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Abstract— In this paper a novel generalization of subspace-
based blind channel identification methods in cyclic prefix (CP)
systems is proposed. For the generalization, a new system
parameter called repetition index is introduced whose value
is unity for previously reported special cases. By choosing a
repetition index larger than unity, the number of received blocks
needed for blind identification is significantly reduced compared
to all previously reported methods. This feature makes it more
realistic especially in wireless environments where the channel
state is usually fast-varying. Given the number of received blocks
available, the minimum value of repetition index is derived.
Theoretical limit allows the proposed method to perform blind
identification using only three received blocks. Simulation results
not only demonstrate the capability of the algorithm to perform
blind identification using fewer received blocks, but also show
that in some cases system performance can be improved by
choosing a repetition index larger than needed. If the number of
received blocks and the repetition index are optimally chosen, the
proposed method outperforms previously reported special cases,
especially in time-varying channel environments.1

I. I NTRODUCTION

In digital communication systems, it is well-known that
linear redundant precoding (LRP) facilitates block equalization
of frequency-selective channels by eliminating inter-block in-
terference (IBI). Two major types of LRP techniques are zero-
padding (ZP) and cyclic prefix (CP). ZP systems are superior
in the sense they guarantee symbol recovery regardless of
channel null locations. But the CP precoders are more widely
used in many current standards such as orthogonal frequency
division multiplexing (OFDM) and single-carrier cyclic prefix
(SC-CP).

Blind channel estimation algorithms exploiting redundancy
introduced by LRP have long been of great interest. Systems
using these techniques require very few, if any, further redun-
dant symbols and hence possess better bandwidth efficiency
compared to those using training-based methods. However,
many blind estimation methods [1] require accumulation of
a large number of received data so that they usually become
unrealistic over time-varying channels. Recently, several new
subspace-based methods exploiting ZP structures have been
reported to require much fewer blocks [2]–[4]. These advances
suggest blind channel estimation can be done in a much
shorter time and hence become more applicable to time-
varying channels.

However, ZP structures do not fit the currently most popular
wireless standards such as OFDM and hence the applications
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of these blind methods are seriously limited. Blind identi-
fication methods in CP systems have completely different
and usually much more sophisticated designs. Most existing
blind identification methods for CP/OFDM systems fall into
either subspace-based [5] or non-subspace-based categories.
Non-subspace-based methods often take advantage of finite-
alphabet property of transmitted symbols and involve consid-
erable computational complexity especially when the size of
constellation is large [6], [7]. Subspace-based methods, on the
other hand, require no knowledge on symbol constellations,
but many of them [8]–[12] involve calculating statistics of
received blocks and hence converge much slower than methods
exploiting finite constellations. The number of received blocks
needed for estimation is high in order to satisfy the persistency
of excitation (p.o.e) criterion of the input [11].

In this paper, we propose a generalization to previously
reported subspace-based blind methods for CP systems by
introducing a new system parameter calledrepetition index,
whose value is unity for all previously reported subspace-
based methods. When the repetition index is chosen to be
greater than one, the number of received blocks needed can
be significantly reduced. The rest of the paper is organized as
follows. Section II reviews a known prototype algorithm for
subspace-based blind identification in CP systems. In section
III we present the generalized algorithm. Simulation results are
presented in Section IV and conclusions are made in section
V.

A. Notations

Boldfaced lower case letters represent column vectors. Bold-
faced upper case letters and calligraphic upper case letters
are reserved for matrices. SuperscriptsT and † as in AT

and A† denote the transpose and transpose-conjugate oper-
ations, respectively, of a matrix or a vector.[v]k denotes
the kth entry of vectorv. All the vectors and matrices in
this paper are complex-valued.WM is an M × M DFT
matrix whosekl-th entry ise−j2π(k−1)(l−1)/M . Column and
row indices of all matrices and vectors begin at one. If
v = [ v1 v2 · · · vm ]T is anm×1 vector, we useTn(v)
to denote the(m + n − 1) × n Toeplitz matrix [14] whose

first column is
[

vT 0T
(n−1)×1

]T

and whose first row is[
v1 01×(n−1)

]
. Kl(v) denotes thel× (m− l + 1) Hankel

matrix [14] whose first column is[ v1 v2 · · · vl ]T and
whose last row is[ vl vl+1 · · · vm ]. Due to the special
property of cyclic prefixes, we will use the following notation
extensively in this paper.[v]ab denotes the(b − a + 1) × 1



Fig. 1. A typical cyclic prefix system

vector [ va va+1 · · · vb ]T if 1 ≤ a ≤ b ≤ m. An
extension of this definition to any arbitrary pair of integers
a and b satisfying a ≤ b is made by definingvk as
v(k−1 mod m)+1 for any k > m or k < 1. For example,

if v = [ v1 v2 v3 ]T , then [v]−1
7 denotes the vector

[ v2 v3 v1 v2 v3 v1 v2 v3 v1 ]T .

II. PROBLEM FORMULATION AND L ITERATURE REVIEW

A. Cyclic Prefix System Overview

Consider the communication system using cyclic prefix(CP)
depicted in Fig. 1. The source symbolss1(n), s2(n), ..., sM (n)
are in a blocked form of vectorss(n) of sizeM . The vector
s(n) is precoded by anM ×M constant matrixR and results
in precoded datauM (n). For OFDM or multi-carrier (MC)
systems,R = 1√

M
W†

M is the IDFT matrix. For single-
carrier cyclic prefix (SC-CP) systems,R is chosen asIM . A
cyclic prefix of lengthL, taking from the lastL elements of
uM (n), is defined asucp(n) =

[
0L×(M−L) IL

]
uM (n).

The cyclic prefix is appended touM (n), forming a vector
u(n) =

[
ucp(n)T uM (n)T

]T
whose length isP = M +

L. The information with redundancy is then sent over the
channelH(z). We assumeH(z) is an FIR channel with a
maximum orderL, i.e., H(z) =

∑L
k=0 hkz−k, and defineh

as the column vector[ h0 h1 · · · hL ]T . The signal is
corrupted by channel noisee(n). The received symbolsy(n)
are blocked intoP × 1 vectorsy(n). Also let e(n) denote
the blocked version of the noisee(n). Denoteycp(n) as the
first L and yM (n) as the lastM entries of y(n) so that
y(n) =

[
ycp(n)T yM (n)T

]T
. It can be shown that

yM (n) = HciruM (n) + eM (n) (1)

whereHcir is an M × M circulant matrix [15] whose first
column is

[
hT 0T

M−L−1

]T
and eM (n) = [e(n)]L+1

P is
the noise vector. TheL×1 vectorycp(n) contains inter-block
interference (IBI) and can be expressed as

ycp(n) = Hlucp(n) + Huucp(n− 1) + ecp(n) (2)

where

Hl ,




h0 0
...

. ..
hL−1 · · · h0


 andHu ,




hL · · · h1

. . .
...

0 hL




areL×L matrices andecp(n) = [e(n)]1L represents the noise.
ycp(n) is usually dropped for channel equalization and only
yM (n) passes through theM × M equalizerT and results
in recovered symbol̂s(n). When the channel coefficients are
known, the optimal equalizerT can be derived to minimize
mean square error of equalized symbols.

B. Subspace-based Blind Channel Identification

The problem of interest in this paper is to estimate channel
coefficients h using only measurements ofy(n) without
knowledge ofu(n). In this subsection we review an algorithm
which has been used in three previously reported methods [9],
[11], [12]. For simplicity we first ignore the noise terme(n).
Define a composite blockcontaining information from two
consecutive blocks as

ȳ(n) =
[

yM (n− 1)T ycp(n)T yM (n)T
]T

. (3)

Then from Eqs. (1) and (2) we have

ȳ(n) =

[ HciruM (n− 1)
Hlucp(n) + Huucp(n− 1)

HciruM (n)

]
= H̄ū(n) (4)

where

H̄=




Hcir 0M×M

0L×(M−L)Hu Hl0L×(M−L)

0M×M Hcir2


, ū(n)=

[
uM (n− 1)

[uM (n)]−L+1
M−L

]
,

and Hcir2 is obtained by permuting the lastL columns of
Hcir to the leftmost and is still a circulant matrix [15]. A
special case of Eq. (4) whenM = 4 andL = 2 is shown as



y01
y02
y03
y04
ycp1
ycp2
y11
y12
y13
y14



=




h0 0 h2 h1
h1 h0 0 h2 0
h2 h1 h0 0
0 h2 h1 h0
0 0 h2 h1 h0 0 0 0
0 0 0 h2 h1 h0 0 0

h2 h1 h0 0
0 h2 h1 h0

0 h0 0 h2 h1
h1 h0 0 h2







u01
u02
u03
u04
u13
u14
u11
u12




. (5)

For notational convenience, here we sety0k = [yM (n− 1)]k,
y1k = [yM (n)]k, andycpk = [ycp(n)]k.

Theorem 1:The(2M +L)×2M matrix H̄ has full column
rank if and only if H(z) =

∑L
k=0 hkz−k does not have any

zero atz = ej2πl/M , 0 ≤ l ≤ M − 1.
Proof: See [11].

Suppose we gatherJ consecutive received blocks
y(0),y(1), · · · ,y(J − 1) at the receiver, then we haveJ − 1
composite blocks defined as in Eq. (3). We can construct
the (2M + L) × (J − 1) matrix by placing these composite
blocks together asY(J) = [ ȳ(1) ȳ(2) · · · ȳ(J − 1) ] .
Then we have Y(J) = H̄U(J) where U(J) =
[ ū(1) ū(2) · · · ū(J − 1) ] is a 2M × (J − 1) matrix.
Assume there exists an integerJ ≥ 2M + 1 such thatU(J)

has full row rank2M . Also assume the channel does not
have zeros atz = ej2πl/M so that H̄ has full rank. Then
rank(Y(J)) = 2M and henceY(J) hasL linearly independent
left annihilators. These annihilators are also left annihilators of
H̄ sinceU(J) has full rank. Given each annihilatorg†k, we can






y01 y04 y03
y02 y01 y04
y03 y02 y01
y04 y03 y02
ycp1 y04 y03
ycp2 ycp1 y04
y11 ycp2 ycp1
y12 y11 ycp2
y13 y12 y11
y14 y13 y12
y11 y14 y13
y12 y11 y14




=




h0 0 h2 h1 0 0 0 0 0 0
h1 h0 0 h2 0 0 0 0 0 0
h2 h1 h0 0 0 0 0 0 0 0
0 h2 h1 h0 0 0 0 0 0 0
0 0 h2 h1 h0 0 0 0 0 0
0 0 0 h2 h1 h0 0 0 0 0
0 0 0 0 h2 h1 h0 0 0 0
0 0 0 0 0 h2 h1 h0 0 0
0 0 0 0 0 0 h2 h1 h0 0
0 0 0 0 0 0 0 h2 h1 h0
0 0 0 0 0 0 h0 0 h2 h1
0 0 0 0 0 0 h1 h0 0 h2







u01 u04 u03
u02 u01 u04
u03 u02 u01
u04 u03 u02
u13 u04 u03
u14 u13 u04
u11 u14 u13
u12 u11 u14
u13 u12 u11
u14 u13 u12




(10)

construct a2M×(L+1) matrixGk such thatGkh = 0. Define
G =

[ GT
1 GT

2 · · · GT
L

]T
, then the channel coefficients

h can be recovered within a scalar ambiguity by solving the
equationGh = 0. The specific construction of the matrixG as
well as the algorithm in presence of noise will be automatically
covered when we describe the generalized method in Section
III. Due to space limit, they are omitted here.

A necessary condition for the method presented above is
that the2M × (J − 1) matrix U(J) must have full row rank
2M , which impliesJ ≥ 2M + 1. This means it requires a
large number of received blocks and makes these previously
reported algorithms unrealistic in fast-fading channel envi-
ronments since the channel coefficients may have changed
significantly during accumulation of the data. Even though
some adaptive techniques have been proposed (e.g., [11]) by
using a forgetting factor which gives larger weighting to newer
blocks than to older blocks, the usage of received symbols as
old as2M +1 blocks earlier, is still unavoidable. The method
we propose in Section III will overcome this limitation.

III. PROPOSEDMETHOD

A. Algorithm Development

We will derive our algorithm based on Eq. (4). Due to the
properties of circulant matrices [15], it can be shown that if
Eq. (4) is true, then we have

[yM (n− 1)]1−k
M =

[
Hcir 0M×k

0k×(M−L) Hk

]
[uM (n− 1)]1−k

M

(6)
for any k ≥ 0. HereHk = Tk(h)T is a k × (L + k) Toeplitz
matrix. Similarly we have

[yM (n)]1M+l =
[ Hl 0l×(M−L)

0M×l Hcir2

]
[uM (n)]1M+l (7)

for any l ≥ 0. Using knowledge of Eqs. (6) and (7), we can
“expand” the composite block̄y(n) in Eq. (4) byk symbols
upward andl symbols downward at our choice of arbitrary
nonnegative integersk and l. It can be shown that, if we
choosek and l such thatk + l = Q − 1 for some positive
integerQ, we can write a new channel equation as described
in the following theorem.

Theorem 2:Given a positive integerQ and nonnegative
integersk, l such thatk + l = Q− 1, then Eq. (4) implies

ȳkl(n) = H̄Qūkl(n) (8)

where

ȳkl(n) =
[ [

yM (n− 1)T
]−k+1

M
ycp(n)T

[
yM (n)T

]1
M+l

]T
,

H̄Q =

[
Hcir 0M×(M+Q−1)

0(L+Q−1)×(M−L) HL+Q−1 0(L+Q−1)×(M−L)
0M×(M+Q−1) Hcir2

]
,

and ūkl(n) =
[ [

uM (n− 1)T
]−k+1

M

[
uM (n)T

]1
M+l

]T
.

Now, by choosingk from 0 to Q− 1 (and sol from Q− 1 to
0) in Eq. (8) and puttinḡykl(n) together in a matrix, we get

YQ(n) = H̄QUQ(n) (9)
where

YQ(n) = [ ȳ0,Q−1(n) ȳ1,Q−2(n) · · · ȳQ−1,0(n) ]

is a (2M + Q + L− 1)×Q matrix and

UQ(n) = [ ū0,Q−1(n) ū1,Q−2(n) · · · ūQ−1,0(n) ]

is a (2M + Q − 1) × Q matrix. A special case of Eq. (9)
when M = 4, L = 2, and Q = 3 is shown in Eq. (10) at
the top of this page. Note that Eq. (4) implies Eq. (9) without
any additional assumptions. We can see this, for example, by
verifying that Eq. (5) is equivalent to Eq. (10). We call the
parameterQ the repetition indexsince for each received block
we can generate a matrixYQ(n) which hasQ columns.

Finally, if we accumulateJ consecutive blocksy(n), 0 ≤
n ≤ J−1, we haveJ−1 composite blocks and can construct
the (2M + Q + L− 1)×Q(J − 1) matrix as

Y(J)
Q = [ YQ(1) YQ(2) · · · YQ(J − 1) ] . (11)

Then we haveY(J)
Q = H̄QU(J)

Q where

U(J)
Q = [ UQ(1) UQ(2) · · · UQ(J − 1) ] (12)

is a (2M + Q− 1)×Q(J − 1) matrix.

Theorem 3:The (2M +Q+L−1)× (2M +Q−1) matrix
H̄Q has full column rank if and only ifH(z) does not have
any zero atz = ej2πl/M , 0 ≤ l ≤ M − 1.

Proof: See [13].
Assume the channelH(z) does not have zeros atz =

ej2πl/M for any l. ThenH̄Q has full column rank2M +Q−1.
We also assume that there existsJ such thatU(J)

Q achieves
full row rank 2M + Q− 1. Under these two assumptions, we
obtain that the(2M + L + Q− 1)-row matrix Y(J)

Q has rank
2M + Q − 1. This means there existL linearly independent
vectorsgk, 1 ≤ k ≤ L such thatg†kY

(J)
Q = 0T . SinceU(J)

Q
has full row rank, these vectorsgk are also annihilators of
H̄Q. For each annihilatorg†k of H̄Q, we can construct a
(2M + Q − 1) × (L + 1) matrix Gk such thatGkh = 0.
The construction ofGk can be conceptually easy by simply
inspecting each column of̄HQ and finding locations of each
channel coefficienthk. Nevertheless, we write our construction



explicitly as follows. LetGk = GH + Gs where GH is
a Hankel matrixK2M+Q−1(g

†
k) and Gs is a sparse matrix

defined as

Gs =




0(M−L)×(L+1)

KL([0, ..., 0, g1, g2, ..., gL])
0(Q−1)×(L+1)

KL([g2M+Q, ..., g2M+Q+L−1, 0, ..., 0])
0(M−L)×(L+1)


 .

Now define the(2M + Q − 1)L × (L + 1) matrix G =[ GT
1 GT

2 · · · GT
L

]T
. We haveGh = 0 and the channel

coefficientsh can be identified within a scalar ambiguity.
In presence of noise, the annihilatorsg†k can be found

by taking SVD onY(J)
Q and be chosen as theL singular

vectors associated with theL smallest singular values. Also,
after constructing theG matrix, we choose the vector̂h
which minimizes the norm ofGh as the estimated channel
coefficients. This optimal estimation can be written as

ĥ = arg min
||h||=1

||Gh||2 = arg min
||h||=1

h†(G†G)h.

Note that by choosingQ = 1, the proposed algorithm reduced
to the special case in Section II.

B. Necessary Condition

Recall that the matrixU(J)
Q defined in Eq. (12) must have

full row rank so that the algorithm proposed above would
work. SinceU(J)

Q has size(2M + Q− 1)× (J − 1)Q, it has
full row rank only when(J − 1)Q ≥ 2M + Q− 1, or

Q ≥ 2M − 1
J − 2

. (13)

This necessary condition forU(J)
Q to have full row rank(2M+

Q − 1) is not sufficient since it still depends on the values
of transmitted symbolsuM (n). However, simulations show
that once inequality (13) is satisfied, the probability thatU(J)

Q
has full rank is very close to unity for all commonly used
constellations so thatQ = d(2M − 1)/(J − 2)e is usually a
valid choice in practice. More detailed sufficient conditions
will be presented elsewhere [13]. As long asJ ≥ 3, there
existsQ such thatU(J)

Q could have full rank. This suggests
the capability of the proposed algorithm to identify channel
coefficients withonly three received blocks.

C. Equalization and Resolving the Scalar Ambiguity

After estimating the channel coefficients, the receiver pro-
ceeds to equalize the channel. A standard linear minimum
mean square error (L-MMSE) equalizer is used at the re-
ceiver. Since there is a scalar ambiguity in the estimated
channel coefficients, all equalized symbols will be scaled by
a same unknown scalar. A usual way to resolve this scalar
is to introduceone extra pilot symbol and compare it with
the corresponding received symbol. We set the first symbol
of the source blocks(n) as a known symbol defined as√

Esp(n mod 4), whereEs is the average symbol energy and
[ p0 p1 p2 p3 ] = [ 1 j −j −1 ] . There are defi-
nitely many other alternative designs of these pilot symbols.
The choice here is just to make sure thatU(J)

Q defined in Eq.
(12) would not become rank deficient due to the introduction
of these pilot symbols.
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Fig. 2. Normalized mean squared error of channel estimation for
static channels.

IV. SIMULATION RESULTS AND DISCUSSION

In this section, we conduct several Monte Carlo simulations
to demonstrate the performance of the proposed method under
different system parameters: the number of collected blocks
J and the repetition indexQ. The number of informational
symbols per blockM is chosen as16 and the length of cyclic
prefix isL = 4. The constellation of source symbols is QPSK.
A. Static Channels

We first test our methods in static channel environments.
The channel is assume to be FIR whose order is upper bounded
by the CP lengthL = 4. The simulation is performed over 500
different channels generated by Raleigh fading statistics. The
normalized least squared channel estimation error, denoted as
Ech, is used as the figure of merit for channel identification
and is defined asEch = (||ĥ−h||2)/||h||2 whereĥ andh are
the estimated and the true channel vectors, respectively. The
simulation result is shown in Figure 2 and the corresponding
bit-error-rate (BER) plot is presented in Figure 3. When
J = 20 and Q = 1 (corresponding to previously reported
methods reviewed in Section II), the algorithm simply does
not work since inequality (13) is not satisfied. This means
all previously reported methods are unable to perform blind
channel identification using only 20 blocks. When we choose
Q = 2, the algorithm works with a fairly satisfactory result.

When the number of received blocks isJ = 33, the algo-
rithm works well withQ = 1. In view of inequality (13), this
is the minimum number of blocks needed for any previously
reported algorithm. If we useQ = 2, the performance has a
significant boost. This suggests that choosingQ larger than
necessary sometimes yields a better performance.

In order to test the theoretical limit of the proposed al-
gorithm, the simulation is also performed withJ = 3 and
J = 4. The parametersQ are chosen as the minimum values
required by inequality (13) for both cases. Although the system
performances are not as good as those whenJ is larger and
the computational complexity is very high due to largeQ,
these results do suggest thatsubspace-based blind channel
estimation is possible with data gathered in a very short time.
B. Time-Varying Channels

We further test our algorithm in an environment of time-
varying channels. The channel model considered here is a
random FIR channel whose order is upper bounded by the
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Fig. 3. Bit error rate performance for static channels.
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Fig. 4. Bit error rate performance for blind identification systems
when the object speed isv = 30m/s.

CP length. The channel characteristics is shown in Table I. A
standard Jakes’ Doppler spectrum is used and Rayleigh fading
statistics are assumed for all taps. The Doppler frequency is
chosen as 100 (Hz), which corresponds to an object speed 30
m/s (108 km/hr) if the carrier frequency is 1 GHz. The symbol
duration is10−6 seconds.

Since the channel coefficients are changing during the time
when the received blocks are collected, we do not define the
figure of merit in terms of channel estimation error. Instead,
we evaluate the system performance by the BER performance
as shown in Figure 4. The number of blocksJ is ranging
from 6 to 40, and the repetition indexQ is chosen as the
minimum value required by (13) for eachJ . When J = 40
andQ = 1 (representing the previously reported algorithms),
the performance is fairly poor since the estimated channel
coefficients are hardly accurate due to channel variation. When
the number of received blocksJ is reduced, the performance
becomes better andJ = 12 yields the best performance for this
particular channel model. When an even smallerJ is chosen,
performance becomes worse again due to lack of data available
for estimation. This result suggests that an optimal number of
blocks J can be chosen to compromise between the channel
variation and lack of data. A finite repetition indexQ can
always be chosen as long asJ ≥ 3.

Tap Delays (µs) Avg. Power (dB)
1 0 0.0
2 1 -0.9
3 2 -1.7
4 3 -2.6
5 4 -3.5

TABLE I
TIME-VARYING CHANNEL MODEL

V. CONCLUSIONS

In this paper we proposed a generalized algorithm for
subspace-based blind channel estimation in cyclic prefix sys-
tems. Two system parameters, the number of received blocks
(J) and repetition index (Q) of the system, can be chosen
freely depending on channel variation as long as they satisfy
the necessary condition derived in the paper. By using a
repetition indexQ larger than unity, the number of received
blocks needed is significantly reduced compared to previously
reported methods. Simulation shows that when the repetition
indexQ is properly chosen, the generalized algorithm outper-
forms previously reported special cases, especially in a time-
varying channel environments. The proposed method can be
directly applied to existing systems such as OFDM, SC-CP,
etc., without any modification of the transmitter structure. In
the future, developing the strategy to find the optimalJ and
Q given knowledge of channel variation can be a challenging
yet important problem. Extending this scheme for multi-input-
multi-output (MIMO) channels is also of great interest.
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