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1. INTRODUCTION

Wireless communication systems often suffer from a prob-
lem due to multipath fading which makes the channels
frequency-selective. Channel coefficients are often unknown
to the receiver so that channel identification needs to be done
before equalization can be performed. Among techniques
for identifying unknown channel coefficients, blind meth-
ods have long been of great interest. In the literature many
blind methods have been proposed based on the knowledge
of second-order statistics (SOS) or higher-order statistics of
the transmitted symbols [1, 2]. These methods often need to
accumulate a large number of received symbols until chan-
nel coefficients can be estimated accurately. This requirement
leads to a disadvantage when the system is working over a
fast-varying channel.

A deterministic blind method using redundant filterbank
precoders was proposed by Scaglione et al. [3] by exploiting
trailing zeros introduced at the transmitter. Figure 1 shows
a typical linear redundant precoded system. Source sym-
bols are divided into blocks with size M and linearly pre-
coded into P-symbol blocks which are then transmitted on
the channel. It is well known that when P ≥ M + L, where
L is the maximum order of the FIR channel, interblock in-
terference (IBI) can be completely eliminated in absence of

noise. When the block size M increases, the bandwidth effi-
ciency η = (M + L)/M approaches unity asymptotically. The
deterministic method proposed in [3] (which we will call the
SGB method) exploits trailing zeros with length L introduced
in each transmitted block and assumes the input sequence
is rich. That is, the matrix composed of finite source blocks
achieves full rank.

The method in [3] requires the receiver to accumulate
at least M blocks before channel coefficients can be identi-
fied. This prevents the system from identifying channel co-
efficients accurately when the channel is fast-varying, espe-
cially when the block size M is large. More recently, Man-
ton and Neumann pointed out that the channel could be
identifiable with only two received blocks [4]. An algorithm
based on viewing the channel identification problem as find-
ing the greatest common divisor (GCD) of two polynomi-
als is proposed in [5] (which we will call the MNP method).
Eventhough it greatly reduces the number of received blocks
needed for channel identification, the algorithm has much
more computational complexity especially when the block
size M is large.

In this paper, we propose a generalized algorithm of
which the SGB algorithm proposed in [3] and the MNP al-
gorithm in [5] are both special cases. By carefully choos-
ing parameters, the system performance and computational
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Figure 1: Communication system with redundant filter bank precoders.

complexity can be jointly optimized. The rest of the paper
is organized as follows. Section 2 describes the system struc-
ture with linear precoder filter banks and reviews several
existing blind algorithms. In Section 3 we present the gen-
eralized algorithm and derive the conditions on the input
sequence under which the algorithm operates properly. In
Section 4 we propose a frequency domain version of the gen-
eralized algorithm. The concept of generalized signal richness
is introduced in Section 5 and some properties thereof are
studied in detail. Simulation results and complexity analy-
sis of both time and frequency domain approaches are pre-
sented in Section 6. In particular, simulations under time-
varying channel environments are presented to demonstrate
the strength of the proposed algorithm against channel vari-
ation. Finally, conclusions are made in Section 7. Some of the
results in the paper have been presented at a conference [6].

1.1. Notations

Boldfaced lower-case letters represent column vectors. Bold-
faced upper-case letters and calligraphic upper case letters
are reserved for matrices. Superscripts as in AT and A† de-
note the transpose and transpose-conjugate operations, re-
spectively, of a matrix or a vector. All the vectors and ma-
trices in this paper are complex-valued. In the figures “↑ P”
represents an expander and “↓ P” a decimator [7].

If v = [v1 v2 · · · vMT] is an M × 1 column vec-
tor, then T (v, q) denotes an (M + q − 1) × q Toeplitz ma-
trix whose first row and first column are [v1 0 · · · 0] and
[v1 v2 · · · vM 0 · · · 0T], respectively. For example,

T

⎛⎜⎜⎜⎝
⎡⎢⎢⎢⎣
a1

a2

a3

a4

⎤⎥⎥⎥⎦ , 3

⎞⎟⎟⎟⎠ =
⎡⎢⎢⎢⎢⎢⎢⎢⎣

a1 0 0
a2 a1 0
a3 a2 a1

a4 a3 a2

0 a4 a3

0 0 a4

⎤⎥⎥⎥⎥⎥⎥⎥⎦ . (1)

2. PROBLEM FORMULATION AND
LITERATURE REVIEW

2.1. Redundant filter bank precoders

Consider the multirate communication system [8] depicted
in Figure 1. The source symbols s1(n), s2(n), . . . , sM(n) may
come from M different users or from a serial-to-parallel op-
eration on data of a single user. For convenience we consider
the blocked version s(n) as indicated. The vector s(n) is pre-
coded by a P×M matrix R(z) where P > M. The information
with redundancy is then sent over the channel H(z). We as-
sume H(z) is an FIR channel with a maximum order L, that
is,

H(z) =
L∑

k=0

hkz
−k. (2)

The signal is corrupted by channel noise e(n). The re-
ceived symbols y(n) are divided into P × 1 block vec-
tors y(n). The M × P matrix G(z) is the channel equal-
izer and ŝ1(n), ŝ2(n), . . . , ŝM(n) are the recovered symbol
streams. Also, for simplicity we define h as the column vector
[h0 h1 · · · hLT]. We set

P =M + L, (3)

that is, the redundancy introduced in a block is equal to the
maximum channel order.

2.2. Trailing zeros as transmitter guard interval

Suppose we choose the precoder R(z) = [ R1
0 ] where R1 is an

M×M constant invertible matrix and the L×M zero matrix
0 represents zero-padding with length L in each transmitted
block, as indicated in Figure 2. For simplicity of describing
the algorithms, in this section we assume the noise is absent.
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Figure 2: The zero-padding system with precoder R1.

Now, the received blocks can be written as

[
y(1) y(2) · · · y(J)

]
︸ ︷︷ ︸

Y matrix; size P×J

=HMR1

[
s(1) s(2) · · · s(J)

]
,︸ ︷︷ ︸

S matrix; size M×J

(4)

where HM = T (h,M) is the full-banded Toeplitz channel
matrix. As long as vector h is nonzero, the matrix HM has
full column rank M. Now, we assume the signal s(n) is rich,
that is, there exists an integer J such that the matrix S has
full row rank M. Since R1 is an M × M invertible matrix,
we conclude that the P × J matrix Y has rank M. So there
exist L linearly independent vectors that are left annihilators
of Y. In other words, there exists a P × L matrix U0 such that
U†

0 Y = UHMR1S = 0. Now that R1S has rank M, this implies

U†
0HM = 0. (5)

The channel coefficients h can then be determined by solving
(5). In practice where channel noise is present, the computa-
tion of the annihilators is replaced with the computation of
the eigenvectors corresponding to the smallest L singular val-
ues of Y. In this and the following sections, the channel noise
term is not shown explicitly.

Note that this algorithm [3] works under the assumption
that S has full row rank M. Obviously J ≥ M is a necessary
condition for this assumption. This means the receiver must
accumulate at least M blocks (i.e., a duration of M(M + L)
symbols) before channel identification can be performed.
This could be a disadvantage when the system is working over
a fast-varying channel.

2.3. The GCD approach

Another approach proposed in [5] requires only two received
blocks for blind channel identification. Recall that the chan-
nel is described by y =HMu = T (h,M)u, or

⎡⎢⎢⎢⎢⎣
y1

y2
...
yP

⎤⎥⎥⎥⎥⎦ =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

h0 0

h1
. . .

... h0

hL h1

. . .
...

0 hL

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎣
u1

u2
...
uM

⎤⎥⎥⎥⎥⎦ . (6)

By multiplying [1 x x2 · · · xP−1] to both sides of (6), we
obtain

y(x) = h(x)u(x), (7)

where

y(x) �
P−1∑
k=0

yk+1x
k, h(x) �

L∑
k=0

hkx
k,

u(x) �
M−1∑
k=0

uk+1x
k

(8)

are polynomial representations of the output vector, channel
vector, and input vector, respectively. This means, (6) is noth-
ing but a polynomial multiplication. Now, suppose we have
two received blocks y(1) and y(2), and let y1(x) = h(x)u1(x)
and y2(x) = h(x)u2(x) represent the polynomial forms of
these. Then the channel polynomial h(x) can be found as the
GCD of y1(x) and y2(x), given that the input polynomials
u1(x) and u2(x) are coprime to each other.
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To compute the GCD of y1(x) and y2(x), we first con-
struct a (2P − 1)× 2P matrix [9]

YP �

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

y11 0 · · · 0 y21 0 · · · 0

y12 y11
. . .

... y22 y21
. . .

...
... y12

. . . 0
... y22

. . . 0

y1P

... y11 y2P

... y21

0 y1P y12 0 y2P y22
...

. . .
. . .

...
...

. . .
. . .

...
0 · · · 0 y1P 0 · · · 0 y2P

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
. (9)

One can verify that

YP =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

h0 0

h1
. . .

... h0

hL h1

. . .
...

0 hL

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
︸ ︷︷ ︸

matrixHM+P−1
size(2P−1)×(M+P−1)

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

u11 0 u21 0

u12
. . . u22

. . .
... u11

... u21

u1M u12 u2M u22

. . .
...

. . .
...

0 u1M 0 u2M

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
︸ ︷︷ ︸

matrixU
size(M+P−1)×2P

.

(10)

When u1(x) and u2(x) are coprime to each other, it can
be shown that the matrix U has full rank M + P − 1 (see
Section 5). Since HM+P−1 = T (h,M + P − 1) also has rank
M + P − 1, rank(YP) = M + P − 1 and hence YP has L left
annihilators (i.e., there exists a (2P − 1) × L matrix U0 such
that U†

0 Y = 0). These annihilators are also annihilators of
each column of matrix HM+P−1, and we can therefore, in ab-
sence of noise, identify channel coefficients h0,h1, . . . ,hL up
to a scalar ambiguity. In presence of noise, the columns of
U0 would be selected as the eigenvectors associated with the
smallest singular values of YP .

2.4. Connection to the earlier literature

The MNP method described above can be viewed as a dual
version of the subspace methods proposed in the earlier lit-
erature in multichannel blind identification [10, 11]. In the
subspace method in [11], the single source can be estimated
as the GCD of the received data from two (more generally N)
different antennas. The MNP method [5] swaps the roles of
data blocks and multichannel coefficients.

3. A GENERALIZED ALGORITHM

In this section we propose a generalized algorithm of which
each of the two algorithms described in the previous section
is a special case. Comparing the two algorithms described
above, we find that the MNP approach needs much fewer
received blocks for blind identifiability. However, it has more
computational complexity. Each received block is repeated P
times to build a big matrix. Using the generalized algorithm,
we can choose the number of repetitions and the number of

received blocks freely as long as they satisfy a certain con-
straint.

3.1. Algorithm description

Observe (6) again and note that it can be rewritten as

T (y,Q) = T (h,M + Q − 1)T (u,Q), (11)

where T (·, ·) is defined as in (1). Here Q can be any positive
integer. Note that in the MNP method Q is chosen as P, as
described in the previous section. Suppose the receiver gath-

ers J blocks with J ≥ 2. Then we have Y(J)
Q = HM+Q−1U(J)

Q ,
where

Y(J)
Q =

[
T
(

y(1),Q
)

T
(

y(2),Q
) · · · T

(
y(J),Q

)]
,

HM+Q−1 = T (h,M + Q − 1),
(12)

U(J)
Q =

[
T
(

u(1),P
) · · · T

(
u(J),P

)]
. (13)

Note that U(J)
Q has size (M + Q − 1) × QJ and Y(J)

Q has size
(P +Q− 1)×QJ . For notational simplicity, from now on we
will use subscript Q as in NQ to denote NQ = N+Q−1 where
N denotes a positive integer. In particular,

MQ =M + Q − 1,

PQ = P + Q − 1.
(14)

Notice that they still have the relationship PQ =MQ + L.

Assume now the matrix U(J)
Q has full row rankMQ. Taking

singular-value decomposition (SVD) of Y(J)
Q we have

Y(J)
Q =

[
Ur U0

][Σ
0

][
Vr V0

]†
. (15)

The size of Σ is MQ ×MQ since both HMQ and U(J)
Q have full

rank MQ. The columns of the MQ × L matrix U0 are left an-
nihilators of matrix Y(J) and also of H since U(J) has full row
rank. Suppose

U†
0 =

⎡⎢⎢⎢⎢⎣
u11 u12 · · ·u1,P+Q−1

u21 u22 · · ·u2,P+Q−1
...

...
uL1 uL2 · · ·uL,P+Q−1

⎤⎥⎥⎥⎥⎦ . (16)

Form the Hankel matrices

Uk �

⎡⎢⎢⎢⎢⎣
uk1 uk2 · · · uk,L+1

uk2 uk3 · · · uk,L+2
...

...
uk,MQ uk,MQ+1 · · · uk,PQ

⎤⎥⎥⎥⎥⎦ (17)

for k, 1 ≤ k ≤ L. Then we have⎡⎢⎢⎢⎢⎣
U1

U2
...

UL

⎤⎥⎥⎥⎥⎦
︸ ︷︷ ︸

U matrix; size LMQ×(L+1)

h = 0. (18)

Vector h can thus be identified up to a scalar ambiguity.
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Figure 3: Q-repetition and shifting operation.

3.2. Q-repetition and shifting operation

As we can see in the previous section, the repetition and
shifting operation on a vector signal is crucial in the gener-
alized algorithm. Figure 3 gives a block diagram of this oper-
ation. For future notational convenience, the subscript Q as
in vQ(n) denotes the result of this operation on a vector sig-
nal. By viewing (11) and applying this operation on y(n) and
u(n), we obtain the relationship

yQ(n) =HM+Q−1uQ(n)

for any positive integer Q.

3.3. Special cases of the algorithm

The blind channel identification algorithm described above
uses two parameters: (a) the number of received blocks J ; (b)
the number of repetitions per block Q. A number of points
should be noted here:

(1) the algorithm works for any J and Q as long as U(J)
Q has

full row rank MQ. This is the only constraint for choosing
parameters J and Q;

(2) note that if we choose Q = 1 and J ≥ M, then the
algorithm reduces to the SGB algorithm [3];

(3) if we choose Q = P and J = 2, it becomes the MNP
algorithm [5].

So both the SGB method and the MNP method are a
special case of the proposed algorithm. Since U(J)

Q has size

MQ × QJ , U(J)
Q having full row rank implies QJ ≥ MQ =

M + Q − 1, or

Q ≥ M − 1
J − 1

. (19)

Also note that we cannot choose J = 1 since U(J)
Q can never

have full rank unless the block size M = 1. This is consistent
with the theory that two blocks are required for blind chan-
nel identification [4]. While the inequality (19) is a necessary

condition for U(J)
Q to have full rank, it is not sufficient because

it also depends on the values of entries of u(n). Nevertheless,
when inequality (19) is satisfied, the probability of U(J)

Q hav-
ing full rank is usually close to unity in practice, especially
when a large symbol constellation is used. Thus,

Q =
⌈
M − 1
J − 1

⌉
(20)

appears to be a selection that minimizes the computational
cost given the number of received blocks J . A detailed study

on the conditions for U(J)
Q to have full rank is presented in

Section 5.
When J = 2, Q can be chosen as small as M − 1 rather

than P. If we take J = 3, Q = �(M − 1/2)� makes the matrix
Y twice smaller. We can choose Q = 1 only when J ≥ M.
This coincides with the SGB algorithm which uses a richness
assumption [3].

4. FREQUENCY DOMAIN APPROACH

In this section we slightly modify the blind identification al-
gorithm and directly estimate the frequency responses of the
channel at different frequency bins and equalize the channel
in the frequency domain. We call the modified algorithm fre-
quency domain approach. Some of the ideas come from [12].
The receiver structure for the frequency domain approach is
shown in Figure 4. To demonstrate how this system works,
observe the PQ ×MQ full-banded Toeplitz channel matrix

HMQ = T
(

h,MQ
)
. (21)

Define a row vector vT
ρ = [1 ρ−1 · · · ρ−(PQ−1)] with ρ a

nonzero complex number. Due to full-banded Toeplitz struc-
ture of HMQ , we have

vT
ρ HMQ =

[
H(ρ) ρ−1H(ρ) · · · ρ−(MQ−1)H(ρ)

]
, (22)

where H(ρ) = ∑L
k=0 hkρ

−k is the channel z-transform evalu-
ated at z = ρ.

Let N be chosen as an integer greater than or equal to PQ,
and let ρ1, ρ2, . . . , ρN be distinct nonzero complex numbers.
Consider an N × PQ matrix VN×PQ whose ith row is vT

ρi :

VN×PQ =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

1 ρ−1
1 ρ−2

1 · · · ρ
−(PQ−1)
1

1 ρ−1
2 ρ−2

2 · · · ρ
−(PQ−1)
2

...

1 ρ−1
N ρ−2

N · · · ρ
−(PQ−1)
N

⎤⎥⎥⎥⎥⎥⎥⎥⎦ . (23)

It is easy to verify that

VN×PQHMQ = ΛN

⎡⎢⎢⎢⎢⎢⎢⎢⎣

1 ρ−1
1 · · · ρ

−(MQ−1)
1

1 ρ−1
2 · · · ρ

−(MQ−1)
2

...

1 ρ−1
N · · · ρ

−(MQ−1)
N

⎤⎥⎥⎥⎥⎥⎥⎥⎦ ,

︸ ︷︷ ︸
VN×MQ matrix

(24)
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Figure 4: Receiver structure for frequency domain approach.

where

ΛN = diag
([
H
(
ρ1
)

H
(
ρ2
) · · · H

(
ρN
)])

� diag
(

h̃N
)

(25)

is a diagonal matrix with frequency domain channel coeffi-
cients as the diagonal entries. Now, when we gather receiving
blocks and repeat them as in (12), we get the following ma-
trix:

Y(J)
Q =

[
T (y(1),Q) T (y(2),Q) · · · T

(
y(J),Q

)]
. (26)

Since we have Y(J)
Q = HMQU(J)

Q in absence of noise, by

multiplying VN×PQ and Y(J)
Q , we have

Z = VN×PQY(J)
Q = VN×PQHMQU(J)

Q = ΛNVN×MQU(J)
Q . (27)

Recall that rank(Y(J)
Q )=rank(U(J)

Q ) =MQ. Since ρ1, ρ2, . . . , ρN
are all distinct, the matrix Z has the same rank as Y(J)

Q . The
dimension of the null space of matrix Z is hence N −MQ. By
performing SVD on Z, we can find these N −MQ left anni-
hilators of Z, which are also annihilators of ΛNVN×MQ . There

exists an (N −MQ)×N matrix U†
0 such that U†

0 Z = 0. Since

U(J)
Q has full rank, this implies

U†
0ΛNVN×MQ = 0. (28)

Suppose

U†
0 =

⎡⎢⎢⎢⎢⎣
u11 u12 · · · u1N

u21 u22 · · · u2N
...

...
...

uN−MQ ,1 uN−MQ ,2 · · · uN−MQ ,N

⎤⎥⎥⎥⎥⎦ . (29)

Then by observing the i jth entry of (28), we have

u†i j h̃
†
N = 0 (30)

for all i, j, 1 ≤ i ≤ N −MQ and 1 ≤ j ≤ MQ, where ui j =
[ui1ρ

−( j−1)
1 ui2ρ

−( j−1)
2 · · · uiNρ

−( j−1)
N ]†. Here h̃N is the row

vector in (25). Form the MQ ×N matrices

Ui =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

ui1 ui2 · · · uiN
ui1ρ

−1
1 ui2ρ

−1
2 · · · uiNρ

−1
N

ui1ρ
−2
1 ui2ρ

−2
2 · · · uiNρ

−2
N

...

ui1ρ
−(MQ−1)
1 ui2ρ

−(MQ−1)
2 · · · uiNρ

−(MQ−1)
N

⎤⎥⎥⎥⎥⎥⎥⎥⎦ ,

(31)

and let U = [UT
1 UT

2 · · · UT
N−MQ

]T . Then from (30) we

have Uh̃N = 0. Then the frequency domain channel coeffi-

cients h̃N can be estimated by solving this equation. After the
frequency domain channel coefficients are estimated, the re-
ceived symbols can be equalized directly in the frequency do-
main, as in DMT systems.

Recall that we have the freedom to choose N as any inte-
ger greater than or equal to PQ and the values of ρi, 1 ≤ i ≤ N
as any nonzero complex number in the z-domain. In this pa-
per, we use N = PQ and

ρk = exp
(
j2kπ
N

)
, k = 0, 1, . . . ,N − 1. (32)

Note that since H(z) is an Lth order system, there are
at most L values among H(ρi) which can be zero (channel
nulls). By choosing N ≥ PQ, there are at least MQ nonzero
values among H(ρi), i = 1, 2, . . . ,PQ. In practice we can
choose to equalize the received symbols in frequency bins as-
sociated with the largest MQ frequency responses H(ρi) to
enhance the system performance. This provides resistance to
channel nulls.

5. GENERALIZED SIGNAL RICHNESS

For the generalized blind channel identification method pro-

posed in this paper to work properly, the matrix U(J)
Q de-

fined in (13) must have full row rank for given parame-
ters J and Q. An obvious necessary condition has been pre-
sented as inequality (19) in Section 3. The sufficiency, how-
ever, depends on the content of signal u(n). When Q =
1 and u(n) is rich, then there exists J such that U(J)

Q =
[u(0) u(1) · · · u(J − 1)] has full rank. When Q > 1, u(n)

requires another kind of richness property so that U(J)
Q has

full rank for a finite integer J . We call this property the gener-
alized signal richness and define it as follows.

Definition 1. An M × 1 sequence u(n), n ≥ 0 is said to be
(1/Q)-rich if there exists a finite integer J such that the (M +
Q − 1)× JQ matrix

U(J)
Q =

[
T
(

s(0),Q
)

T
(

s(1),Q
) · · · T

(
s(J),Q

)]
(33)

has full row rank M + Q − 1.

Several interesting properties of generalized signal rich-
ness will be presented in this section. The reason why we use
the notation of (1/Q) will soon be clear when these proper-
ties are presented.
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5.1. Measure of generalized signal richness

Lemma 1. If an M × 1 sequence s(n) is (1/Q)-rich, then s(n)
is (1/(Q + 1))-rich.

Proof. See the appendix.

Lemma 1 states a basic property of generalized signal
richness: the smaller the value of Q is, the “stronger” the con-
dition of (1/Q)-richness is. For example, if an M×1 sequence
s(n) is 1-rich, or simply rich, then it is (1/Q)-rich for any pos-
itive integer Q. On the contrary, a (1/2)-rich signal s(n) is not
necessarily 1-rich. We can thus define a measure of general-
ized signal richness for a givenM×1 sequence s(n) as follows.

Definition 2. Given an M×1 sequence s(n),n ≥ 0, the degree
of nonrichness of s(n) is defined as

Qmin � min
Q

(
s(n) is

1
Q

-rich
)
. (34)

Recall that the larger the degree of nonrichness Qmin is,
the weaker the richness of the signal s(n) is. If s(n) is not
(1/Q)-rich for any Q, then Qmin = ∞. The property of an in-
finite degree of nonrichness can be described in the follow-
ing lemma. We use the notation pM(x) to denote the column
vector:

pM(x) =
[

1 x x2 · · · xM−1
]T

. (35)

Lemma 2. Consider an M × 1 sequence s(n). The following
statements are equivalent:

(1) s(n) is not (1/Q)-rich for any Q;
(2) the degree of nonrichness of s(n) is infinity;
(3) either there exists a complex number α such that

[1 α · · · αM−1] is an annihilator of s(n) or
[0 · · · 0 1] is an annihilator of s(n);

(4) either polynomials pn(x) = pT
M(x)s(n), n ≥ 0 share

a common zero (at α) or their orders are all less than
M − 1.

Proof. See the appendix.

Note that the statement [0 · · · 0 1] is an annihilator
of s(n) in condition (3) and the statement that polynomials
pn(x) have orders less than M − 1 in condition (4) can be
interpreted as the special situation when the common zero α
is at infinity.

If an M × 1 sequence s(n) has a finite degree of non-
richness, or s(n) is (1/Q)-rich for some integer Q, then it can
be shown that the maximum possible value of Qmin is M− 1,
as described in the following lemma.

Lemma 3. If M > 1 and an M×1 sequence s(n) is not (1/(M−
1))-rich, then it is not (1/Q)-rich for any Q.

Proof. See the appendix.

With Lemma 3, we can see that for an M × 1 sequence
s(n), the possible values of the degree of non-richness Qmin

are 1, 2, . . . ,M − 1, and ∞. (1/(M − 1))-richness is thus
the weakest form of generalized richness. When using the
MNP method [9], this weakest form of generalized richness
is very crucial. If this weakest form of richness of s(n) is
not achieved, then by Lemma 2 s(n) has an infinite degree
of non-richness and polynomials pT

M(x)s(n) have a common
factor (x − α). Then as in Section 2.3, when we take GCD of
the polynomials representing the received blocks, the receiver
would be unable to determine whether the factor (x− α) be-
longs to the channel polynomial or is a common factor of the
symbol polynomials. Therefore, if the input signal s(n) has in-
finite degree of non-richness, all methods proposed in this paper
will fail for all Q.

Furthermore, the MNP method proposed in [5] uses Q =
P. Using Lemma 3, we see that using Q = M − 1 is sufficient
if we are computing the GCD of polynomials representing
received blocks and the following two conditions are true: (1)
the GCD is known to have a degree less than or equal to L; (2)
the degree of each symbol polynomial is less than or equal to
M−1. Using Q = P not only is computationally unnecessary,
but also, as we will see in simulation results in Section 6, has
sometimes a worse performance than using Q = M − 1 in
presence of noise.

The sufficiency ofQ =M−1 can also be understood from
the point of view of polynomial theory. Suppose polynomials
a(x) and b(x) have degrees less than or equal to P − 1 and
have a greatest common denominator d(x) whose degree is
less than or equal to L. Suppose a(x) = d(x)a1(x) and b(x) =
d(x)b1(x) and both a1(x) and b1(x) have degrees less than or
equal to M−1 and they are coprime to each other. Then there
exists polynomials p(x) and q(x) whose degree are less than
or equal to M − 2 such that 1 = p(x)a1(x) + q(x)b1(x) and
thus d(x) = p(x)a(x) + q(x)b(x).

5.2. Connection to earlier literature

An earlier proposition mathematically equivalent to Lemma
3 has been presented in the single-input-multiple-output
(SIMO) blind equalization literature [10, 13]. We review it
here briefly.

Proposition 1. Let h[n] be J × 1 vectors. Suppose a QJ × (Q+
M − 1) block Toeplitz matrix

TQ(h)

=

⎡⎢⎢⎢⎢⎢⎣
h[0] h[1] · · · h[M − 1] 0 · · · 0

0 h[0] h[1] · · · h[M − 1]
. . .

...
...

. . .
. . .

. . .
. . .

. . . 0
0 · · · 0 h[0] h[1] · · · h[M − 1]

⎤⎥⎥⎥⎥⎥⎦
(36)

satisfies the following conditions:

(1) h[0] 	= 0 and h[M − 1] 	= 0;
(2) h[n] = 0 for n < 0 and n ≥M;
(3) Q ≥M − 1.
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Then TQ(h) has full column rank if and only if

h(z) �
M∑
i=0

h[i]z−i 	= 0, ∀z. (37)

Here h[n] was used to refer to the impulse response of
a J × 1 channel. Q stands for the observation period in the
multiple-channel receiver end. Conditions (1) and (2) imply
that the channel has finite impulse response. Condition (3)
can be met by increasing the observation periodQ. While this
old proposition focuses on the coefficients of multiple chan-
nels rather than values of transmitted symbols, it is mathe-
matically equivalent to the statement that s(n) is (1/(M−1))-
rich if and only if polynomials pT

M(x)s(n) do not share com-
mon zeros. The case of Q < M − 1, however, has not been
considered earlier in the literature, to the best of our knowl-
edge.

5.3. Remarks on generalized signal richness

In this section we introduced the concept of generalized sig-
nal richness. Given an M × 1 signal s(n), n ≥ 0, the degree
of non-richness Qmin was defined. For an input signal with a
degree of non-richness Qmin, we can choose any

Q ≥ Qmin (38)

and some finite J for the generalized algorithm proposed in
Section 3 to work properly. The possible values of Qmin are
1, 2, . . . ,M − 1, and ∞. If s(n) has an infinite degree of non-
richness, the algorithm proposed in this paper will fail for
all Q. The degree of non-richness of a signal s(n) directly
depends on its content. A deeper study of degree of non-
richness will be presented elsewhere [14].

6. SIMULATIONS AND DISCUSSIONS

In this section, several simulation results, comparisons, and
discussions will be presented. We will first test our proposed
method and compare it with the existing methods [3, 5] de-
scribed in Section 2. Secondly, we will compare the perfor-
mances of time domain versus frequency domain approaches
and show that under some channel conditions the frequency
domain approach outperforms the time domain approach.
Finally, we will analyze and compare the computational com-
plexity of algorithms proposed in this paper.

6.1. Simulations of time domain approaches

A Rayleigh fading channel of order L = 4 is used. The size
of transmitted blocks is M = 8 and received block size is P =
M+L = 12. The normalized least squared channel estimation
error, denoted as Ech, is used as the figure of merit for channel
identification and is defined as follows:

Ech = ‖ĥ− h‖2

‖h‖2
, (39)
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Figure 5: Normalized least squared channel error estimation.
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Figure 6: Bit error rate.

where ĥ and h are the estimated and the true channel vec-
tors, respectively. The simulated normalized channel estima-
tion error is shown in Figure 5 and the corresponding BER is
presented in Figure 6. When the number of blocks J = 10, the
MNP method (with the number of block repetitions Q = 12)
outperforms the SGB method (Q = 1) by a considerable
range. Taking Q = 2 saves a lot of computation and yet yields
a good performance as indicated. Furthermore, in the case
of J = 2, the system with Q = 8 even outperforms the orig-
inal MNP method with Q = 12. This also strengthens our
argument in Section 5 that choosing Q as large as P is unnec-
essary.
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Figure 7: Normalized least squared channel error estimation.

6.2. Simulations of frequency domain approaches

Figure 7 shows the comparison of frequency domain ap-
proach and time domain approach under the channel coeffi-
cients H(z) = 1 − jz−1 + (−1 + 0.01 j)z−2 + (0.01 + j)z−3 −
0.01 jz−4.

For frequency domain approach, the normalized least
squared channel error is defined as

Ech = ‖̂̃h− h̃‖2

‖h̃‖2
, (40)

where

h̃ =
[
H
(
ρ1
)

H
(
ρ2
) · · · H

(
ρN
)]

(41)

and ̂̃h is the estimation of h̃. Simulation results show that
frequency domain approach outperforms time domain ap-
proach especially when the noise level is high. While the fre-
quency domain approach does not in general beat the time
domain approach for a random channel, it has been consis-
tently observed that frequency domain approach performs
better than time domain approach when the last channel co-
efficient h(L) has a small magnitude (i.e., at least one zero of
H(z) is close to the origin).

Since we have the freedom to choose values of coefficients
ρi, the receiver can adjust ρi dynamically according to the
a priori knowledge of the approximated channel zero loca-
tions. This is especially useful when the channel coefficients
are changing slowly from block to block.

6.3. Complexity analysis

For the algorithms presented in Section 3, the SVD computa-
tion dominates the computational complexity. The number
of blocks J , the number of repetitions per block Q, and the
received block size P decide the size of the matrix on which
SVD is taken. The complexity of SVD operation on an n×m

matrix [15] is on the order of O(mn2) with m ≥ n. Since Y(J)
Q

has size (P+Q−1)×QJ , the complexity is O(QJ(P+Q−1)2).
We can see that the complexity can be greatly reduced by
choosing a smaller Q. Recall that the SGB method [3] uses
Q = 1 and the MNP method [5] uses Q = P. We thus have
the following arguments:

(i) the MNP method has a complexity around 4P times
the complexity of the SGB method for any J . A choice
of Q between 1 and P could be seen as a compromise
between system performance and complexity;

(ii) when J is large, we have the freedom to choose a
smaller Q, as explained in the previous section.

For the frequency domain approach presented in Section 4,
an additional matrix multiplication is required. This de-
mands extra computational complexity of the order of
O(JP2

Q). However, if the values ρi are chosen as equally
spaced on the unit circle, an FFT algorithm can be ex-
ploited and the computational complexity will be reduced to
O(JPQ logPQ) and is negligible compared to the complexity
of SVD operations.

6.4. Simulations for time-varying channels

In this section, we demonstrate the capability of the proposed
generalized blind identification algorithm in time-varying
channels environments. The received symbols can be ex-
pressed as

y(n) =
L∑

k=0

h(n, k)x(n− k), (42)

where the (L + 1)-tap channel coefficients h(n, k) vary as the
time index n changes. We generate the channel coefficients
as follows. During a time interval T , the channel coefficients
change from h1(k) to h2(k), where h1(k) and h2(k), 0 ≤ k ≤
L represent two sets of (L + 1)-tap independent coefficients.
The variation of the coefficient is done by linear interpolation
such that

h(n, k) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
h1(k), if n = 0,

h2(k), if n = T ,

T − n

T
h1(k) +

n

T
h2(k) otherwise.

(43)

In our simulation, we choose T = 180. Coefficients of h1(k)
and h2(k) are given in Table 1. The size of transmitted blocks
is M = 8 and received block size is P = M + L = 12 (so the
channel coefficients completely change after 15 blocks). Sim-
ulations are performed under different choices of J and Q, as
indicated in Figures 8 and 9. The normalized least squared
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Table 1: Coefficients for the time-varying channel.

k h1(k) h2(k)

0 −0.6563 + 0.7059i −1.2519 + 0.2295i

1 −0.6534 + 1.1774i 0.9347 + 0.1237i

2 −0.4229− 0.2362i 0.0346− 0.6180i

3 0.2145− 0.2207i 0.7272− 1.4084i

4 −0.1478 + 0.2802i 0.8612 + 0.3455i

channel error is defined as

Ech = ‖ĥ− h‖2

‖h‖2
, (44)

where ĥ is the estimated channel and h is the averaged coef-
ficients during the time the channel is being estimated:

h = 1
JP

n0+JP−1∑
n=n0

[
h(n, 0) h(n, 1) · · · h(n,L)

]T
. (45)

In Figure 8 we see that when J = 10, the time range is too
large for the algorithm to estimate the time-varying chan-
nel accurately. The performance for J = 2 is much better in
high SNR region because the channel does not vary too much
during the time of two blocks. However, in low SNR region
the performance for J = 2 becomes bad. The case for J = 4
has the best performance among all other choices because the
channel does not vary too much during the duration of four
receiving blocks, and more data are available for accurate es-
timation. This simulation result provides clues about how we
can choose the optimal J : if the channel variation is fast (T is
smaller) we need a smaller J while we can use a larger J when
T is larger.

6.5. Remarks on choosing the optimal parameters

According to the simulations results above, we summarize
here a general guideline to choose a set of optimal param-
eters in practice.

(1) When the channel is constant and for a fixedQ, a larger
J appears to have a better performance (as shown in
Figure 5) since more data are available for accurate es-
timation.

(2) When the channel is time-varying, the optimal choice
of J depends on the speed of channel variation. Sim-
ulation results in Figures 8 and 9 suggest when the
channel coefficients completely change in N blocks, a
choice of J ≈ N/4 could be appropriate.

(3) Suppose J is given, a choice of Q as the smallest inte-
ger that satisfies inequality (19) often has a satisfactory
performance. A slightly largerQ can sometimes be bet-
ter (see Figure 5 for J = 10) at the expense of a slightly
increased complexity. However, if Q is too large, the
performance could be even worse (see Figure 5 for J =
2, Q = 12).

The guidelines above are given by observing the simulation
results. An analytically optimal set of J and Q is still under
investigation.
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Figure 9: Bit error rate performance for a time-varying channel.

6.6. Noise handling for large J

It should be noted that when J is very large (and Q = 1), the
proposed method behaves like a traditional subspace method
using second-order statistics. Suppose

Y(J) = HU(J) + E(J), (46)
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where E(J) is composed of J columns of noise vectors e(n).
The autocorrelation matrix of received blocks can be esti-
mated as

Ryy = E
[

y(n)y†(n)
] ≈ 1

J
Y(J)Y(J)†. (47)

If the input signal and channel noise are uncorrelated, we can
write Ryy as

Ryy = HRuuH† + Ree, (48)

where Ruu = E[u(n)u†(n)] and Ree = E[e(n)e†(n)] are au-
tocorrelation matrices of input blocks and noise vectors, re-
spectively. If Ree is known (e.g., if the noise is white and noise
variance is N0, then Ree = N0IP), an improved estimation of
annihilators of matrix H can be performed by taking eigen-
decomposition of Ryy − Ree, which results in better chan-
nel estimation [3]. This technique, however, does not apply
when J is small.

7. CONCLUDING REMARKS

In this paper we proposed a generalized algorithm for blind
channel identification with linear redundant precoders. The
number of received blocks J ≥ 2 can be chosen freely de-
pending on the speed of channel variation. The minimum
number of repetitions Q of each received block is derived
to optimize the computational complexity while retaining
good performance. Simulation shows that when the system
parameter Q is properly chosen, the generalized algorithm
outperforms previously reported special cases, especially in a
time-varying channel environments.

A frequency domain version of the generalized algorithm
is also presented. Simulation result shows that it outperforms
time domain approach at low SNR region for certain types
of channels, for example, channels with a zero close to the
origin. Since we have the freedom to choose different fre-
quency parameters in the frequency domain approach, cer-
tain choices other than equally spaced grids on the unit circle
can be used to improve the system performance for different
channel zero locations. An even more challenging problem
might be to analytically derive the optimal frequency points
for a specific type of channel.

The concept of generalized signal richness for a vector sig-
nal is introduced. With the degree of non-richness of the in-
put signal decided, we can determine the minimum number
of repetitions theoretically. A complete set of necessary and
sufficient conditions for signals satisfying generalized signal
richness is still under investigation. The study of effect of a
linear precoder on the property of generalized signal richness
could also be a challenging problem.

APPENDIX

Proof of Lemma 1. Suppose s(n) is (1/Q)-rich but not (1/(Q+
1))-rich, then there exists a 1 × (M + Q) nonzero vector
vT = [v1 v2 · · · vM+Q] such that

vTT
(

s(n),Q + 1
) = 01×(Q+1), ∀n. (A.1)

Observing the first Q elements of the vector equation above,
we obtain

[
v1 v2 · · · vM+Q−1

]
T
(

s(n),Q
) = 01×Q, ∀n. (A.2)

Without loss of generality, assume [v1 v2 · · · vM+Q−1] to
be nonzero and it is an annihilator of T (s(n),Q). This vio-
lates the assumption that s(n) is (1/Q)-rich.

Proof of Lemma 2. Conditions (1) and (2) are equivalent by
definition. The equivalence of conditions (3) and (4) can
also be easily examined. If condition (3) is true, then ei-
ther pT

M+Q−1(α) or [0 · · · 0 1] is an annihilator of sQ(n)
(as defined in Section 3.2) for all Q and hence condition
(1) is also true. In the case condition (1) is true, assume
there exists n ≥ 0 such that the degree of the polynomial
pT
M(x)s(n) is M− 1. Then for any Q, there exists a row vector

vT = [v1 v2 · · · vM+Q−1] such that vTsQ(n) = 0, for all n.
This implies

M∑
l=1

vk+l
[

s(n)
]
l = 0, ∀n, k ≥ 0, (A.3)

where [·]l represents the lth element of a column vector.
So the series {vk}M+Q−1

k=1 must satisfy the recurrence (A.3)
for any n ≥ 0. This requires the characteristic polynomials
pT
M(x)s(n),n ≥ 0 to share at least one zero. So condition (4)

must be true. By the arguments above, these four conditions
are equivalent.

Proof of Lemma 3. If s(n) is proportional to a same nonzero
vector x for all n, then it is obviously not (1/Q)-rich for
any Q. We thus assume without loss of generality that
s(0) and s(1) are linearly independent. Suppose polynomi-
als pT

M(x)s(0) and pT
M(x)s(1) have two sets of distinct zeros

{α01,α02, . . . ,α0,M−1} and {α11,α12, . . . ,α1,M−1}, respectively.
Since s(n) is not (1/Q)-rich, there exists a (2M − 2)-row vec-
tor vT = [v1 v2 · · · v2M−2] such that vTT (s(n),M − 1) =
01×(M−1). We have that the nonzero row vector vT must have
the form of

vT =
M−1∑
k=1

ck
[

1 α−1
0,k α−2

0,k · · · α−(M−2)
0,k

]

=
M−1∑
k=1

dk
[

1 α−1
1,k α−2

1,k · · · α−(M−2)
1,k

] (A.4)

for some coefficients c1, c2, . . . , cM−1, d1,d2, . . . ,dM−1. This
implies

[
cT −dT

]
V = 0T , (A.5)
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where cT = [c1 c2 · · · cM−1], dT = [d1 d2 · · · dM−1],
and

V =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

pT
2M−2

(
α01

)
...

pT
2M−2

(
α0,M−1

)
pT

2M−2

(
α11

)
...

pT
2M−2

(
α1,M−1

)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(A.6)

is a Vandermonde matrix. If all zeros {αi j} are distinct, V is a
(2M−2)×(2M−2) invertible matrix and (A.5) implies cT =
dT = 0T and hence vT = 0T . This contradicts the assumption
that s(n) is not (1/(M − 1))-rich. Therefore, if s(n) is not
(1/(M − 1))-rich, there must be a common zero shared by
pT

2M−2(x)s(0) and pT
2M−2(x)s(1). Similarly, we can obtain that

there exists an α such that pT
2M−2(α)s(n) = 0 for all n. Using

Lemma 2, this implies that s(n) is not (1/Q)-rich for all Q.
In the case where the polynomial pT

2M−2(x)s(n) has mul-
tiple zeros for some n, the matrix V in (A.5) can be replaced
with a confluent Vandermonde matrix [15] which is still in-
vertible.
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