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Abstract—In this paper, a novel generalization of sub-
space-based blind channel identification methods in cyclic prefix
(CP) systems is proposed. For the generalization, a new system
parameter called repetition index is introduced whose value is unity
for previously reported special cases. By choosing a repetition
index larger than unity, the number of received blocks needed
for blind identification is significantly reduced compared to all
previously reported methods. This feature makes the method more
realistic especially in wireless environments where the channel
state is usually fast-varying. Given the number of received blocks
available, the minimum value of repetition index is derived.
Theoretical limit allows the proposed method to perform blind
identification using only three received blocks in absence of noise.
In practice, the number of received blocks needed to yield a satis-
factory bit-error-rate (BER) performance is usually on the order
of half the block size. Simulation results not only demonstrate
the capability of the algorithm to perform blind identification
using fewer received blocks, but also show that in some cases
system performance can be improved by choosing a repetition
index larger than needed. Simulation of the proposed method over
time-varying channels clearly demonstrates the improvement over
previously reported methods.

Index Terms—Blind identification, cyclic prefix, orthogonal
frequency division multiplexing (OFDM), repetition index,
single-carrier cyclic prefix (SC-CP), subspace-based methods.

I. INTRODUCTION

I N recent years, linear redundant precoding (LRP) has be-
come popular in digital communication systems due to its

capability to facilitate block channel equalization of frequency-
selective channels. By inserting in each transmitting block a re-
dundant segment of a length greater than or equal to the channel
order, the interblock interference (IBI) at the receiver can be
eliminated [11]. Two major types of LRP techniques are zero-
padding (ZP) and cyclic prefixing (CP). ZP systems guarantee
symbol recovery regardless of channel null locations, but the
CP technique is more widely used in many current standards
such as orthogonal frequency division multiplexing (OFDM)
and single-carrier cyclic prefix (SC-CP) systems.

Besides the capability of LRP to facilitate block equalization,
the redundancy introduced in the transmitter is also useful for
blind channel identification problems. Unlike earlier works in
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the blind identification literature which require either higher-
order statistics (HOS) of the received data [13] or over-sampling
at the receiver [6], [17], blind channel identification exploiting
LRP requires only second-order statistics (SOS) of the received
data and is robust to channel order overestimation. Scaglione
et al. proposed a blind identification algorithm for ZP-based
communication systems [12] based on subspace decomposition.
The method requires only the persistency of excitation (p.o.e)
property of the input signal (i.e., richness) to render the data
covariance matrix to have full rank. This requirement demands
the receiver to collect at least a number of blocks equal to the
block size for one channel estimate and thus makes the approach
less applicable when the channel is fast-varying. More recently,
Pham and Manton proposed a subspace-based method in ZP
systems which requires only two received blocks [10]. A re-
cent generalization of subspace-based blind methods in ZP sys-
tems was proposed by Su and Vaidyanathan [15], [14]. There are
some other nonsubspace-based blind methods for ZP systems
which can perform blind identification using a small number of
received blocks. These methods, however, often take advantage
of finite alphabet property of the input symbols [19], and are not
considered in this paper.

We consider blind identification methods for CP-based sys-
tems which are currently more popular than ZP-based systems
in wireless standards such as OFDM systems. Similar to those
for ZP systems, most existing blind identification methods for
CP/OFDM systems fall into either subspace-based or nonsub-
space-based categories [5], [9], [19]. We consider only subspace
approaches in this paper since they require no knowledge of
symbol constellations and hence the computational complexity
does not grow as the constellation size increases. Since the guard
interval is nonzero in CP systems, subspace-based blind identifi-
cation methods in CP systems usually have a more sophisticated
design than those in ZP systems. Heath et al. exploited cyclo-
stationarity induced by cyclic prefixes to estimate channel coef-
ficients blindly [2]. Muquet et al. proposed an algorithm using
the second order statistics of the received data for OFDM sys-
tems of which a semiblind adaptation was also developed [7],
[8]. Cai and Akansu proposed another deterministic algorithm
of blind channel estimation for OFDM systems [1]. Li and Roy
further exploited the presence of virtual carriers of OFDM sys-
tems [4]. Zhuang et al. proposed a statistical method that can
estimate channels whose length is larger than the CP length.
All these previously reported methods require the number of
received blocks to be at least as large as two times the block
size to satisfy the persistency of excitation (p.o.e) criterion of
the input, which limits the application in a fast-varying channel
environment.
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In this paper, we propose a generalization to some of previ-
ously reported subspace-based blind methods for CP systems
[1], [4], and [8] by introducing a new system parameter called
repetition index, whose value is unity for these previously
reported methods. When the repetition index is chosen to be
greater than unity, the number of received blocks needed will
be significantly reduced. The rest of the paper is organized
as follows. In Section II, we review the basic ideas of blind
identification methods in CP systems that have been known so
far in [1], [4], [8]. In Section III, we present the generalized
algorithm. In Section V, simulations of the proposed algorithm
are performed both in static and time-varying channel environ-
ments and the results are presented. In Section IV the conditions
under which the proposed algorithm works are studied in detail.
Conclusions are made in Section VI. Some results contained in
this paper have been submitted to a conference [16].

II. PROBLEM FORMULATION

A. Notations

Boldfaced lower case letters represent column vectors. Bold-
faced upper case letters and calligraphic upper case letters are
reserved for matrices. Superscripts and as in and

denote the conjugate, transpose, and transpose-conjugate
operations, respectively. denotes the th entry of vector .
All the vectors and matrices in this paper are complex-valued.
The notation denotes and is the nor-
malized DFT matrix whose th entry is .
Column and row indices of all matrices and vectors begin at one.

is the entry at the th row and the th column of . is
the identity matrix, and is the zero matrix.

Notations for commonly used matrix structures in this paper
are presented. If is an vector,
we use to denote the full-banded Toeplitz
matrix

. . .
...

...
. . .

...
. . .

...
. . .

. . .
...

(1)

and to denote the Hankel matrix

...
...

(2)

Due to the special property of cyclic prefixes, we will use
the following notation extensively in this paper. Suppose is
an column vector . Then the
notation denotes the vector

Fig. 1. A typical cyclic prefix system.

if . An extension of this definition to any
arbitrary pair of integers and satisfying is made by
defining as for any or . For
example, if , then denotes the vector

.

B. Cyclic Prefix System Overview

Consider the communication system using cyclic prefix (CP)
depicted in Fig. 1. The source symbols
may come from different users or from a serial-to-parallel
operation on data of a single user. For convenience, we consider
the blocked version as indicated. The vector is pre-
coded by an constant matrix and results in precoded
data . In particular, for OFDM or multicarrier (MC) sys-
tems, is the normalized IDFT matrix; for single-car-
rier cyclic prefix (SC-CP) systems, is chosen as . A cyclic
prefix of length , taking from the last elements of ,
is defined as . We assume

. The cyclic prefix is appended to , forming
a vector

whose length is . The vector , after parallel-to-
serial conversion, is sent over the channel . We assume

is an FIR channel with a maximum order , i.e.

(3)

and define as the -column vector
. The signal is corrupted by channel

noise . The received symbols are blocked into
vectors . We assume perfect block synchronization

between the transmitter and receiver. Also let denote the
blocked version of the noise . Denote as the first

entries and as the last entries of so that
. It can be shown that

(4)
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where

...
. . .

. . .
. . .

...
. . .

. . .
. . .

. . .

is an circulant matrix [18] and is
the noise vector. The vector contains inter-block
interference (IBI) and can be expressed as

(5)

where

...
. . . and . . .

...

are matrices and is the noise compo-
nent. For channel equalization, is usually dropped and
only passes the equalizer and results in re-
covered symbol . When the channel coefficients are known,
the optimal equalizer can be derived to minimize mean square
error (MSE) of equalized symbols.

C. Subspace-Based Blind Channel Identification in CP
Systems

While is often dropped before equalization, the in-
formation from is useful to estimate the channel coef-
ficients. In this section we review the essences of blind iden-
tification algorithms which have been used in earlier methods
reported in [1], [8], and [4]. For simplicity we first ignore the
noise term . Define a composite block which has a
length and contains information from two consecutive
blocks as follows:

(6)

Then from (4) and (5) we have

(7)

where

and . Note that is a
matrix. A special case of (7) when and

is shown in (8) at the bottom of the page. For notational con-
venience, we set , , and

in (8).
Theorem 1: If does not have any zero

on the unit circle grid , then has full
column rank .

Proof: See [8].
We now review some of the key ideas in [8]. Suppose we

gather consecutive received blocks
at the receiver, then we have composite blocks
defined in (6) for . We can construct the

matrix by placing these composite blocks
together as

Then, we have

(9)

where
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is a matrix. Assume there exists an integer
such that has full row rank . Then

and hence has linearly independent
left annihilators. Let be the th annihilator of

, i.e., . Then since has full rank.
Write as

For notational simplicity, we ignore the index in the contents
of . By observing the columns of , we can construct a

matrix as follows such that .

Define . Then the channel coeffi-
cients can be recovered within a scalar ambiguity by finding
the only right-annihilating vector of [8].

Although the developments above are based on the assump-
tion that has full column rank (i.e., has no zeros on
DFT grid), a slight modification of the algorithm when this is
not true can be found in [8]. Due to the length of the text, we do
not elaborate this special case throughout this paper.

In presence of noise, (9) becomes

where the noise component comes accordingly from (4)
and (5). In this case, usually becomes full rank and no
longer has left annihilators. The left annihilators of , i.e.,
the noise space, can be estimated by taking singular value de-
composition (SVD) of . In the equation

(11)

contains the singular-vectors associated with the smallest
singular values of and is chosen as the th column of

.
Note that in (11) if the matrix is replaced with the esti-

mated autocorrelation matrix

then the null space obtained by singular value decomposi-
tion will remain unchanged. Since the size of is usually
smaller than , especially when is large, taking SVD on

rather than on actually saves computational com-
plexity, although an additional computation will be needed for
creating matrix . However, the matrix , once created,
can be easily updated each time a new block is received (see
[8, eq. (18)]). The idea of maintaining an autocorrelation matrix
further develops into a strategy where newer blocks can be put a
greater weighting than older blocks. Specifically, after an initial
estimate of is established, is updated each time a new
composite block is obtained using

(12)

The parameter is called the forgetting factor. The
technique of using a forgetting factor has been applied espe-
cially in time-varying channel environments.

D. Limitations

In order for the aforementioned method to work, the
matrix must have full row rank . This is also

known as the property of persistency of excitation [8]. Obvi-
ously, has full row rank only when the number of columns
is not smaller than the number of rows, i.e., . This
requires the receiver to wait for at least symbol du-
rations before a channel estimation can be performed. This limi-
tation makes these previously reported algorithms unrealistic in
environments with fast-fading channels since the channel coef-
ficients may have changed significantly during accumulation of
the data. Even though a forgetting factor can be used to give a
larger weighting to newer blocks than to older blocks, the use
of blocks as old as blocks earlier is still unavoidable.
The method we propose in Section III will overcome this funda-
mental limit present in previously reported methods [see (13),
shown at the bottom of the next page].

III. PROPOSED METHOD

For a subspace method, it is always necessary to write an
equation

(14)

or

(15)

where contains unknown information on the channel, or
contain unknown information of transmitted symbols, and

or contain the noise-corrupted observation of received
data. Note that (15) can always be obtained from (14) by setting

and , as long as the input
symbols and the noise are uncorrelated. The following discus-
sions will be focused on (14) only. In order to make the subspace
method work, (14) must satisfy the following two conditions:
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1) must be a tall matrix. That is, if has a size , then
;

2) must have full row rank, i.e., .
The idea of accumulating two consecutive blocks and keeping
the ISI-containing CP between the two blocks, as reviewed pre-
viously, was actually intended to satisfy condition 1). To satisfy
condition 2), the minimum number of blocks must be at least as
large as the number of rows of , since each composite block

defined in (6) can at most increase the rank of only by
one [as can be seen in (9) and the equation after (9)].

In this section, we reformulate (14) in such a way that each
new composite block can increase the rank of by more
than one. By repeated use of the same blocks, the “speed” of
rank growth of matrix will be faster so that a smaller number
of received blocks is needed to satisfy condition 2). The idea
of repeated use of the same blocks originated in the work of
Pham and Manton [10] and was later generalized by Su and
Vaidyanathan [14]. These developments were originally for ZP
systems. We now show that for CP systems, similar extensions
are possible. The generalized method works well in situations
in which the previously reported methods [1], [4], [8] either fail
or do not perform well, as we shall demonstrate next.

A. The Repetition Index

In this subsection, we will present the idea of repetition index.
We will first present the development using an example with
small values and .

We first rewrite (7) so that the channel matrix has a more
symmetric and “tidy” form. The rearranged version of (7) is

(16)

where

is obtained by permuting columns of and is still a cir-
culant matrix. Note that this rewriting is simply to cut the last
columns of and insert them into the middle. Accordingly, we
permute elements of such that .
A special case of (16) when and is shown as
in (13). This might give a clearer view of the structure of the
channel matrix . Observe that is nearly a Toeplitz matrix
except for some sparse terms present in the top and bottom
rows. This Toeplitz-like structure of will become very useful
in the following development. For the sake of clarity, the fol-
lowing developments will start from (13).

We take advantage of the property of circulant matrices. No-
tice that since

we have

(17)

In general, we can show that if
is true, then we have

(18)
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for any . Here

. . .
...

...
. . .

. . .
. . .

. . .
(19)

is a Toeplitz matrix. Equation (17) was a special
case when . Similarly if , then we
have

(20)

for any . Combining knowledge of (18) and (20), we can
“expand” the composite block in (16) by symbols up-
ward and symbols downward for any nonnegative integers
and . If we choose and such that for some
positive integer , we will be able to write a new channel equa-
tion as follows:

(21)

where

and

(22)

Note that if we choose , then and (21)
reduces to (16). Now, by combining cases when is chosen from
0 to (and so from to ) in (21), we get

(23)

where

is a matrix and

(24)

is a matrix. A special case of (23) when
and is shown in (25) at the bottom of

this page. Note that (16) implies (23) without any additional as-
sumptions. We can see this, for example, by verifying that (13)
is equivalent to (25). This may provide more insight for (21).
The new channel matrix with a parameter maintains a
Toeplitz-like structure plus some sparse components: two tri-
angular-shaped “residues” in the top and bottom few rows. As

increases, the Toeplitz component of is elongated while
the triangular-shaped components keep the same size. We call
the parameter the repetition index since for each composite
block we can generate a matrix whose number of
columns is .

Finally, if we accumulate consecutive blocks
, we have composite blocks

. Construct the matrix

(26)

Then we have
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where

(27)

is a matrix.
Theorem 2: has full column rank if and only

if as defined in (3) does not have any zero at
.

Proof: If for some , then

is a right annihilator of and hence does not have full
rank. On the other hand, when for any , suppose

does not have full rank. Then there exists a nonzero vector
such that . The lengths

of and are and , respectively.
Note that when , the segment has a zero length (i.e.,
this segment simply does not exist). Observe that .
Since

we have . Similarly, since .
If , this already leads to a contradiction. In the case when

implies [see (1) for
definition of notation ]. But has full rank.
So must also be zero. This contradicts the fact that is
nonzero, and so must have full column rank.

Note that when , Theorem 2 reduces to Theorem 1.
Theorem 2 states that the necessary and sufficient conditions
for to have full column rank does not change whatever the
repetition index we use. Assume the channel does not
have zeros at for any . Then has full column rank

. This assumption is usually reasonable since the
probability that a channel has a zero exactly at is
zero. We also assume that there exists such that achieves
full row rank . Under these two assumptions, we
obtain that the -row matrix has rank

. This means there exist linearly independent
vectors such that

(28)

Since has full row rank, these vectors are also annihi-
lators of .

For each annihilator of , we can construct a
matrix in a way similar to (10) in Section II

such that

(29)

The construction of is conceptually easy. We simply inspect
each column of and find locations of each channel coeffi-
cient . For example, in the special case where

and , the structure of is given as

where denotes the th element of . A systematic way of
construction of is given as follows.

First note that , where the notation
was defined in (19) and is a sparse matrix defined as follows.

where

and

Now, we have

where is a Hankel matrix
[see (2) for definition of the notation] composed of elements of

. Now, by simply choosing

Equation (29) is satisfied. By defining

(30)

we now have . The channel coefficients can be iden-
tified within a scalar ambiguity.

In presence of noise, the estimated annihilators can be
found by taking SVD on and choosing the singular vec-
tors associated with the smallest singular values [similar to
the description after (11)]. Also, after constructing the ma-
trix, we use the vector which minimizes the norm of as
the estimated channel coefficients. This optimal estimation can
be written as

(31)
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B. Necessary Condition for Persistency of Excitation

Recall that the matrix defined in (27) must have full

row rank. If does not have full rank, some annihilators of

as defined in (28) may not be annihilators of and will

result in failure of the proposed algorithm. Since has size
, it has full row rank only when

(32)

(33)

This necessary condition for to have full row rank
is not sufficient since it still depends on the

values of transmitted symbols . However, simulations
in Section IV show that (for most choices of and input
constellations) once (33) is satisfied, the probability that
has full rank is very close to unity. Thus

(34)

is usually a valid choice in practice. A detailed study on the
conditions of having full rank is presented in Section IV.
Now, if we choose

then there exists such that can possibly have full rank.
This suggests that the proposed algorithm is potentially capable
of identifying the channel from only three blocks. In Section V
we will demonstrate these with examples.

C. Repetition Index for the Forgetting Factor

The idea of using a repetition index can also be applied
when a forgetting factor is used. The technique of using a for-
getting factor has been reviewed in Section II right before (12).
The “autocorrelation matrix” is initiated as
and updated each time when a new composite block
is received as

(35)

where is the forgetting factor. The SVD of

is then taken, and the estimated annihilators chosen as the
singular vectors associated with the smallest singular values
of . Note that must satisfy to

render full rank. This means the first channel estimation
after initialization can be requested only when

. After this, an estimation can be requested at any
time instant .

D. Summary of the Proposed Algorithm

The proposed algorithm can be summarized as follows.

1) Given and the CP length , choose and the repetition
index such that

Some remarks on choosing a good pair of and will be
presented in Section V.

2) Collect blocks at the receiver and construct a
matrix as defined

in (26). Let .
3) Perform SVD on so that

where the diagonal entries of are the smallest sin-
gular values of .

4) Let be chosen as the th column of . Construct the
matrix as in (30).

5) Let be the eigenvector of associated with the
smallest eigenvalue. This is the estimated channel vector
within a scalar ambiguity.

When a forgetting factor is used, steps 1 and 2 are modified as
follows.

1) Choose and the repetition index . Some re-
marks of choosing a good will be presented in Section V.

2) Update the “autocorrelation matrix” as received

blocks are accumulated. Choose as defined
in (35) where is the block index when a channel estima-
tion is requested.

E. System Complexity

The computational complexity of the proposed algorithm is
dominated by the SVD of the matrix , whose size is

. The computational complexity is proportional to
. A larger repetition index leads to

a greater complexity. However, when and are much larger
than , this complexity increase due to increase of is not very
serious. On the other hand, if is chosen as large as
(e.g., when ), the complexity increase can be significant.

F. Equalization and Resolving the Scalar Ambiguity

After estimating the channel coefficients, the receiver pro-
ceeds to equalize the effects of the frequency-selective chan-
nels. A standard linear minimum mean square error (L-MMSE)
equalizer is used at the receiver. Fig. 2 depicts the equalizer
structure of the system. Here is a diagonal matrix whose th
diagonal entry is

(36)

where is the average energy of transmitted symbols, is
the channel noise variance, and is
the frequency response of the estimated channel. Since there is a
scalar ambiguity in the estimated channel coefficients, all equal-
ized symbols will be scaled by an unknown complex-valued
scalar . A usual way to resolve this scalar is to introduce one
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Fig. 2. The transceiver system equipped with a method to resolve scale-factor
ambiguity.

extra pilot symbol and compare it with the corresponding re-
ceived symbol. If several blocks are using the same channel es-
timate , the scalar ambiguity can be estimated as follows:

(37)

(38)

where is the pilot symbol of the th block and is
the corresponding received pilot. We set the first symbol of each
source block as the known symbol (i.e., )
defined as

where . There are
definitely many other alternative designs of these pilot symbols.
The choice here is just to make sure that defined in (27)
would not become rank deficient due to the introduction of these
pilot symbols.

IV. ON THE PROBABILITY THAT HAS FULL RANK

Before presenting simulation results which demonstrate the
performance of the above algorithm, we discuss the technical
issue of rank requirement of the matrix defined in (27) in
greater detail.

Recall that one assumption for the proposed algorithm is that
the matrix must have full row
rank. Inequality (33) is a necessary condition but is not sufficient
since whether has full rank or not ultimately depends on

the content of . As long as the contents of are chosen
from a finite constellation, then there is always a nonzero prob-
ability that is rank-deficient. To see this, simply consider

the extreme case where the contents of are always chosen
as identical symbols. All subspace-based blind methods suffer
from the possibility of rank deficiency of the data matrix. Here,
we will study how this probability of rank deficiency changes
when and change. To facilitate our discussion, we formally
define the probability of having full rank as follows.

Definition 1: Consider a constellation (which has at least
two elements) and an nonsingular precoder . Let each
element of the matrix
be independently selected from the constellation with equal
probabilities. Let and let be defined as

in (27). For , the probability that has full
rank will be denoted as .

Obviously, whenever .
Also, we have and

. The former inequality comes from the fact
that the row rank of a matrix never decreases when additional
columns are appended, and the latter can be verified by the fol-
lowing theorem. These inequalities show that both increasing
and increasing have the potential to increase the probability
that has full rank.

Theorem 3: If has full row rank , then

also has full row rank .
Proof: See Appendix A.

When approaches infinity, it can be shown that
for any constellation and pre-

coder (and any ). However, this is not the case when
we increase . The probability of full rank of always
stops increasing when , which can be verified by
the following theorem.

Theorem 4: If does not have full rank when

, then does not have full rank for any .
Proof: See Appendix A.

Combining Theorems 3 and 4, we immediately have

for any .
We perform simulations with three commonly used constel-

lations in communications: BPSK, QPSK, and 16-QAM. The
precoder is chosen as for SC-CP systems and

for OFDM systems. Although the exact probability of
having full rank can be actually obtained by testing all possible
transmitted data, an exhaustive simulation is barely feasible. For
each , the simulations are performed under two values of

and . When ,
the simulation gives an upper bound of for a given

and the simulation where gives a
lower bound of nonzero . is chosen as 16.

Figs. 3 and 4 show the results when the precoder is chosen
as an identity matrix and an IDFT matrix, respectively. Some
comments on these results are made below.

1) As expected, the probability of having full rank is
smaller when a smaller constellation is used or when is
smaller. When , the probability becomes very close
to unity for all combinations of constellations and pre-
coders. When a 16-QAM constellation is used, the prob-
ability is already very high when .

2) It should be especially noted that the probability of
having full rank is significantly smaller when is chosen
as the IDFT matrix than when is an identity matrix.
An explanation of this phenomenon can be found in
Appendix B. This phenomenon suggests the proposed
algorithm is more stable when operated in SC-CP systems
than in OFDM systems when the constellation is small
and/or when is small.

3) Finally, although the theory suggests
, in simulation the above two

quantities look almost the same so that a conjecture may be
made that for
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Fig. 3. The probability ofU having full rank in SC-CP systems.

Fig. 4. The probability ofU having full rank in OFDM systems.

any . This conjecture, however,
has not yet been verified or disproved at the time of writing
of this paper.

V. SIMULATION RESULTS AND DISCUSSION

In this section, we conduct several Monte Carlo simulations
to demonstrate the performance of the proposed method under
different system parameters: the number of collected blocks ,
the repetition index , and the forgetting factor . The block
size is chosen as 64 and the length of cyclic prefix is .
The sample period is 1 s and so the block length is 80 s. We
assume perfect block synchronization in all simulations. Note
that in practice a blind block synchronization must be done be-
fore blind channel identification can be performed. Recall that
all previously reported algorithms in the literature use .

TABLE I
CHANNEL MODEL IN SECTION IV

A. Static Channels

We first test our methods in static channel environments. The
channel is an FIR filter whose order is upper bounded by the CP
length . The constellation of source symbols is QPSK
and the precoder is chosen as the identity matrix (i.e., an
SC-CP system). The simulation is performed over 500 different
channels generated by Rayleigh fading statistics according to
Table I. The normalized least squared channel estimation error,
denoted as , is used as the figure of merit for channel iden-
tification and is defined as follows:

where is the number of channel estimates performed, is
the true channel vector, and is the channel estimate with a
scalar ambiguity as defined in (31).

The simulation results for normalized channel estimation
error is shown in Fig. 5 and the corresponding bit-error-rate
(BER) plot is presented in Fig. 6. When and ,
the algorithm simply does not work since inequality (33) is
not satisfied. This means the previously reported methods are
unable to perform blind channel identification using only 86
blocks. When we choose , the algorithm works with a
fairly satisfactory result. When , the system performance
further improves.

When the number of received blocks is , the algo-
rithm works, but not very well, with . In view of (33),
this is the minimum number of blocks needed for any previ-
ously reported algorithm . If we use , the per-
formance has a significant boost. This suggests that choosing

larger than necessary sometimes yields a better performance.
When , the performance is even better since more data
are available for blind identification. Using stills slightly
improves the system performance but the improvement is not
as large as in the previous cases. It is worthy to note that the
performance curves of three cases where “ ,”
“ ,” and “ ” are very close
to each other. Recognizing that are very close to
each other in these three cases, this phenomenon suggests that
the system performance could be directly proportional to the
number of column of as defined in (26) re-
gardless of the actual number of accumulated received blocks

.
We repeated the same simulation settings for other constel-

lations and precoders . Fig. 7 depicts the BER performance
where a 16-QAM constellation and a precoder are
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Fig. 5. Normalized MSE of channel estimation for static channels with the
QPSK constellation in SC-CP systems.

Fig. 6. BER performance for static channels with the QPSK constellation in
SC-CP systems.

used. The BER performance of the case where a QPSK constel-
lation and a precoder (i.e., an OFDM system) are used
are shown in Fig. 8. All these results exhibit similar character-
istics to the case described in the previous paragraph.

B. Simulations With Smaller

We also test our algorithm when the number of available
received blocks are smaller, with nine different values of
ranging from 3 to 64. Note that is the smallest integer
that satisfies (32). The repetition index is chosen as

for each . Here we choose repetition indices larger by three
than needed, in order to achieve a better system performance.
Other system parameters are the same as in the first simula-
tion in Section V-A. The BER performance is shown in Fig. 9.

Fig. 7. BER performance for static channels with the 16-QAM constellation in
SC-CP systems.

Fig. 8. BER performance for static channels with the QPSK constellation in
OFDM systems.

When , the BER decreases slowly as SNR increases.
This demonstrates the theoretical limit on the number of re-
ceived blocks required for the proposed system as argued in
Section III-B. However, when is smaller than 10, the BER per-
formances as shown in Fig. 9 are usually unrealistic in practice.
Also, a small requires a large , which imposes a very de-
manding computational complexity. These observations largely
limit the applicability of the proposed algorithm with these ex-
tremely small in practical situations.

When the number of available received blocks is larger, the
BER performance is much better. When and ,
a BER of around is achieved when SNR is 30 dB. When

and , the BER is on the order of when
SNR is 25 dB. The SNR margin between the BER curves of
this case and of the case of known channel is around
5 dB at . When and , this margin
reduces to around 4 and 3 dB, respectively. These results are
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Fig. 9. BER performance for static channels with the QPSK constellation in
SC-CP systems when J is small.

considered acceptable BER in some practical applications (note
that the presented results are all uncoded BER). Since
is slightly less than half the block size , we can argue
that the minimum number of received blocks required in a prac-
tical situation is on the order of half block size. Three more sim-
ilar simulations results with
strengthen this argument. Due to high similarity and space limit,
they are not shown here. Compared to previously reported sub-
space-based blind algorithms [1], [4], [8], which always require
a number of received blocks larger than twice the block size, the
introduction of repetition index indeed largely reduces the re-
quired number of received blocks.

C. Time-Varying Channels

We now test our algorithm in an environment of time-varying
channels. For time-varying channels there is always a dilemma
for subspace-based blind channel identification algorithms in
choosing the number of accumulated blocks . When is
large, the channel state may have changed significantly during
data accumulation so that the estimation results could be mean-
ingless. When is small, the performance would be poor due
to very limited amount of available data. With the introduction
of repetition index , this problem can be solved to a certain
extent.

In our simulation, the channel model considered is a random
FIR channel with an order upper bounded by the CP length
whose characteristics is shown in Table I. A standard Jakes’
Doppler spectrum is used and Rayleigh fading statistics are as-
sumed for all taps [3]. A channel estimate is obtained using data
of consecutive blocks and then used to equalize the middle

blocks of the blocks, where is usually chosen as an
integer small than or equal to . One reason of doing this is, in
the context of time-varying channels, the channel estimate ob-
tained from blocks may not be very accurate for the first few
and the last few of the blocks. In order to equalize each re-
ceived block, a channel estimate is obtained every blocks.

For the first simulation, the Doppler frequency is chosen as
5 Hz, which corresponds to an object speed 1.5 m/s (5.4 km/h) if

Fig. 10. BER performance for blind identification systems when the Doppler
frequency is 5 Hz (5.4 km/h).

the carrier frequency is 1 GHz. The symbol duration is sec-
onds. This setting implies that the channel coefficients become
totally uncorrelated in around 0.08 s (i.e., coherence interval),
equal to 80 000 symbol durations, or 1000 received blocks. A
channel estimate is performed once for a time duration of 50
blocks (i.e., ). The plot of BER performance is shown
in Fig. 10. In the low SNR region, the case where and

has the best performance. However, in the high SNR re-
gion, the case where and becomes the best. Note
that in the high SNR region, except for a few cases [where (32) is
not satisfied or is satisfied with a very small margin], the BER is
greater when is larger. This is because when channel noise is
small, the channel estimation error comes solely from channel
variation due to accumulation of a large number of blocks. In
the low-SNR region, curves with similar values tend
to have similar performances, just like what has been observed
in static channel environments. We also compare an adaptive
scheme where a forgetting factor is used. When

, the performance is not very good. Now if we choose
, a considerable improvement over is observed.

Although the performance of forgetting factor schemes is not
very good when SNR is high, they could be more promising
than methods using a fixed in the low-SNR region.

Due to channel variation, the channel estimation error does
not converge to zero even when the SNR is very high. As a con-
sequence, the linear MMSE receiver defined in (36) becomes
inaccurate when the SNR is large since the channel estimation
error constitutes a larger variance than channel noise. In the sim-
ulation for the BER plot, we slightly adjust the linear MMSE
equalizer defined in (36) as

if

if
(39)

where is the threshold noise level. In this case we choose
since the channel MSE approaches at a value greater
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Fig. 11. BER performance for blind identification systems when the Doppler
frequency is 50 Hz (54 km/h).

than or equal to in most settings. (The plot for channel
MSE is not shown due to space limit.)

For the second simulation, the Doppler frequency is chosen as
50 Hz, which corresponds to an object speed 15 m/s (54 km/h) if
the carrier frequency is 1 GHz. The symbol duration is sec-
onds. This setting implies that the coherence interval is around

seconds, equal to 8000 symbol durations, or 100 re-
ceived blocks. Since the channel is varying much faster than
the previous case, we need to choose a much smaller . The
number of blocks is ranging from 12 to 80, the parameter
is chosen as the minimum value for each and is chosen
as for each . The BER plot is shown in Fig. 11. A modi-
fied linear MMSE receiver as defined in (39) with is
used when producing the BER plot. When , the perfor-
mance is fairly poor since the estimated channel coefficients are
hardly accurate due to channel variation. When the number of
received blocks is reduced, the performance becomes better
and yields the best performance in the low-SNR re-
gion among all values of chosen in this simulation. When
an even smaller is chosen, performance in low-SNR region
becomes worse again due to lack of data available for estima-
tion. For high-SNR region, “ ” has the best
performance. We also test the algorithm with a forgetting factor
chosen as and repetition index as . In this set-
ting the data obtained 12 blocks earlier will be given a weighting
of . If we use 1% as a threshold, we could say that
the autocorrelation matrix [as defined in (35)] contains effective
information from 12 composite blocks. This setting outperforms
all other settings using a fixed , which suggests the forgetting
factor technique is more promising in a fast-varying channel en-
vironment. It should be especially noted that using a large rep-
etition index makes it possible to choose a forgetting
factor as small as 0.7. As shown in the plots, the same forgetting
factor does not work at all for .

In all our simulations here, we used . However, in
some applications, can have a much larger value (e.g.,

). In this case, the task of blind estimation is more sensitive
to time-varying channels. The number of blocks needs to be
chosen even smaller to fit in a coherence interval. Note that
can be chosen as small as three. This implies the requirement
of a larger repetition index . As we learned in Section IV, the
problem of rank deficiency of may arise. However, since

is large, the probability of rank deficiency would be much
smaller. So the proposed algorithm has the potential to work
well in the case of time-varying channels and a large . The
only concern here may be a high complexity as can be seen in
Section III-E.

VI. CONCLUSION

In this paper, we proposed a generalized algorithm for sub-
space-based blind channel estimation in cyclic prefix systems.
A new system parameter called the repetition index was
introduced. By using a repetition index larger than unity, the
number of received blocks is significantly reduced com-
pared to previously reported methods so that the proposed al-
gorithm is more feasible in time-varying channel environments.
A necessary condition on the system parameters and for
the algorithm to work is derived. The number of received blocks

can be chosen depending on the speed of channel varia-
tion to yield the best performance. The generalization can also
applied to blind methods using a forgetting factor . Simulation
shows that when the number of received blocks and the rep-
etition index are properly chosen, the generalized algorithm
outperforms previously reported special cases, especially in a
time-varying channel environment. The proposed method can
be directly applied to existing systems such as OFDM, SC-CP,
etc., without any modification of the transmitter structure. In
the future, developing the strategy to find the optimal and

or the optimal and given knowledge of channel varia-
tion can be a challenging yet important problem. Extending this
scheme for multiinput-multioutput (MIMO) channels is also of
great interest.

APPENDIX A
PROOFS OF THEOREMS

Proof of Theorem 3: Assume does not have
full row rank. Then there exists a nonzero row vector

such that . From
the definition in (27), we obtain that is a left annihilator of

for . The notation of was de-
fined in (24). Notice that is a submatrix of and
can be obtained by removing the first row and the first column
of , or by removing the last row and the last column of

. This means that both
and are left annihilators of
for . So . Since is
nonzero, at least one of and must also be nonzero. This
implies that does not have full rank and contradicts the
assumption.

Proof of Theorem 4: Let where
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Then we have since is nonsin-
gular. Also define where is defined
as in (24). It can be shown that can be written as

where is an
Toeplitz matrix and the matrix

has a “circulant” structure. For simplicity, hereafter we denote
and . We also

define polynomials in as
and . is a

matrix and has at least linearly independent
left annihilators. These annihilators can always be written in the
following forms, regardless of the value of .

(40)

and

(41)

where are distinct roots of the poly-
nomial and

. Please note that an-
nihilators in the form of (40) come because of the Toeplitz
structure of and annihilators in the form of (41) come
because and , the DFT coefficients of
and , respectively, cancel each other when is
multiplied by defined in (41). Here we omit the index

in polynomials and for the sake of notational
simplicity. Also note that vectors , are
always linearly independent as long as 1) the polynomial
has degree ; 2) all roots of are distinct; and 3) none
of roots of is on the DFT grid. When any of these is not
true, a slight modification of (40) and (41) can be found so that
they are still linearly independent.

If is rank-deficient and there exists any left annihilator

of , in the form of either (40) or (41), then is rank-
deficient for all , since the same form of vectors will continue
to be annihilators of . Now, we will prove that if
is rank-deficient (as assumed in the theorem statement), then
at least an annihilator in the form of either (40) or (41) will
be a common annihilator for all . Suppose this is not
the case and there exist two nonzero , say, and

, without loss of generality, which do not have common
annihilators. Since is rank-deficient when
(as assumed in the theorem statement), there exists a nonzero

-row vector such that . Clearly,

is also an annihilator of and . Thus,
can be decomposed into the following form:

where are as defined in (40)
and (41) with . So we have

(42)

where and are -column vectors containing coeffi-
cients and , respectively, and is a
matrix whose columns are .
Since the annihilators of and are linearly inde-
pendent, has full rank. Thus (42) implies and,
hence, . This contradicts the assumption that
is rank-deficient. This completes the proof.

APPENDIX B
PROBABILITY OF HAVING FULL RANK FOR

DIFFERENT PRECODERS

We now explain why the probability of having full rank
is much smaller when than . As explained in
the proof of Theorem 4, if does not have full rank for

, then a row vector in the form of either (40)
or (41) will be a common annihilator of . The proba-
bility of this depends on how many possible values of these vec-
tors there are. Focusing on (41), since and are fixed, the
variety of this form of annihilators comes from the values of

and , which are Fourier transforms of
and . If there is no precoding (i.e., ), the number of
possible values of and can be quite large. On
the contrary, when an IDFT precoder is used (i.e., ),

and can only be symbols in the constella-
tion or the difference of two of them. Since the possible values
of and are much fewer, it is more likely that
a common annihilator of in this form exists. So the prob-

ability of having full rank is smaller in OFDM systems.
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