
Remarks on certain new methods for blind identification of FIR channels

P. P. Vaidyanathan and Borching Su

Dept. Electrical Engr., Caltech, Pasadena, CA
ppvnath@systems.caltech.edu borching@systems.caltech.edu

Abstract. This paper discusses a number of issues pertain-
ing to blind identification of channels. The basics of blind
identification are first discussed and a method called Van-
dermonde method is presented which is based on elemen-
tary linear system principles. Then some remarks are made
about precoders with paraunitary antipodal preprocessors.
It is argued that such preprocessors usually destroy signal
richness which is a necessary feature in blind identification
systems.1

1. INTRODUCTION

Our discussions in this paper will center around the trans-
multiplexer structure shown in Fig. 1. The signals sk(n)
are symbol streams such as PAM or QAM signals, [4].
These could be symbols generated by different users who
wish to transmit messages over the channel. Or they could
be different independent parts of the signals generated
by one user [11]. The symbol streams sk(n) are passed
through the interpolation filters or transmitter filters Fk(z)
to produce the signals

xk(n) =
∑

i

sk(i)fk(n − iP )

The sum x(n) of the signals xk(n) is then transmitted over
a common channel. The channel is described by a linear
time invariant filter C(z) followed by additive noise. At the
receiver end, the filters Hk(z) have the task of separating
the signals and reducing them to the original rates by P -
fold decimation. Since the M signals are mutiplexed into
one channel, it is necessary to have P ≥ M . When P > M
we have a redundant transmultiplexer.
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Fig. 1. The transmultiplexer system (P ≥ M ).
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Figure 2 shows the polyphase representation for this system
[2], [10]. It is possible to choose the filters {Fk(z)} and
{Hk(z)} or equivalently R(z) and E(z) such that there
is perfect symbol recovery (ŝk(n) = sk(n)) in absence of
channel noise. Instead of perfect symbol recovery, it is also
possible to design the receiver filters for minimum mean
square error [2], [5] or for minimum bit error rate.
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Fig. 2. Polyphase representation of Fig. 1.

If the channel transfer function is unknown, it has to be es-
timated before equalization. Such estimation can be done
either with the help of training signals or by blind identifi-
cation methods. It is well known that with non redundant
systems (P = M ) blind identification is not possible un-
less we use fourth order moments such as the Kurtosis of
the data [6]. However blind identification is indeed pos-
sible without the use of fourth order moments, if we use
redundant transmultiplexers or filter bank precoders [5].

In this paper we discuss a number of issues pertain-
ing to blind identification of channels. The basics of blind
identification are first discussed and a method called Van-
dermonde method is presented which is based on elemen-
tary linear system principles. We then make some remarks
about precoders with paraunitary antipodal preprocessors
and argue that paraunitary preprocessors usually destroy
signal richness which is a necessary feature in blind identi-
fication systems. The reader not familiar with recent liter-
ature can get a quick tour from a recent tutorial on filter
bank precoders and blind identification systems [12].

2. BLIND IDENTIFICATION
First a few words on blind identification based on filter
bank precoders. Assume that the channel is FIR with

C(z) =
L∑

n=0

c(n)z−n,



and that P ≥ M + L. Assume further that the receiver
filters have order ≤ P −1, and that the transmitting filters
have order ≤ M − 1. In particular therefore R(z) has the
form

R(z) =
[
R1

0

]
(1)

Figure 3 shows the path from the transmitted symbols to
the channel output y(n). For convenience we consider the
blocked version y(n) as indicated. With the vector s(n)
as in the figure, it can be shown that [5], [2], [12]

y(n) = AR1s(n)

where A is a fully banded Toeplitz matrix given by

A =





c(0) 0 . . . 0
c(1) c(0) . . . 0

...
...

. . .
...

c(L)
0 c(L)
...

. . .
...

0 0 . . . c(L)





(2)

Notice that A is P × M .
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Fig. 3. The zero padding system with precoder R1.

Assume the channel c(n) is unknown. Under certain con-
ditions it can be argued that the observation of y(n) can
be used to identify the channel c(n) upto a scale-factor am-
biguity [5], [12]. This is called blind identification because
the input stream s(n) is unknown, unlike in training-based
channel identification. Imagine we observe the output vec-
tor y(n) for a certain duration, say 0 ≤ n ≤ J − 1, and
write the equation

[y(0) y(1) . . . y(J − 1) ]︸ ︷︷ ︸
Y matrix; size P×J

= A︸︷︷︸
P×M

R1︸︷︷︸
M×M

[ s(0) s(1) . . . s(J − 1) ]︸ ︷︷ ︸
S matrix; size M×J

(3)

In order for blind identification to succeed it is necessary
[5,12] for the input to be rich, that is, there exists a J such
that S has full rank M. Since A and R1 have rank M ,
the product on the right hand side of Eq. (3) has rank M.
So the P × J data matrix Y has rank M , and there are
P − M linearly independent vectors orthogonal to all the
columns in Y, that is,

V†Y = 0 (4)

for some (P−M)×P matrix V with rank P−M. Starting
from this idea it is possible to identify the leftmost column
of (2) upto a scale-factor ambiguity. For the case where
P = M + L this is especially simple, and is explained
in great detail in [5]. The method can also be modified
to work under the practical situation where there is chan-
nel noise [5], [12]. Variations of the method which work
in the frequency domain have been reported in [13]. The
advantage of such variations is that they are more readily
applicable to OFDM systems based on cyclic-prefix which
uses frequency-domain equalizers.

3. THE VANDERMONDE METHOD

We now argue that the principle of blind identification fol-
lows from elementary system theory. The discussion also
places in evidence a general method. Equation (4) is true
for any P ≥ M + L. Since Y = AR1S where S has full
rank M , this implies

V†AR1 = 0 (5)

Observe now that we have the identity

[ 1 z−1 z−2 . . . z−(P−1) ]





c(0) 0 . . . 0
c(1) c(0) . . . 0

...
...

. . .
...

c(L)
0 c(L)
...

. . .
...

0 0 . . . c(L)





︸ ︷︷ ︸
A

= C(z) [ 1 z−1 z−2 . . . z−(P−L−1) ] (6)

for any z. This follows from the fact that A is a fully
banded Toeplitz matrix. Eq. (6) is a direct consequence
of the fact that exponentials are eigenfunctions of LTI sys-
tems. If zk is a zero of C(z) it then follows that

[
1 z−1

k z−2
k . . . z

−(P−1)
k

]
A = 0

If C(z) has L distinct zeros zk it follows therefore that
there are L vectors of the form

z†k =
[
1 z−1

k z−2
k . . . z

−(P−1)
k

]
(7)

which annihilate A from the left. These therefore annihi-
late Y as well. Vectors of the form (7) will be referred to
as Vandermonde vectors. Assume for a moment that there
are no other Vandermonde vectors annihilating Y. Then,



simply by identifying the L Vandermonde vectors annihi-
lating the data Y we can find all the L zeros of C(z). This
identifies C(z) upto a scale factor.

We now explain how the numbers zk can be identified
in the first place. Notice that a Vandermonde vector (7)
annihilates a column vector with elements a(0), a(1), . . . if

and only if the polynomial (or FIR filter)
∑P−1

n=0 a(n)z−n

has a zero at zk. Thus, once we have the data matrix Y we
simply identify the P−1 zeros of each of the J polynomials
defined by the J columns of Y. From this we can identify
all the zeros which are common to all the J polynomials.
There are at least L such common zeros, namely the L
distinct zeros of the channel, and these identify the channel
as explained above.

It only remains to address the situation where there are
more than L common zeros among the polynomials defined
by the columns of Y. For example let zL be such a zero.
This means that the Vandermonde vector

z†L =
[
1 z−1

L z−2
L . . . z

−(P−1)
L

]

annihilates Y though C(zL) �= 0. Observe that

z†LY = z†LAR1S = C(zL)ẑ†LR1S

where the second equality follows from (6). Here ẑ†L is sim-

ilar to z†L but only has the first M entries. Thus the condi-

tion z†LY = 0 implies that ẑ†LR1S = 0 unless C(zL) = 0.
Since S has full rank M, the preceding therefore implies

that ẑ†LR1 = 0. Thus

[
1 z−1

L z−2
L . . . z

−(M−1)
L

]
R1 = 0

That is, zL is a common zero of all the M polynomials
defined by the M columns of the precoder R1. So the most
typical situation is like this: we identify a certain number
of common zeros of the columns of Y. Of these, there are
some which are zeros of all columns of R1. Rejecting these,
there would still be L zeros and these are the zeros of C(z).
From these we can identify c(n) upto scale.

This procedure fails if one or both of the following things
happen: (a) the L zeros of the channel are not distinct. or
(b) there is a zero of the channel which is also a zero of all
the columns of R1. Since these are both unlikely, failure of
the method has low probability.

The preceding method for blind identification will be
referred to as the Vandermonde annihilation method. The
main advantage of this method is that it works for any
P ≥ M + L unlike the method in [5] which requires P =
M+L. The situation P > M+L arises for example in null
resistance precoders [9]. Before concluding this section, we
would like to draw attention to another important point.
Even though the Vandermonde annihilation method works
for the general case of P > L+M , it is not trivial to extend
the method to the case of noisy channels. Furthermore it
involves computation of common zeros of polynomials, and
is subject to numerical error for large sized matrices. The
method is therefore not commonly used.

4. PRECONDITIONERS

The performance of filter bank precoders with zero padding
or cyclic prefixing can often be improved by using a pre-
conditioning matrix G(z) in the transmitter and its inverse

G−1(z) in the receiver as shown in Fig. 4.
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Fig. 4. The precoder system with a preconditioner matrix
G(z).

In absence of noise the preconditioner and its inverse do
not change the behavior of the system from {sk(n)} to
{ŝk(n)} at all. It has been shown in [3] that a class of pre-
conditioners called antipodal paraunitary matrices (APU)
are especially useful when there is channel noise. Such

matrices are paraunitary (i.e., G†(ejω)G(ejω) = I) and
furthermore the entries of the coefficient matrices g(n) are
restricted to be ±c, where c is fixed for all coefficients. For
example in the FIR case

G(z) =
N∑

n=0

g(n)z−n

we have c = 1/
√

M(N + 1). The consequence of using
APU matrices is explained next. Assume perfect symbol
recovery in absence of noise. The error due to the channel
in absence of the preconditioner is e(n) = q̂(n) − q(n)
(see Fig. 4). Let ek(n) denote the kth component of this
vector for 0 ≤ k ≤ M − 1. In general the mean square
error

βk(n) = E|ek(n)|2

depends both on the block-time n and the index k (which
we refer to as the frequency-bin index because in cyclic
prefix systems such as the DMT system this is the inter-
pretation). If we use an FIR APU matrix of order N then
the recovery error is r(n) = ŝ(n)−s(n). Let rk(n) denote
the kth component of this vector for 0 ≤ k ≤ M−1. Then
its mean square error is given by [3]

E|rk(n)|2 =
1

M(N + 1)

N∑

�=0

M−1∑

k=0

βk(n + �) (8)

The fact that G(z) is APU has been used to derive this
expression [3]; note that the exact details of the APU co-
efficients g(n) do not enter this expression. The beautiful
implication of Eq. (8) is that the mean square error has
been averaged out. There is averaging across frequency
bins (i.e., with respect to k) and across block-time index
(i.e., with respect to �). In particular the mean square
error is identical for all k. This averaging does not neces-
sarily result in improved performace (e.g., bit error rate)



but it has been observed that for time-varying channels
(especially fast-varying ones) this is the case [3].

The use of antipodal paraunitary (APU) matrices has
been extended to a generalization called distributed APU
matrices [7]. In these systems the coefficients of the pa-
raunitary matrix need not occupy successive powers of

z−1 and have the form
∑N

n=0 g(n)z−kn where k0 <
k1 < k2 . . . It can be shown that preconditioners based
on DAPU systems have similar averaging properties ex-
cept that we now have more flexibility to choose the time
domain samples that are averaged. This has been shown
to be more useful for time varying channels [7].

The main point of interest for us here is that there ex-
ist certain useful filter bank precoder schemes where the
memoryless precoder (such as a zero padding precoder) is
preceded by a LTI system G(z) with memory. If we have
devised a scheme for blind identification of the channel
C(z) in the absence of the preconditioner G(z) (such as
in Sec. 2), will the scheme continue to work when there is
a preconditioner?

This is indeed the case as the following argument shows:
In Fig. 4 the symbol stream q̂(n) is available at the re-
ceiver. This can be used instead of ŝ(n) for blind iden-
tification of the channel because we can regard q(n) as
the transmitter symbol stream instead of s(n). This makes
perfect sense because G(z) is an invertible LTI system; for
every sequence q(n) there is a unique sequence s(n) and
vice versa.

Deeper thought shows that there is a slight technical dif-
ficulty here. Recall that the schemes described in Secs. 2,
3 have been possible under the assumption that the trans-
mitted symbol stream s(n) is rich (see remarks after Eq.
(3)). Similarly if we have to identify the channel from q̂(n)
then q(n) has to be rich. The question now is this: if we
pass a rich signal s(n) through an LTI system G(z), will
the output q(n) remain rich? Intuition tells us that this
should be so because G(z) is invertible. Surprisingly how-
ever this is not the case as explained next.

5. STAYING RICH

In this section we consider M ×M transfer matrices of the
form

G(z) =
N∑

n=0

g(n)z−n

Denote the input and output signals by x(n) and y(n)
respectively. Assume x(n) rich, that is, the matrix

[x(0) x(1) . . . x(Kx) ]

has rank M for sufficiently large Kx. The output y(n) is
rich if there exists an integer Ky such that

[y(0) y(1) . . . y(Ky) ]

has rank M . We say that G(z) is richness-preserving,

abbreviated RP, if richness of x(n) always implies richness

of y(n). If G(z) is memoryless, that is, G(z) = g(0) then

[y(0) y(1) . . . y(Ky) ] = g(0) [x(0) x(1) . . . x(Ky) ]

So we see that for a rich input, y(n) is rich if and only
if g(0) is nonsingular. If G(z) has memory then richness

preservation is nontrivial. In fact examples which do not
preserve richness are readily constructed. Thus consider
the very simple system

G(z) =
[

1 0
0 z−1

]
(9)

Let the input sequence be defined as

x(0) =
[

0
1

]
, x(1) =

[
1
0

]
,

with x(n) = 0 otherwise. Then it is readily verified that
y(n) = 0 unless n = 1. This shows that the output is not
rich though the input is. Notice that the system in Eq. (9)
is a simple first order paraunitary matrix [10]. Thus it is

invertible; in fact G(ejω) is unitary for all ω, and yet it
does not preserve richness! Next consider the example

G(z) = I + z−1

[
1 −1
1 −1

]
(10)

Even though g(0) is nonsingular this is not sufficient for
preserving richness. For example define the input as

x(0) =
[

0
1

]
, x(1) =

[
1
1

]

with x(n) = 0 otherwise. Then y(n) = 0 for all n �=
0, so the output is not rich. In this example G(z) is a
unimodular matrix, that is, det G(z) = 1. This implies
in particular that the inverse exists and is a polynomial
matrix as well. We see that even unimodular matrices may
not preserve richness.

5.1. Degree one paraunitary systems
It is well known2 that a degree-one FIR paraunitary matrix
can be written in the form G(z) = V(z)U where U is a
constant unitary matrix and the matrix V(z) has the form

V(z) = I − vv† + z−1vv† (11)

where v is a unit-norm vector. Can a degree-one building
block preserve richness under some conditions? Since U
does not affect richness we only have to check if V(z) is
richness-preserving. Thus consider the input singal with

x(0) = v, x(1) = v1, . . . ,x(M − 1) = vM−1

where vk are unit-norm vectors orthongonal to each other
and to v. Assume x(n) = 0 otherwise. This is clearly a
rich input. Observe that

[I − vv† + z−1vv†]v = z−1v

whereas
[I − vv† + z−1vv†]vk = vk

2Degree should not be confused with order. By definition a
degree-d system can be implemented with d delays. The system
G(z) = z−1IM has order one but degree M because it requires
M delays for its implementation.



Using these it follows that the output of V(z) in response
to such an input x(n) is such that

y(0) = 0, and y(n) = 0, n ≥ M

so that the matrix [y(0) y(1) . . . ] has rank at most
M −1 though the input is rich. So degree one paraunitary
systems are necessarily non richness-preserving!

5.2. Cascaded systems
It is easy to construct examples of systems which turn non-
rich inputs into rich outputs. For example consider Eq.
(9) which was shown to be non RP. This same system can
sometimes turn a nonrich input into rich output. For ex-
ample suppose x(n) is defined as

x(n) =
[

1
1

]
δ(n)

which is not rich. Then the output has the samples

y(0) =
[

1
0

]
, y(1) =

[
0
1

]

showing that y(n) is rich. For this reason we cannot argue
that a cascade of systems destroys richness if one mem-
ber of the cascade destroys richness. A simple example is
this: suppose we cascade the unimodular system Eq. (10)
with its inverse (which is also causal unimodular). Then
the result is the identity matrix which obviously preserves
richness (though one of the elements in the cascade is not
RP).

One consequence of this observation is this: even though
an arbitrary FIR paraunitary matrix is a cascade [10] of de-
gree one building blocks of the form (11), the fact that (11)
is not RP is not sufficient to prove that all FIR parauni-
tary matrices are non-RP. However it can (unfortunately)
be proved by other means that nonconstant FIR parauni-
tary matrices can never be richness-preserving [8].

6. CONCLUDING REMARKS

More complete necessary and suffiicient conditions for rich-
ness preservation are currently being investigated. It can
be shown in particular [8] that if g(0) is nonsingular then
the necessary and sufficient is that G(z) be of the form

G(z) = (a0 + a1z
−1 + . . . + aNz−N )g(0)

with a0 �= 0. Next, if the transfer matrix G(z) is a con-
stant, that is G(z) = A, we know that it preserves rich-
ness if and only if A is nonsingular. Now imagine that
the entries of A are chosen at random (say with a Gaus-
sian distribution). Then the probability of any column
being an exact linear combination of the other columns is
zero, so the matrix is nonsingular with probability one. In
this sense, memoryless systems are almost always richness-
preserving.

Consider again G(z) =
∑N

n=0 g(n)z−n with N > 0,
so the system has memory. Assume that the entries of
the matrices g(n) are chosen at random. Then g(0)
is nonsingular with probability one. But the probabil-
ity that the other matrices simultaneously have the form
g(1) = a1g(0),g(2) = a2g(0), . . . is clearly zero. This

shows that a system with memory is almost always non
richness-preserving. This does not however mean that it
will destroy the richness of every rich input; it only assures
the existence of a rich input for which the output is non
rich. Indeed it might turn out that if the inputs are also
chosen at random using, say, a Gaussian distribution or a
discrete signal constellation, then the output would stay
rich for almost all rich inputs. In that sense the precondi-
tioning matrices in Fig. 4 may not affect blind identifia-
bility at all! Finally, there are other possible definitions of
richness, and will be explored elsewhere.
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