
1

Comments on “Performance Analysis of a
Deterministic Channel Estimator for Block

Transmission Systems With Null Guard
Intervals”

Borching Su,Student Member, IEEE,
and P. P. Vaidyanathan,Fellow, IEEE

Abstract— In the above-mentioned paper a Cramer-Rao bound
was derived for the performance of a blind channel estimation
algorithm. In this paper an error in the bound is pointed out
and corrected. It is observed here that the performance of the
said algorithm does not achieve the Cramer-Rao bound.1

In the above paper [1], important work has been done to
analyze the algorithm in [2] which solves a blind channel
estimation problem. The performance of the algorithm in [2]
in high SNR region was shown to be as in (33) of [1].
The Cramer-Rao bound (CRB) of the above mentioned blind
estimation problem was shown to be as in (49) of [1]. The
coincidence of (33) and (49) led the authors of [1] to claim
that the algorithm in [2] is statistically efficient (i.e., achieves
the CRB) at high SNR values. However, we have found an
error in the derivation of (49), which invalidates this claim.
Eq. (49) of [1] was derived from (80) in Appendix B of [1].
The second equality of (80) is not valid in general since it is
conditioned on the validity of the matrix identity

(ABAH)−1 = AH†B−1A† (1)

whereA is a full rank matrix with more columns than rows
and B is a square positive definite matrix. But a simple
example shows that this identity is not true in general: set

A =
[

1 0 0
0 1 0

]
, andB =




1 0 0
0 1 1
0 1 2


 ,

then the left hand side of (1) isI2 whereas the right hand side

is

[
1 0
0 2

]
.

A correction to the CRB, however, is easy to make. The
corrected CRB can be simply taken as the first equality of
(80) of [1]:

CCR = σ2
v

[
Ṽ [

IL×L ⊗ (F∗S∗NST
NFT )

] ṼH
]−1

(2)

(in the original text [1],σ2
v appeared in the denominator, which

was presumably a typographical error).
We conduct numerical simulations to compare

Chh ≈ σ2
vṼ†H

[
IL×L ⊗

(
F−T (S∗NST

N )−1F−∗
)] Ṽ†

from (33) of [1] and the corrected CRB in (2). The simulation
setting basically follows that in [1]: the channel order is chosen
asL = 4 and the channel coefficients are i.i.d., zero-mean, unit
variance complex Gaussian random variables. The data length
per block isM = 12 and the number of blocksN ranges from
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8 to 1000. Elements of the data matrixSN were generated
using the QPSK constellation andF is chosen asIM . One
hundred independent realizations of channel coefficients and
10 independent realizations of data blocksSN are used (totally
1000 different pairs ofSN andh). Traces ofChh andCCR in
(2) are computed for these 1000 realizations and the averages
are reported in Table I.

N tr(Chh)/σ2
v tr(CCR)/σ2

v
tr(Chh)−tr(CCR)

tr(CCR)

8 − 1.7752 −
12 184.01 1.3373 136.6002
14 6.8590 1.0981 5.2462
16 3.5362 0.9760 2.6233
20 1.7197 0.7414 1.3196
100 0.1614 0.1448 0.1147
1000 1.5149× 10−2 1.4986× 10−2 0.0109

TABLE I

COMPARISON OFEQ. (33) IN [1] AND EQ. (2); THE DATA LENGTH PER

BLOCK IS M = 12

We find from Table I that there is a significant discrepancy
between the corrected CRB in (2) and the performance of the
algorithm in [2] (Eq. (33) in [1]), especially whenN is small.
Furthermore, whenN < M , the inverse ofS∗NST

N in (33) of
[1] does not exist, butCCR in (2) still gives a finite value.
This suggests there might exist algorithms (e.g., see [4]–[6])
other than [2] which solve the aforementioned blind estimation
problem whenN < M . On the other hand, whenN is large,
the difference between traces ofChh andCCR tends to shrink,
but it never goes to zero. This observation is accounted for by
the following lemma, where we use notations from the singular
value decomposition of theL× LM full-rank matrix Ṽ:

Ṽ = U
[

D 0
] [

V1 V2

]H
, (3)

where U is a unitary matrix,D is a diagonal matrix with
positive diagonal entries, andV :=

[
V1 V2

]
is a unitary

matrix. V1 and V2 are the firstL and the last(M − 1)L
columns ofV, respectively.

Lemma 1: If N ≥ M , then tr(Chh) ≥ tr(CCR), with
equality if and only if

VH
1 BV2 = 0 (4)

where B := IL×L ⊗ (F∗S∗NST
NFT ) and V1 and V2 are

defined as in (3).

Proof: Since bothChh and CCR are positive definite
(p.d.), the statement tr(Chh) ≥ tr(CCR) is equivalent to the
statement thatChh −CCR is a positive semi-definite matrix.
We first observe thatB is p.d. sinceF∗S∗NST

NFT is p.d. Recall
the SVD of Ṽ as in (3) whereU and V := [V1,V2] are
unitary matrices andD is a diagonal matrix with positive
diagonal entries. DefineB2 := VHBV which is obviously
also p.d. PartitionB2 andB−1

2 into

B2 =
[

B11 B12

BH
12 B22

]
andB−1

2 =
[

B′
11 B′

12

B′H
12 B′

22

]
,
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respectively, so thatB11 and B′
11 have the same size asD

(L× L). Then we have

CCR = σ2
v(ṼBṼH)−1 = σ2

vU([D 0]B2[D 0]T )−1UH

= σ2
vUD−1B−1

11 D−1UH

and

Chh = σ2
vṼ†HB−1Ṽ† = σ2

vU[D−1 0]B−1
2 [D−1 0]T UH

= σ2
vUD−1B′

11D
−1UH .

So CCR ≤ Chh if and only if

B−1
11 ≤ B′

11 = B−1
11 + B−1

11 B12∆−1
B11B

H
12B

−1
11

where∆B11 := B22−BH
12B

−1
11 B12 is the Schur complement

[3] of B11 in B2. Since B2 is p.d., bothB11 and ∆B11

are also p.d. (see theorem (7.7.6) of [3]). SoB−1
11 ≤ B′

11 is
readily verified, with equality if and only ifB12 = 0, which
is equivalent to (4).

Using Lemma 1, we find that (33) in [1] achieves the CRB
if and only if (4) is satisfied. Eq. (4) can be satisfied only in
one of two possible ways described as follows.
a) If B is the identity matrix or a positive multiple thereof,

i.e., S∗NST
N = cIM for some positive constantc, then Eq.

(4) is satisfied. This is extremely unlikely to happen since
elements ofSN are i.i.d. random symbols. However, we
should note that(1/N)S∗NST

N tends to approachcIM for
somec > 0 as N goes to infinity. This explains to some
extent why the discrepancy between tr(Chh) and tr(CCR)
approaches zero asN →∞.

b) On the other hand, ifB 6= cI, then columns ofV1 and
V2 must match the eigenvectors ofB in order to make (4)
true. But this is also extremely unlikely sincẽV depends
on, besidesSN , the random channel coefficients which
we have no control of.

In conclusion, the gap existing between (33) of [1] and the
corrected CRB (2) suggests that there might exist algorithms
other than [2] which yield a better performance than [2] in
high-SNR region. Indeed there are such algorithms as reported
in [4]–[6].
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