) and line resolution in the subbands will exceed that

in the fullband. Also, through the use of the spectral flatness measure, we show that if the
input noise is colored, then the noise processes seen in the subbands will be more flat on
average. This can be useful if the exact statistics of the input noise process are not known.

Various examples are shown giving evidence to the fact that estimation in the subbands is
superior to that in the fullband. r 2001 The Franklin Institute. Published by Elsevier Science
Ltd. All rights reserved.
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flatness measure

1. Introduction

A classical problem of statistical signal processing [1–3] is that of determining the
frequencies of sinusoids buried in noise. Such a problem arises in array processing
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[4–6], for example, when we wish to estimate the direction of arrival (DOA) of a
narrowband electromagnetic signal incident on a uniform linear array. In this
application, the radial angle of arrival plays the role of digital frequency. Another
field in which this problem arises is in digital telephony [7] when we wish to estimate
one of the number of possible Caller ID tones.
While many approaches have been proposed to solve this problem, most suffer

from certain basic shortcomings. For example, most require a large SNR and
perform poorly if the lines are too close to one another. In this paper, we investigate
how filter banks can be used to overcome these shortcomings. For a uniform
maximally decimated power complementary analysis bank, we will see that locally in
the subbands, the SNR and the line resolution increase by a factor equal to the
decimation ratio. Examples will then be shown to demonstrate the usefulness of our
claims. Afterwards, we will show that if the input noise is colored, then the noise
processes seen in the subbands will be more white on the average in a certain
quantitative sense. This will be shown heuristically and also analytically in terms
of the spectral flatness measure. In particular, we will prove that for the class
of maximally decimated power complementary analysis banks, the geometric mean of
the flatness measures of the subband signals will exceed the flatness of the fullband
signal. This is a generalization of a result given in [8], in which only ideal filters were
considered. Examples of this result will also be shown and it will be seen that in
many practical scenarios, we can assume the noise to be approximately white in the
subbands, even though this may not be the case in the fullband. This will be useful if
the statistics of the input noise are not known, which perhaps is more often the case
than not.

1.1. Notations

Throughout the paper, we will use the notations described in [9]. In particular,
boldface lowercase and uppercase letters will be used to represent vectors and
matrices, respectively. The superscripts ð * Þ; ðTÞ; ðwÞ; ðþÞ; and ðþðPÞÞ will be used to
represent, respectively, the conjugate, transpose, conjugate transpose, Moore-
Penrose pseudoinverse [10], and rank P pseudoinverse [1] of a given matrix. We
will use the notation ½GðejoÞ�kM to denote the Fourier transform of gðMnÞ: Finally,
we will say that a signal f ðnÞ; or its Fourier transform FðejoÞ; is Nyquist(M) if
f ðMnÞ ¼ dðnÞ or equivalently ½FðejoÞ�kM ¼ 1:

1.2. Outline

In Section 2, we briefly review some of the more classical methods for sinusoidal
frequency estimation, including the Pisarenko harmonic decomposition [11], the
MUSIC algorithm [12], and the principal components linear prediction method [13].
In Section 3, we analyze the effect of carrying out frequency estimation in the
subbands of a uniform filter bank with ideal analysis filters for the case of white
noise. It is shown there that the local SNR and line resolution increase by a factor
equal to the decimation ratio. To substantiate our results, in Section 4, examples are
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given in which estimation in the subbands performs better than in the fullband. In
Section 5, we discuss some of the consequences involved when we deal with finite
data records and show that the advantages mentioned above do not come without a
price. Since in practice we must estimate correlation functions using only a finite
amount of data, the estimated subband correlation functions will be more erroneous
than the fullband one. In Section 6, we examine the effects of colored noise and show
there that the geometric mean of the spectral flatnesses in the subbands exceeds that
of the fullband for a particular class of filter banks. Examples are shown supporting
this theorem in Section 7. In addition, we then compare estimation in the subbands
to that in the fullband when the statistics of the noise are not known and the noise is
incorrectly assumed to be white. It is seen there that estimation in the subbands
continues to be superior to that in the fullband. In Section 8, we conclude by
mentioning some of the open problems still present.

2. Problem statement and previous work

Regarding the problem of estimating sinusoids buried in noise, we have the
following discrete time signal model xðnÞ:

xðnÞ ¼
XP
i¼1

AisiðnÞ þ ZðnÞ; siðnÞ ¼ e join; Ai ¼ jAi je jfi : ð1Þ

Here, we have P sinusoidal signals siðnÞ; each scaled by an amount Ai; and buried in
the complex noise process ZðnÞ: The goal here is to determine the frequencies oi of
the sinusoidal signals given Ns observations of one particular instance of the random
process xðnÞ: The complex amplitudes Ai are assumed to have unknown but constant
magnitudes jAi j and phase angles fi each uniformly distributed over the interval
½�p; pÞ: For sake of stationarity, it is assumed that the phase angles are pairwise
independent, i.e. fi and fj are independent for all iaj: The noise process ZðnÞ is
assumed to be a zero mean wide sense stationary (WSS) random process
uncorrelated with the sinusoidal signals. Ideally, to estimate the frequencies given
only Ns observations, we would use the maximum likelihood estimate. However, it
turns out that if P > 1; this problem becomes computationally intractable [2] as it
involves finding the location of the global maximum of a highly nonlinear function.
If Ns is sufficiently large, then the frequencies can be estimated by looking at the
peaks of the magnitude of the Fourier transform of the observed signal, even if the
power of the noise is significant. This is due to the fact that the sinusoids will have a
Dirac type distribution in the frequency domain, whereas the observed noise signal
will most likely not have such strong support in these regions. However, if Ns is
relatively small, then these peaks will be smeared out in the frequency domain on
account of the noticable windowing effect in the time domain. Since the approximate
frequency resolution will vary as 2p=Ns; lines that are close to each other (in
particular, closer than 2p=Ns) will become indistinguishable and will be observed as
only one wide peak. Instead what is typically done in this case is to exploit the special
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properties of the autocorrelation function of xðnÞ: This can be done since under the
above assumptions, xðnÞ is ergodic in the mean and autocorrelation [2]. It follows
that xðnÞ is a zero mean WSS process with the following autocorrelation function.

RxxðkÞ ¼
XP
i¼1

Pie
joik þ RZZðkÞ; Pi9jAi j2: ð2Þ

Here, Pi denotes the power of the ith sinusoidal signal. At this point, we define two
figures of merit for estimating the frequencies, namely the individual or local signal-
to-noise ratio of the ith sinusoid with respect to the noise, denoted as SNRind;i and
the net signal-to-noise ratio SNRnet: These are defined as follows.

SNRind;i9
Pi

RZZð0Þ
; SNRnet9

PP
i¼1 Pi

RZZð0Þ
:

The local SNR is a good figure of merit of how likely we will be able to estimate a
particular frequency correctly. As we would heuristically expect, it can be shown [2,5]
that as this ratio increases for some sinusoid, indeed we will statistically estimate this
sinusoid more correctly. The net SNR, on the other hand, is a measure of how likely
we will be able to estimate the frequencies on average. Continuing from (2), the
N 	N autocorrelation matrix of xðnÞ; namely Rx; is as follows:

Rx ¼
XP
i¼1

Pisis
w
i þ RZ ¼ Rs þ RZ; si9½1 e joi ? e jðN�1Þoi �T: ð3Þ

Here, the matrices Rs and RZ denote, respectively, the autocorrelation matrices
corresponding to the purely harmonic process consisting of the P sinusoids and the
noise process. As Rs is simply a sum of dyadic matrices of the form vvw; it can be
shown [2] that if the frequencies oi are all distinct modulo 2p and if the size of the
autocorrelation matrix N is chosen such that N > P; then Rs has rank P:
Furthermore, the set of P eigenvectors fvkg for k ¼ 1;y;P corresponding to the
nonzero eigenvalues flkg span the same space as the signal vectors fsig: The space
spanned by the signal vectors fsig is commonly referred to as the signal subspace. The
remaining N �P eigenvectors vk for k ¼ Pþ 1;y;N corresponding to the zero
eigenvalue are orthogonal to all of the signal vectors, i.e. swi vk ¼ 0 for all i ¼ 1;y;P
and k ¼ Pþ 1;y;N: The space spanned by the eigenvectors fvkg for k ¼ Pþ
1;y;N is commonly called the noise subspace. Define the eigenfilter corresponding
to vk ¼ ½vkð0Þ vkð1Þ ? vkðN � 1Þ�T as

VkðzÞ9
XN�1

n¼0

vkðnÞz�n:

Then, for k ¼ Pþ 1;y;N; it follows that VkðzÞ has zeros at z ¼ e jo1 ;y; e joP : If the
input noise process ZðnÞ is white with variance s2Z; then RZ ¼ s2ZI; and so we have

Rx ¼ Rs þ s2ZI:
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In this case, the eigenvectors of Rx are the same as those of Rs; namely vk for
k ¼ 1;y;N: The corresponding eigenvalues mk are given below as follows:

mk ¼
lk þ s2Z; k ¼ 1;y;P;

s2Z; k ¼ Pþ 1;y;N:

(

As Rx can be estimated by observations of xðnÞ; the frequencies of the sinusoids can
be estimated by finding the roots of the eigenfilters VkðzÞ for k ¼ Pþ 1;y;N ideally
on (or in practice nearest) the unit circle. This is the basis behind many of the
classical techniques for sinusoidal frequency estimation which we discuss briefly
below, such as the Pisarenko harmonic decomposition [11], the MUSIC algorithm
[12], and the principal components linear prediction (PCLP) method [13]. These
algorithms only work if the input noise is white. In Section VI, we address what must
be done if the noise is colored.

2.1. Pisarenko harmonic decomposition

In 1973, Pisarenko became the first person to observe and exploit the interesting
eigenstructure of the autocorrelation matrix Rx for the purpose of frequency
estimation. In his classic paper [11], he used an autocorrelation matrix of size N ¼
Pþ 1 and estimated the frequencies as the peaks of the following frequency
estimation function commonly referred to now as the ‘‘pseudospectrum’’ [1–3]
corresponding to the Pisarenko harmonic decomposition.

#SSPHDðejoÞ ¼
1

jVPþ1ðejoÞj2
where VPþ1ðzÞ ¼

XP
n¼0

vPþ1ðnÞz�n:

Ideally, all of the zeros of VPþ1ðzÞ lie on the unit circle at angles corresponding to the
frequencies of the sinusoids sent. Thus, the frequencies are estimated as the locations
of the peaks of #SSPHDðejoÞ or the zeros of VPþ1ðzÞ: Though this method works in
theory, in practice it unfortunately performs poorly, even at large SNRs [1–3]. The
reason for this is that with finite data records, the variance of #SSPHDðejoÞ is quite large
on account of the small size of the autocorrelation matrix used [2]. By using a larger
size, as is the case with the MUSIC algorithm and the PCLP method, we obtain
frequency estimators which come much closer to the Cram!eer–Rao bound than the
Pisarenko harmonic decomposition.

2.2. MUSIC algorithm

The MUltiple SIgnal Classification or MUSIC algorithm introduced by Schmidt
in 1979 [12] is a generalization of the Pisarenko harmonic decomposition, which
experimentally has been shown to be a major improvement over that method. Here,
the size of the autocorrelation matrix Rx is chosen to be N > Pþ 1 and the
pseudospectrum is obtained by reciprocating the sum of the magnitude squared
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responses of the eigenfilters VkðzÞ for k ¼ Pþ 1;y;N; as is shown below.

#SSMUSICðejoÞ ¼
1PN

k¼Pþ1 jVkðejoÞj
2
:

As before, the frequencies of the sinusoids are estimated to be where the peaks of the
function above occur. However, note now that VkðzÞ is a polynomial of degree
N � 1 > P for all k: Thus, while each VkðzÞ for k ¼ Pþ 1;y;N will haveP roots on
the unit circle corresponding to the frequencies of the sinusoids sent, it will also have
N �P� 1 roots, deemed spurious roots, which can lie anywhere in the complex
plane, including the unit circle. Though this may appear to be a dilemma, it is highly
unlikely that the spurious zeros of all of the eigenfilters will coincide, and so adding
the magnitude responses in the denominator of the pseudospectrum above has the
effect of moving these spurious roots away from the unit circle [1,3]. This method has
been shown to perform well provided that the SNR is moderately large [1–3] and is
still used today on account of its low complexity. However, the PCLP method, which
elegantly takes care of the issue of spurious roots, has been shown experimentally to
perform better, as will soon be discussed.

2.3. Principal components linear prediction

In 1982, Tufts and Kumaresan introduced a novel approach to estimate
the frequencies of the sinusoids buried in noise [12]. They started from the
known premise that for the harmonic process consisting of just the P sinusoids,
whose autocorrelation matrix is simply Rs; a prediction error filter could be found
such that the prediction error variance is identically zero [1], provided that the
size of the autocorrelation matrix N was such that N > P: That is, if a9½að0Þ
að1Þ ? aðN � 1Þ�T represents the vector of prediction error filter coefficients, then
the normal equations to determine an optimal prediction filter are as follows [1]:

Rsa ¼ 0: ð4Þ

From this, we observe that the vector a is an eigenvector corresponding to the zero
eigenvalue and hence is orthogonal to the signal subspace. It turns out that for
N > Pþ 1; there is not a unique solution to (4), and as a result, the eigenfilter
corresponding to a; namely AðzÞ; will have P of its roots on the unit circle
corresponding to the frequencies of the sinusoids sent and N �P� 1 spurious roots
which may lie anywhere in the complex plane. This is similar to what was observed
above for the eigenfilters VkðzÞ in the case of the MUSIC algorithm. It turns out,
however [1], that this problem can be overcome if we take a to be monic, i.e. að0Þ ¼ 1;
and minimize the l2-norm of the vector a subject to the constraint (4). By minimizing
this norm, the problem becomes akin to solving for an optimum prediction error
filter by the autocorrelation method. As a result, all spurious roots will be
guaranteed to lie strictly inside the unit circle. Partitioning a as a ¼ ½1 #aaT�T and Rs as
Rs ¼ ½rs #RRs�; we have from (4),

#RRs #aa ¼ �rs
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and so the unique optimal choice of #aa which minimizes the l2-norm of #aa and hence a
is given by [1],

#aa ¼ � #RR
þ
s rs ð5Þ

where #RR
þ
s is the Moore–Penrose pseudoinverse [10] of the matrix #RRs: Tufts and

Kumaresan noted [13] that by choosing #aa as in (5), the spurious roots of AðzÞ had a
tendency to be uniformly distributed around a circle (with radius less than unity of
course) concentric with the unit circle at angles away from those which corresponded
to the frequencies of the sinusoids sent. While this approach elegantly handles the
spurious roots of the eigenfilter AðzÞ; in practice, we will only have an estimate for
the autocorrelation matrix of the observed process Rx: A naive approach to this
problem is to partition Rx as Rx ¼ ½rx #RRx� and choose #aa as #aa ¼ � #RR

þ
x rx: However,

Tufts and Kumaresan showed that the presence of the noise in Rx had a tendency to
significantly perturb #aa from its optimum value given in (5). Instead, they showed [13]
that the following choice of #aa had the effect of nullifying the perturbation due to the
present noise:

#aa ¼ � #RR
þðPÞ
x rx;

where #RR
þðPÞ
x is the rank P pseudoinverse [1] of the matrix #RRx obtained by preserving

only the P largest singular values of #RR
þ
x and zeroing out the rest. This choice of #aa

forms the foundation for the principal components linear prediction method or
PCLP method for estimating the frequencies of the sinusoids. In particular, if #aa ¼
½ #aað1Þ #aað2Þ ? #aaðN � 1Þ�T; the frequencies are estimated as the P roots of the
prediction error filter,

AðzÞ ¼ 1þ
XN�1

n¼1

#aaðnÞz�n

on or nearest the unit circle. Graphically, the frequencies are estimated as the peaks
of the pseudospectrum,

#SSPCLP ¼
1

jAðejoÞj2
: ð6Þ

While this method is computationally more complex than the MUSIC algorithm,
there is evidence to support its superiority. In [2], it is shown for the case of two
sinusoids that the PCLP method comes much closer to the Cram!eer–Rao bound for
frequency estimation than does the MUSIC algorithm. It is also mentioned there
that the choice of NE3

4Ns has been shown experimentally to give the lowest variance
estimate. Furthermore, in [13,1], it is shown that the method of (6) is relatively
insensitive to an overestimation of the number of sinusoids in the received signal.
Namely, if the number of sinusoids buried in the noise is not known a priori and is
estimated erroneously to be P0 > P; then provided that the noise power is of a
moderate level, there will be only P dominant peaks observed in the pseudospectrum
of (6). It is this property which allows estimation in the subbands of a filter bank to
be possible, as we will soon see, since the number of sinusoids present in any one
subband will not be known a priori. As the PCLP method has been shown
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experimentally to approach the Cram!eer–Rao bound for frequency estimation closer
than other techniques [2], we have opted to use this method for estimation in the
subbands. At this point, we will proceed to analyze what happens when the model
signal given in (1) is input to a filter bank.

3. Analysis of subband frequency estimation

3.1. Introduction

Suppose that xðnÞ as in (1) is input to the M-channel maximally decimated
uniform analysis bank as shown in Fig. 1. Regardless of the choice of analysis filters,
the subband signals vmðnÞ and xmðnÞ for m ¼ 0;y;M � 1 are given by the following
expressions:

vmðnÞ ¼
XP
i¼1

AiHmðejoi Þejoin þ wmðnÞ

xmðnÞ ¼
XP
i¼1

AiHmðejoi ÞejMoin þ ZmðnÞ ð7Þ

where wmðnÞ ¼ hmðnÞ*ZðnÞ and ZmðnÞ ¼ wmðMnÞ: As we can see from (7), the mth
subband signal xmðnÞ consists of sinusoids buried in the noise process ZmðnÞ: The
autocorrelation sequence of each subband signal is given by,

RxmxmðkÞ ¼
XP
i¼1

Pi jHmðejoi Þj2ejMoik þ RZmZmðkÞ: ð8Þ

Suppose now that the input noise is white with variance s2Z and that the magni-
tude squared response of each analysis filter satisfies the Nyquist(M) property, i.e.
½jHmðejoÞj2�kM ¼ 1 for all m ¼ 0;y;M � 1: Then it can easily be shown that each of

Fig. 1. The M-channel uniform analysis bank.
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the noise processes ZmðnÞ is white with variance s2Z: Thus, the mth subband signal
xmðnÞ is nothing more than a set of sinusoids buried in the white noise process ZmðnÞ:
It is clear here in this case that the subband signals xmðnÞ are intrinsically of the same
form as the input signal xðnÞ: The only differences are that the sinusoids are scaled by
the frequency responses of the analysis filters and the frequencies of the sinusoids
themselves are mapped to different locations, namely oi-Moi mod 2p: It will be
seen shortly that these two very important differences make estimation in the
subbands advantageous compared to that in the fullband.

3.2. Advantages of estimation in the subbands

3.2.1. SNR amplification
Suppose that the analysis filters are ideal and have a magnitude squared response

as shown in Fig. 2. Clearly this choice of jHmðejoÞj2 satisfies ½jHmðejoÞj2�kM ¼ 1 for all
m as desired. In this case, we have

RxmxmðkÞ ¼
X
oiAIm

ðMPiÞ|fflffl{zfflffl}
#PPi

ejMoik þ s2ZdðkÞ:

Here, #PPi ¼MPi for oiAIm is the effective power of the sinusoids seen in the mth
subband. From this, we conclude that the effective local SNR seen in the subbands is
larger than that seen in the fullband by a factor of M; the decimation ratio.
Quantitatively, we have, for oiAIm;

SNRind;i;sub ¼MðSNRind;i;fullÞ

where SNRind;i;sub and SNRind;i;full are the local SNRs of the ith sinusoid in the mth
subband and in the fullband, respectively. As there is an increase of the local SNR
seen in the subbands, we expect to estimate the frequencies seen in the subbands
more accurately than those seen in the fullband. As the intervals fImg form a

Fig. 2. Magnitude squared response of HmðzÞ:
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partition of ½0; 2pÞ; each sinusoid present in the original signal will appear in one and
only one subband.

3.2.2. Increase of line resolution
To see what happens to the effective spacing between frequencies observed in the

subbands as compared to that in the fullband, consider the scenario depicted in
Fig. 3. Here, op and oq are chosen to lie in the interval Im: In the fullband, the
spacing between these two frequencies is simply Dof ¼ oq � op: Note that we can
express op and oq as follows:

op ¼
2pm
M

þ yp; oq ¼
2pm
M

þ yq; where 0pyp; yqo
2p
M

: ð9Þ

Hence, we obviously have Dof ¼ yq � yp: As we can see from Fig. 4, the
autocorrelation sequence of the mth subband is given as

RxmxmðkÞ ¼MPpe
j #oopk þMPqej

#ooqk þ s2ZdðkÞ;

where #oop and #ooq are given by

#oop ¼Mop mod 2p; #ooq ¼Moq mod 2p:

Fig. 3. Input spectrum consisting of two closely spaced spectral lines.

Fig. 4. Subband spectrum consisting of two spectral lines.
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From our expressions for op and oq given in (9), it is clear that we have

#oop ¼Myp; #ooq ¼Myq:

Thus, the spacing between the frequencies present in the mth subband is simply
Dos ¼ #ooq � #oop ¼Mðyq � ypÞ: Clearly, we have

Dos ¼MDof

and so the spacing between the frequencies in the mth subband is M times larger
than it is in the fullband. As a result, the line resolution that we will have in the
subbands will be greater than that in the fullband. This is important because
traditional methods, such as the MUSIC algorithm and the PCLP method, have a
certain frequency spacing threshold below which two closely spaced spectral lines
will only be seen as one. For a detailed discussion of this principle, see [5]. In the next
subsection, we discuss the important issue of mapping the frequencies seen in the
subbands to those present in the fullband signal.

3.3. Mapping the subband frequencies to the fullband ones

From the results shown above, we expect that estimation in the subbands will be
more accurate than that in the fullband. However, it should be kept in mind that the
original problem is to determine the frequencies of the sinusoids of the fullband
signal. As we will soon show, this mapping can be done in many circumstances,
depending on the characteristics of the analysis filters used. To see this, note that
from (8) we have

RxmxmðkÞ ¼
XP
i¼1

#PPi;me
j #ooi;mk þ RZmZmðkÞ;

where #PPi;m and #ooi;m are given by

#PPi;m ¼ PijHmðejoi Þj2; #ooi;m ¼Moi mod 2p 8i;m:

Note that the mapping between #ooi and oi is not one-to-one. For example, if o1 ¼
2p=M and o2 ¼ 4p=M; then #oo1;m ¼ #oo2;m ¼ 0 for all m. Also note that the
frequencies #ooi;m are the same in each subband. Thus, the only degree of freedom
we have in the mth subband is to vary the powers of the sinusoids seen there. It turns
out that exploiting this degree of freedom will be all that will be needed to map the
frequencies seen in the subbands correctly back to the fullband frequencies. First, we
will discuss the mapping in the case of ideal analysis filters and then we will consider
what happens when each analysis filter has overlap with its adjacent neighbors. In
addition to considering this mapping for the complex signal model of (1), we will also
consider the mapping for the real analog of this model, namely,

xðnÞ ¼
XP
i¼1

Ci cosðoinþ fiÞ þ ZrðnÞ: ð10Þ

Here, P denotes the number of real sinusoids present in xðnÞ; the amplitudes Ci are
positive constants that are assumed to be unknown, the phases fi are identical in
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nature to those in (1), and the signal ZrðnÞ is a real WSS noise process. As before, the
goal is to determine the frequencies oi: However, since the signal xðnÞ only consists
of real sinusoids, the frequencies oi can now be assumed to be in the interval ½0;p�
without loss of generality, instead of the interval ½0; 2pÞ in the case of the complex
model given in (1). It turns out [2] that the model given in (10) satisfies very similar
properties to the one considered in (1). In fact, the very same methods for frequency
estimation considered in Section 2 can be applied here to obtain the frequencies oi:
The advantages due to subband estimation mentioned above also hold true here for
the model signal given in (10). However, since xðnÞ in this case is real, it makes sense
to consider real coefficient filters in which the magnitude response of each analysis
filter is even.

3.3.1. Ideal filters
Suppose that the magnitude squared response of the mth analysis filter is given as

in Fig. 5. Here, there is no spectral overlap between adjacent filters and so we can

Fig. 5. Ideal analysis filters for the model signal given in (1) and (10), respectively.
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map subband frequencies to fullband ones simply by looking at each subband
individually. In other words, we do not need to use the information from adjacent
subbands to uniquely determine what frequencies were sent. Table 1 describes this
mapping more quantitatively.

3.3.2. More realistic filters
In practice, we will not be able to have ideal filters, so we now consider

more realistic filters in which there is overlap between adjacent filters as can be
seen in Fig. 6. Because of the overlap, we will not be able to uniquely determine
the fullband frequencies by what is seen in any one subband. In this case,
an observed subband frequency oi;m will also be seen in a previous subband
as op;m�1; or in a subsequent subband as oq;mþ1; depending upon the value of
oi;m: For example, for the complex model signal of (1), if 0poi;mop; then this
frequency will also be seen in the ðm� 1Þth subband as op;m�1 for some p: In
general, for the complex model of (1), if 0poi;mop; then we have oi;m ¼ op;m�1 for
some p and if ppoi;mo2p; then we have oi;m ¼ oq;mþ1 for some q: The case of
the real model is slightly more complicated in the sense that the mapping depends
on the parity of the subband in which the line is present. If 0poi;mop=2; then
we have oi;m ¼ op;m�1 for some p if m is even and oi;m ¼ oq;mþ1 for some q if m
is odd. On the other hand, if p=2poi;mop; then we have oi;m ¼ oq;mþ1 for some
q if m is even and oi;m ¼ op;m�1 for some p if m is odd. As pseudospectra peaks
are roughly proportional to the amplitudes of the sinusoids present [5], most
likely, the subband with the larger pseudospectra will be the one from which
the original fullband line originated. If SmðejoÞ denotes the pseudospectrum of
the mth subband, then the frequencies in the subbands are mapped to the fullband as
shown in Table 2.

4. Examples of subband estimation

We will consider estimating the frequencies of the sinusoids of the following real
signal xðnÞ:

xðnÞ ¼ C1 cosðo1nþ f1Þ þ C2 cosðo2nþ f2Þ þ ZrðnÞ; ð11Þ

where we have the following:

C1 ¼ C2 ¼
ffiffiffi
2

p
; o1 ¼ 0:57p; o2 ¼ 0:58p; s2Zr ¼ 4; Ns ¼ 128:

In this case, we have,

SNRind;1 ¼ SNRind;2 ¼ �6:02 ðdBÞ; SNRnet ¼ �3:01 ðdBÞ:

It should be noted here that as there are only Ns ¼ 128 observations of xðnÞ and the
two frequencies are spaced out by 0:01po2p=128; we cannot find the frequencies by
taking the Fourier transform of the observed signal. As the input signal xðnÞ is real
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like the model given in (10), we will consider only cosine modulated analysis filter
banks. In order to keep the number of observed samples seen in the subbands
relatively moderate (see Section 5), the value ofM is chosen to be 8: In the examples
that follow, the estimation was carried out 50 times using a different observation of
xðnÞ each time.

Table 1

Mapping the subband frequencies #ooi;m to the fullband ones ol for the
case of ideal filters as in Fig. 5

Model type Fullband frequency: ol

ComplexFEq. (1)
2pmþ #ooi;m

M

RealFEq. (10)

pmþ #ooi;m
M

; m even

pðmþ 1Þ � #ooi;m
M

; m odd

8>><
>>:

Fig. 6. More realistic analysis filters for the model signal given in (1) and (10), respectively.
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Example 1. Kaiser–Window based prototype cosine modulated filter bank. In this
example, the impulse responses of the analysis filters are given by [9],

hkðnÞ ¼ 2p0ðnÞ cos
p
M

kþ
1

2

� �
n�

Np

2

� �
þ ð�1Þk

p
4

� �
ð12Þ

for all k; n: Here, the sequence p0ðnÞ is an FIR prototype filter of length Np so that
hkðnÞ has length Np as well. The choice of p0ðnÞ dictates the type of filter bank that we
have. In this case, p0ðnÞ was designed using the Kaiser–Window method as described
in [14]. The length of each analysis filter here is Np ¼ 40: Fig. 7 shows the magnitude
responses of the analysis filters. As we can see, the frequencies of the sinusoids
present in (11) fall predominantly in the 3rd, 4th, and 5th subbands. The
pseudospectra obtained here for the fullband, as well as the 3rd, 4th, and 5th
subbands are shown in Fig. 8. As we can see, the pseudospectra seen in the fullband

Table 2

Mapping the subband frequencies #ooi;m to the fullband ones ol for the case of nonideal filters as in Fig. 6

Model type Fullband frequency: ol

ComplexFEq. (1)

2pm� #oop;m�1
M

; 0p #ooi;mop; Smðej #ooi;m ÞpSm�1ðej #oop;m�1 Þ

2pmþ #ooi;m
M

; 0p #ooi;mop; Smðej #ooi;m ÞXSm�1ðej #oop;m�1 Þ

2pmþ #ooi;m
M

; pp #ooi;mo2p; Smðej #ooi;m ÞXSmþ1ðej #ooq;mþ1 Þ

2pðmþ 2Þ � #ooq;mþ1
M

; pp #ooi;mo2p; Smðej #ooi;m ÞpSmþ1ðej #ooq;mþ1 Þ

8>>>>>>>>>>><
>>>>>>>>>>>:

RealFEq. (10)

m even )

pm� #oop;m�1
M

; 0p #ooi;mo
p
2
; Smðej #ooi;m ÞpSm�1ðej #oop;m�1 Þ

pmþ #ooi;m
M

; 0p #ooi;mo
p
2
; Smðej #ooi;m ÞXSm�1ðej #oop;m�1 Þ

pmþ #ooi;m
M

;
p
2
p #ooi;mop; Smðej #ooi;m ÞXSmþ1ðej #ooq;mþ1 Þ

pðmþ 2Þ � #ooq;mþ1
M

;
p
2
p #ooi;mop; Smðej #ooi;m ÞpSmþ1ðej #ooq;mþ1 Þ

8>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>:

m odd )

pðmþ 1Þ þ #ooq;mþ1
M

; 0p #ooi;mo
p
2
; Smðej #ooi;m ÞpSmþ1ðej #ooq;mþ1 Þ

pðmþ 1Þ � #ooi;m
M

; 0p #ooi;mo
p
2
; Smðej #ooi;m ÞXSmþ1ðej #ooq;mþ1 Þ

pðmþ 1Þ � #ooi;m
M

;
p
2
p #ooi;mop; Smðej #ooi;m ÞXSm�1ðej #oop;m�1 Þ

pðm� 1Þ þ #oop;m�1
M

;
p
2
p #ooi;mop; Smðej #ooi;m ÞpSm�1ðej #oop;m�1 Þ

8>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>:

8>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>:
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Fig. 7. Magnitude responses of the analysis filters designed using the Kaiser–Window method.

Fig. 8. Pseudospectra obtained for Example 1 (Kaiser CMFB).
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only appear to consist of one predominant peak and we are not able to resolve both
sinusoids. However, in the subband pseudospectra, we can clearly see the presence of
two distinct lines. As the analysis filters provide good attenuation in the stopband,
there is little overlap between adjacent filters and so the lines present in the 4th
subband are heavily attenuated in the adjacent 3rd and 5th subbands, as is desired
here. Performing the frequency mapping described in the previous section, we obtain
the mean and standard deviation of the estimates of o1 and o2 shown in Table 3.
Included in Table 3 are the results obtained by carrying out the estimation in the
fullband. Here, we see that estimation in the subbands yielded better results.

Example 2. DCT IV filter bank. For this example, the analysis polyphase matrix [9]
is simply the DCT IV matrix [15] and the impulse responses of the analysis filters are

hkðnÞ ¼

ffiffiffiffiffi
2

M

r
cos

p
M

kþ
1

2

� �
nþ

1

2

� �� �
for k; n ¼ 0;y;M � 1: Here, there is a significant amount of spillage between
adjacent filters which will both hinder the performance and also make the mapping
of frequencies more difficult as aliasing will be more predominant here. Because of
this, the lines appear rather strongly in the 3rd, 4th, and 5th subbands. This
phenomenon is not desired in practice, since it introduces ambiguity in the frequency
mapping. Using the frequencies estimated in the 4th subband, where the lines are
most predominant, we obtain the results shown in Table 3.
The results here are somewhat worse than what was obtained using the analysis

filters of Example 1: This worse performance, on the other hand, is offset by the fact
that this filter bank is much less computationally complex to implement than the one
of Example 1: These examples serve to show that subband estimation methods can
be used in cases where fullband methods will fail. In what follows, we consider some
of the practical problems that result from subband estimation.

5. Consequences of subband estimation

We should note that the benefits due to subband estimation mentioned above do
not come without a price. It is tempting to think that as the SNR and frequency
resolution increase by a factor ofM; the decimation ratio, we can achieve better and
better estimation by taking M arbitrarily large. This, however, is certainly not the
case in practice. The reason for this is that in practice autocorrelations have to be

Table 3

Comparison of fullband and subband methods for the case of white input noise

Method %oo1 ðo1 ¼ 0:57pÞ %oo2 ðo2 ¼ 0:58pÞ s %oo1
s %oo2

Fullband 0:4892p 0:6262p 0.278182 0.110857

Kaiser CMFB 0:5678p 0:5817p 0.000286 0.000168

DCT 0:5664p 0:5883p 0.000506 0.001794
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estimated from measured data. The quality of such an estimation is very heavily
dependent upon the number of observations Ns of xðnÞ available [5]. If, for example,
the length of each analysis filter is Nf ; then the length of each subband signal will be

Ns þNf � 2

M

� �
þ 1:

This number will typically be less than Ns: For Examples 1 and 2 above, the length of
each subband signal was 21 and 17; respectively, whereas Ns was 128: To increase the
length of the subband signals, a naive approach would be to increase the filter length
and hence the complexity of the filter bank. While this can actually make the
subband signals longer than the fullband observation of xðnÞ; such a large filter
length will most likely introduce a bias in the estimate of the autocorrelation
function of the subband signals. In such a case, there will be a windowing effect seen
in the subbands on account of the small length signal observation xðnÞ being filtered
by the large length analysis filters. If all filter lengths are held fixed and M is
increased, then the length of the subband signal will decrease.
As we can see, there is a tradeoff between the decimation ratio M and the length

of each subband signal. It is because of this tradeoff that the value ofM in Examples
1 and 2 was chosen conservatively to be 8: In practice,M should be carefully chosen
to be large enough in order to reap the benefits of a large value of M; but small
enough so that there are enough available samples in each subband. We will now
focus on what happens when the input noise is not white and will find there that
there is yet another advantage to doing estimation in the subbands.

6. The case of colored noise

6.1. Estimation in the fullband

Suppose that the given signal xðnÞ is as in (1), where this time the noise process ZðnÞ
is not white. Then the N 	N autocorrelation matrix is given by (3) to be,

Rx ¼ Rs þ s2Z #RRZ

where s2Z is the variance of the noise process, i.e. RZZð0Þ; and #RRZ is a normalized
autocorrelation matrix whose diagonal elements are all unity. With the case of white
noise, we were able to determine the frequencies because Rx and Rs shared the same
eigenvectors. For the case of colored noise, we linearly transform the vector of
observations x9½xð0Þ xð1Þ ? xðN � 1Þ�T by the Karhunen–Lo"eeve transform or
KLT of the normalized noise observation vector #gg91=sZ½Zðn0Þ Zðn0 þ 1Þ ? Zðn0 þ
N � 1Þ�T: In practice, this requires first estimating #RRZ: The KLT is given by [11] as the
following:

y9 #RR
�1=2
Z x:
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This transformation diagonalizes #RRZ: We have,

Ry ¼ E½yyw� ¼ E½ #RR
�1=2
Z xxw #RR

�1=2
Z � ¼ #RR

�1=2
Z Rx #RR

�1=2
Z ;

where we have exploited the fact that #RR
�1=2
Z is Hermitian. As Rx can be estimated

from the data, then we can form an estimate of Ry provided that we know
the coloring of the noise process as manifested in the matrix #RRZ: To determine the
frequencies of the original sinusoids, note that from (3) we have,

Ry ¼
XP
i¼1

Pitit
w
i|fflfflfflfflfflffl{zfflfflfflfflfflffl}

Rt

þs2ZI; ð13Þ

where the vectors ti are defined to be,

ti9 #RR
�1=2
Z si ð14Þ

As the vectors si are assumed to be linearly independent, assuming that the
frequencies present in the input signal xðnÞ are all distinct modulo 2p [2], the vectors
ti are all linearly independent. Thus, provided that N > P; the matrix Rt in (13) is of
rank P and furthermore the P eigenvectors fukg for k ¼ 1;y;P which correspond
to the nonzero eigenvalues of Rt span the same subspace as the set of vectors ftig:
This was the same phenomenon observed in Rs in Section 2. Also, the eigenvectors of
Rt which correspond to the zero eigenvalue, fukg for k ¼ Pþ 1;y;N; are
orthogonal to the vectors ti; namely t

w
i uk ¼ 0 for all i ¼ 1;y;P and k ¼ Pþ

1;y;N: Using (14), this means that s
w
i ð #RR

�1=2
Z ukÞ ¼ 0 or that the generalized

eigenfilter corresponding to #RR
�1=2
Z uk ¼ ½wkð0Þ wkð1Þ ? wkðN � 1Þ�T; namely,

WkðzÞ9
XN�1

n¼0

wkðnÞz�n

has a zero at z ¼ ejoi for all i ¼ 1;y;P and k ¼ Pþ 1;y;N: From this property,
we can obtain the original frequencies using either the MUSIC algorithm or PCLP
method.
It should be noted that we can estimate the frequencies only if we know the noise

autocorrelation matrix #RRZ: In practice, however, we may not know the exact
statistics of the input noise. Despite this stumbling block, we will soon show that if
the signal xðnÞ is input to a particular kind of analysis bank, then, on average, the
noise processes seen in the subbands will be more white in terms of the spectral
flatness measure. There will even be some instances in which the flatness in each
subband is strictly larger than that seen in the fullband. Hence, if we do not know the
exact statistics of the noise process ZðnÞ; then assuming that the noise is white in the
subbands will be less erroneous than assuming that it is in the fullband. This will be
illustrated with examples.
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6.2. Motivation for subband estimation

Suppose that the noise process ZðnÞ present in xðnÞ as in (1) has a nonconstant
power spectral density (psd) SZZðejoÞ as shown in Fig. 9. Furthermore, suppose that
the magnitude squared response of the mth analysis filter is given as in Fig. 2. An
example for when m ¼ k is shown in Fig. 9. Then the psd of the noise process of the
kth subband, namely SZkZkðe

joÞ; is given as shown in Fig. 10. As we can see, the noise
spectrum of the kth subband looks approximately constant whereas that of the
fullband is certainly not. Heuristically, we can see that if the input noise statistics are
not known, then we should expect less errors in assuming that the subband noise
processes are white as opposed to assuming that the fullband process is white. If we
take the decimation ratio M to be larger and larger, the noise processes in the
subbands will look more and more white, regardless of the input noise spectrum. It
should be remembered from Section 5 that in practice, we will not be able to takeM
arbitrarily large. Furthermore, ideal filters are unrealizable, and so we will only be
able to use causal filters. However, this example serves to show that the noise
processes seen in the subbands may be significantly more white than those seen in the

Fig. 10. The noise power spectrum of the kth subband.

Fig. 9. Example of a colored input noise power spectrum.
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fullband. We will soon show quantitatively with the spectral flatness measure that
indeed on average this is true.

6.3. The whitening of noise in the subbands

6.3.1. The spectral flatness measure
The spectral flatness measure g2x of a WSS random process xðnÞ with psd SxxðejoÞ is

defined as follows [16]:

g2x9
ecx

s2x
where cx ¼

1

2p

Z p

�p
lnðSxxðejoÞÞ do: ð15Þ

This measure of flatness has the property that 0pg2xp1; where g2x ¼ 1 if xðnÞ is white.
For the purpose of estimating the frequencies of the sinusoids, we would like to have
this measure as large as possible in the subbands, as we would like the noise seen in
the subbands to be as white as possible.

6.3.2. Analysis of the flatness measures in the subbands
Suppose that any WSS random process xðnÞ is input to the nonuniformM-channel

analysis bank shown in Fig. 11. We will assume that this filter bank is maximally
decimated, i.e. we haveXM�1

i¼0

1

ni
¼ 1: ð16Þ

In addition, we will assume that the magnitude squared response of the ith filter is
Nyquist(ni), namely,

½jHiðejoÞj2�kni ¼ 1 8i ð17Þ

Fig. 11. The M-channel nonuniform analysis bank.
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and that the set of analysis filters satisfies a generalized version of the power
complementary property [17], which is that,XM�1

i¼0

jHiðejoÞj2

ni
¼ 1 8o: ð18Þ

With these three properties, we will prove that the weighted geometric mean of the
spectral flatnesses in the subbands is greater than or equal to the flatness in the
fullband. This property was first observed by Rao and Pearlman [8], but only proven
for a special case as will be discussed below. It will be shown in three steps. The first
step involves proving a theorem regarding the subband variances. For brevity, we
define L9l cmfnig:

Theorem 1 (Geometric mean of the subband variances). We haveYM�1

i¼0

ðs2yi Þ
1=nips2x;

with equality if SxxðejoÞ is of the form SxxðejoÞ ¼ CðejLoÞ for some CðejoÞX0:

Proof. From ð3:36Þ and ð3:40Þ of [17], it can easily be shown that we have

s2x ¼
XM�1

i¼0

1

ni
s2yi

by using the power complementary property of (18). Applying the weighted
arithmetic–geometric mean inequality [10] (see the appendix), we obtain

YM�1

i¼0

ðs2yi Þ
1=nip

XM�1

i¼0

1

ni
s2yi ;

which then proves the inequality. If SxxðejoÞ ¼ CðejLoÞ; for some CðejoÞX0; note that
we have, for any i ¼ 0;y;M � 1 and l ¼ 0;y; ni � 1;

Sxxðejððo�2plÞ=niÞÞ ¼ CðejNiðo�2plÞÞ ¼ CðejNioÞ

where Ni9L=ni is an integer for all i: Then, it can easily be shown that

Syiyi ðe
joÞ ¼ CðejNioÞ;

using the Nyquist(ni) property from (17). From this, a straightforward calculation
shows that,

s2yi ¼ s2x

from which we obtain

YM�1

i¼0

ðs2yi Þ
1=ni ¼ ðs2xÞ

PM�1

i¼0
1=ni ¼ s2x:
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The last step here follows from the fact that the filter bank is maximally decimated
(16). This completes the proof. &

We now prove a result regarding the quantity c given in (15).

Theorem 2 (Arithmetic mean of the subband c’s). We have

XM�1

i¼0

1

ni
cyiXcx

with equality iff SxxðejoÞ is of the form SxxðejoÞ ¼ CðejLoÞ for some CðejoÞX0:

Proof. From the log-sum inequality [18] (see the appendix), if al and bl are
nonnegative numbers for lAI; where I is some index set, and the sequence falg is a
probability density function (pdf) such that

P
lAI al ¼ 1; then we have

ln
X
lAI

bl

 !
X

X
lAI

al ln
bl
al

with equality iff bl ¼ Kal for all l and for some KX0: Hence, for any pdf fal;ig such
that

P
lAIi

al;i ¼ 1 for all i ¼ 0;y;M � 1; where Ii ¼ f0;y; ni � 1g; we have, as
the psd of any random process is nonnegative,

ln
1

ni

Xni�1
l¼0

Svivi ðe
jððo�2plÞ=niÞÞ

 !
X

Xni�1
l¼0

al;i ln
ð1=niÞSvivi ðe

jððo�2plÞ=niÞÞ
al;i

� �
8o; i

with equality iff ð1=niÞSvivi ðe
jððo�2plÞ=niÞÞ ¼ Kial;i for all l; i where KiX0 for all i: Let us

choose al;i as al;i ¼ ð1=niÞjHiðejððo�2plÞ=niÞÞj2 for all l; i: This choice is valid since by
(17), we have

1

ni

Xni�1
l¼0

jHiðejððo�2plÞ=niÞÞj2 ¼ 1 8i

and so indeed fal;ig is a pdf for all i: With this choice, we have, for all o; i:

ln
1

ni

Xni�1
l¼0

Svivi ðe
jððo�2plÞ=niÞÞ

 !

X

Xni�1
l¼0

1

ni
jHiðejððo�2plÞ=niÞÞj2 ln

ð1=niÞSvivi ðe
jððo�2plÞ=niÞÞ

ð1=niÞjHiðejððo�2plÞ=niÞÞj2

 !

¼
1

ni

Xni�1
l¼0

jHiðejððo�2plÞ=niÞÞj2 ln ðSxxðejððo�2plÞ=niÞÞÞ ð19Þ
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with equality iff Sxxðejððo�2plÞ=niÞÞ ¼ Ki for all o; l; i: This condition for equality is
equivalent to saying that SxxðejoÞ is periodic with period 2p=L: As the above is true
for all o; we thus have the following:

cyi ¼
1

2p

Z p

�p
ln

1

ni

Xni�1
l¼0

Svivi ðe
jððo�2plÞ=niÞÞ

 !
do

X
1

2pni

Xni�1
l¼0

Z p

�p
jHiðejððo�2plÞ=niÞÞj2 ln ðSxxðejððo�2plÞ=niÞÞÞ do

¼
1

2p

Xni�1
l¼0

Z p�2pl=ni

�p�2pl=ni
jHiðejlÞj2 ln ðSxxðejlÞÞ dl

¼
1

2p

Z p

�p
jHiðejoÞj2 lnðSxxðejoÞÞ do ð20Þ

It should be noted that this is true for all i with equality iff SxxðejoÞ is of the form
SxxðejoÞ ¼ CðejLoÞ for some CðejoÞX0: As (20) is true for all i; we have,XM�1

i¼0

1

ni
cyiX

1

2p

Z p

�p

XM�1

i¼0

jHiðejoÞj2

ni

 !
lnðSxxðejoÞÞ do

¼
1

2p

Z p

�p
ln ðSxxðejoÞÞ do ¼ cx: ð21Þ

Here, (21) follows from the generalized power complementary property (18). As we
have equality iff SxxðejoÞ is of the form SxxðejoÞ ¼ CðejLoÞ; this completes the proof of
Theorem 2. &

From Theorem 2, we have the following important corollary if the input process
xðnÞ is Gaussian. This is important from the point of view of information theory. It is
a generalization of a result given originally by Rao and Pearlman [8], in which only
ideal analysis filters were considered and the authors eventually restricted the ni’s to
be identical for all i:

Corollary 1 (Differential entropy rate). If the input xðnÞ to the nonuniform filter bank
in Fig. 11 is a Gaussian WSS process and hx and hyi denote; respectively; the differential
entropy rates of xðnÞ and the ith subband process yiðnÞ; then we haveXM�1

i¼0

1

ni
hyiXhx

with equality iff SxxðejoÞ is of the form SxxðejoÞ ¼ CðejLoÞ for some CðejoÞX0:

Proof. If xðnÞ is Gaussian, then its differential entropy rate is given by [18] to be

hx ¼
1

2
lnð2peÞ þ

1

4p

Z p

�p
lnðSxxðejoÞÞ do ¼

1

2
ln ð2peÞ þ

1

2
cx:
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As xðnÞ is assumed Gaussian, it follows that the signals viðnÞ are also Gaussian, since
the analysis filters fHiðzÞg are linear. Furthermore, as viðnÞ is Gaussian for all i; it
follows that yiðnÞ is Gaussian for all i as well, since decimators are also linear
systems. Hence, the differential entropy rate of yiðnÞ is given by

hyi ¼
1
2 lnð2peÞ þ

1
2 cyi :

So, using Theorem 2 and the fact that the filter bank is maximally decimated (16), we
immediately obtain

XM�1

i¼0

1

ni
hyiX

1

2
lnð2peÞ þ

1

2
cx ¼ hx

with equality iff SxxðejoÞ ¼ CðejLoÞ: This completes the proof. &

We now conclude this section with the main result regarding the geometric mean
of the flatness measures of the subband signals.

Theorem 3 (Geometric mean of the subband flatness measures). Let the input to the
analysis filter bank of Fig. 11 be a WSS random process xðnÞ with spectral flatness
measure g2x: If the filter bank is such that ð16Þ–ð18Þ hold; then we have

g2y9
YM�1

i¼0

ðg2yi Þ
1=ni

Xg2x

with equality if SxxðejoÞ is of the form SxxðejoÞ ¼ CðejLoÞ for some CðejoÞX0 where
L ¼ lcmfnig:

Proof. We have the following.

g2y ¼
expð

PM�1
i¼0 ð1=niÞcyi ÞQM�1
i¼0 ðs2yi Þ

1=ni
X
expð

PM�1
i¼0 ð1=niÞcyi Þ

s2x
X
ecx

s2x
¼ g2x: ð22Þ

Here, (22) results from first using Theorem 1 and then using Theorem 2 and the fact
that the exponential function is a monotonic increasing function. As a sufficient
condition for equality in (22) is that SxxðejoÞ ¼ CðejLoÞ for some CðejoÞX0; this
completes the proof. &

This theorem is a generalization and a correction of a result given by Rao and
Pearlman [8]. In that paper, only ideal analysis filters were considered and their
expression for the analysis filter responses given in Eq. (1) was erroneous. At this
point, we now proceed to present various examples of Theorem 3.
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7. Examples of noise flattening in the subbands

In all of the following examples, we will assume that the noise process ZðnÞ is a real
ARMA(18,17) process with psd shown in Fig. 12. The spectral flatness measure for
this particular process was calculated numerically to be g2Z ¼ 0:7680:

Example 1. The 2	 2 Karhunen–Lo "eeve transform. Consider the 2	 2 paraunitary
filter bank shown in Fig. 13. Here, T is the 2	 2 KLT which is simply a scaled
version of the 2	 2 DFT matrix as is seen below.

T ¼
1ffiffiffi
2

p 1 1

1 �1

" #
) H0ðzÞ ¼

1ffiffiffi
2

p ð1þ z�1Þ; H1ðzÞ ¼
1ffiffiffi
2

p ð1� z�1Þ

The flatness measures g2Z0 and g2Z1 are listed in Table 4. There, the geometric mean of
the flatness measures in the subbands is denoted as g2Z;gm: Notice here that g

2
Z0
is less

than g2Z; but that g
2
Z1
is greater than g2Z: More importantly, note that g2Z;gm is greater

than g2Z; in accordance with Theorem 3. As the flatness actually decreased in the 0th
subband as compared with that of the fullband, it follows that the noise in that
subband is less ‘‘white’’ than the input noise. Though this may appear discouraging
at this point, we will soon see that with the analysis filters used in the examples in
Section 4, the flatness seen in each subband will be strictly larger than that of the
fullband.

Fig. 12. Input noise power spectrum.

Fig. 13. The 2	 2 Karhunen–Lo"eeve transform.
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Example 2. Kaiser–Window designed prototype cosine modulated filter bank. If the
noise process ZðnÞ from above is input to the filter bank described in Example 1 of
Section 4, we obtain the subband flatness measures shown in Table 4. We can see
that the flatness of each subband increased quite substantially over that of the
fullband. Note that g2Z;gm is greater than g2Z in accordance with Theorem 3, even
though properties (17) and (18) are only approximately satisfied for this choice of
analysis bank.

Example 3. DCT IV filter bank. Applying ZðnÞ from above to the filter bank
described in Example 2 of Section 4, we obtain the subband flatness measures shown
in Table 4. As with the Kaiser–window designed filter bank, the flatness of each
subband is significantly larger than that of the fullband. Note that g2Z;gm is greater
than g2Z; further verifying Theorem 3.

Example 4. Binary tree-structured filter bank. Thus far, we have only shown
examples of Theorem 3 for uniform filter banks, even though this theorem also holds
true for nonuniform filter banks as well. Consider the 3-level binary tree-structured
filter bank shown in Fig. 14. The analysis filters are given as

H0ðzÞ ¼ HðzÞ;

H1ðzÞ ¼ GðzÞHðz2Þ;

H2ðzÞ ¼ GðzÞGðz2ÞHðz4Þ;

H3ðzÞ ¼ GðzÞGðz2ÞGðz4Þ:

Here GðzÞ and HðzÞ are, respectively, the lowpass and highpass filters associated with
the Daubechies 16 wavelet [19]. The magnitude responses of the analysis filters are
plotted in Fig. 15. It should be noted that with this choice of analysis filters,

Table 4

Table of spectral flatness measures for Examples 1–4 (g2Z ¼ 0:7680)

Flatness Example

2	 2 Kaiser DCT Nonuniform

KLT CMFB IV FB

g2Z0 0.7658 0.9935 0.9952 0.7678

g2Z1 0.7801 0.9908 0.9904 0.8204

g2Z2 0.9799 0.9951 0.9921

g2Z3 0.9039 0.9021 0.9949

g2Z4 0.9122 0.9241

g2Z5 0.9789 0.9995

g2Z6 0.9949 0.9948

g2Z7 0.9982 0.9993

g2Z;gm 0.7729 0.9683 0.9744 0.8326
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properties (16)–(18) are satisfied as desired. By applying the noise process ZðnÞ from
above, we obtain the subband spectral flatness measures shown in Table 4. From
this, we can see that the flatness actually decreased in the 0th subband but was
significantly larger than the fullband flatness in the other subbands. As expected,
g2Z;gm is greater than g2x; in accordance with Theorem 3.

Example of frequency estimation in the subbands with colored noise. Let the input to
the Kaiser–window based filter bank of Example 1 in Section 4 be the following
signal.

xðnÞ ¼
ffiffiffi
2

p
cosðo1nþ f1Þ þ

ffiffiffi
2

p
cosðo2nþ f2Þ þ ZðnÞ;

o1 ¼ 0:555p; o2 ¼ 0:57p;

where ZðnÞ has the psd shown in Fig. 12. Note that both frequencies fall in the 4th
subband. If the noise input statistics are not known a priori and we construct the

Fig. 15. Magnitude responses of the analysis filters for Example 4.

Fig. 14. Nonuniform binary tree-structured analysis bank.
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pseudospectra just as before for the case of white noise, then we get the
pseudospectra shown in Fig. 16. As with the examples of Section 4, pseudospectra
for 50 independent observations of xðnÞ were plotted. From the plots, we can see that
there are two peaks in both the fullband pseudospectra, as well as in the 4th
subband. The mean and standard deviation of the estimates of o1 and o2 carried out
in both the fullband and in the subbands is shown in Table 5. From this, we can see
that while the fullband pseudospectra consists of two dominant peaks, the location
of these peaks is farther away from the true values than those seen in the
pseudospectra of the 4th subband. The flatter noise seen in the subbands perturbed
the peaks in their pseudospectra less than the heavily colored input noise perturbed
the peaks of the fullband pseudospectra. This example justifies the notion that there

Fig. 16. Pseudospectra obtained for the case of colored noise (Kaiser CMFB).

Table 5

Comparison of fullband and subband methods for the case of colored input noise

Method %oo1ðo1 ¼ 0:555pÞ %oo2ðo2 ¼ 0:57pÞ s %oo1 s %oo2

Fullband 0:5207p 0:5747p 0.01501 0.00928

Subband 0:5535p 0:5708p 0.000092 0.000098
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indeed are cases where we may assume that the noise in the subbands is practically
white, even though this may not be the case in the fullband.

8. Concluding remarks

We have shown various ways in which frequency estimation in the subbands of a
filter bank can perform better than conventional methods in the fullband, both
theoretically and with numerous examples. It should be noted, however, that there
are still a number of open problems that remain regarding this subject. For example,
the statistical bias and variance of the frequency estimates have not been calculated
and it is not known quantitatively how close the variance comes to the Cram!eer–Rao
bound for frequency estimation. Such analysis will most likely shed more light on the
precise tradeoff between the analysis filters and decimation ratios used and the
number of observation samples available at each subband.
Another open problem stems from the result proven in Theorem 3. Given that the

geometric mean of the flatness measures of the subband signals is always greater
than or equal to that of the fullband input signal, provided that (16)–(18) are
satisfied, the question then arises as to how to choose the analysis filters such that
this geometric mean in maximized. This problem is probably more of theoretical
than practical importance. The reason for this is because the optimal choice of
analysis filters will most likely depend on the input statistics, which we have assumed
here are not known a priori.

Appendix A. Important inequalities

A.1. Jensen’s inequality

If f ðxÞ is a convex function for xAD; where D is a convex set, then we have [20],

f
X
iAI

aixi

 !
p
X
iAI

aif ðxiÞ where aiX0;
X
iAI

ai ¼ 1 ðA:1Þ

Here, I is an index set and xiAD for all i:Moreover, equality holds in (A.1) iff either
the set of ais is degenerate in the sense that ai ¼ 1 for a particular i and is zero for the
rest, or if xk ¼ xl for all k; l: Examples of convex functions are f ðxÞ ¼ x2 and
f ðxÞ ¼ ex:

A.2. Weighted arithmetic–geometric mean inequality

Applying Jensen’s inequality to the strictly convex function f ðxÞ ¼ �ln x over the
interval ð0;NÞ yields the following important inequality [10].X

iAI

aixiX
Y
iAI

xaii

A. Tkacenko, P.P. Vaidyanathan / Journal of the Franklin Institute 338 (2001) 517–547546



where the ais are as in (A.1) and xiX0 for all i: The conditions for equality are the
same as those for Jensen’s inequality.

A.3. Log-sum inequality

From [18], we have the following inequality, which results from applying Jensen’s
inequality to the strictly convex function f ðxÞ ¼ x ln x over the interval ð0;NÞ:X

iAI

ai ln
ai
bi
X

X
iAI

ai

 !
ln

P
iAI aiP
iAI bi

Here ai; biX0 for all i and we have equality iff bi ¼ Kai for all i and for some KX0: If
the sequence faig is a pdf in the sense that

P
iAI ai ¼ 1; we obtain,

lnð
P

iAI biÞX
P

iAI ai ln ðbi=aiÞ:
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