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_Abstract—In this paper, a theoretical problem arising in generalized signal richness and briefly describe several impor-
digital communications, namely the generalized signal richness tant properties thereof. The problem of preserving generalized
preservation problem, is addressed and studied. In order 10 gigng| richness will also be addressed. In Section IlI, the
solve the problem, a special class of square matrices, namely the | f vand de-f . VEP tri ' il
“Vandermonde-form preserving” (VFP) matrices, is introduced clasS Of Vandermonde-form preserving (VFP) matrices wi
and found to be highly relevant to the problem. Several properties b€ introduced and several properties of VFP matrices will be
of VFP matrices are studied in detail. The necessary and sufficient studied in detail. In Section 1V, the necessary and sufficient
conditions of theOPrOb'em have been found and a systematic proof conditions for linear precoders to preserve generalized richness
is also presented. will be presented. Finally, Section V gives the conclusion and

. INTRODUCTION possible future directions. A journal version of this paper is

under review [6].
In digital communications, blind channel identification has (6]

been studied in the literature for a considerable period [11
[14]. Many blind identification methods assume a specia
kind of redundancy in the input signal that facilitates blind Boldfaced lower case letters represent column vectors. Bold-
identification. In particular, a method using linear redundaf@ced upper case letters are reserved for matrices. Superscript
precoders with zero padding (ZP), proposed by Scagl'mneT as in AT denotes the transpose operation of a matrix or
al. [1], assumes the input signal to bigh. That is, for a @ vector.[v]; denotes theth element of vectow, and[A];,
sequence of\/ x 1 vectorss(n),n > 0, there exists a finite denotes the entry at th¢h row and thejth column of matrix
integer.J such that the\ x J matrix A. All the vectors and matrices in this paper are complex-

valued.
[s(0) s(1) --- s(J—1)]
. L . . II. GENERALIZED SIGNAL RICHNESS ANDPROBLEM
has full rank. Now, in some applications, the input signals are FORMULATION

usually preconditioned by a linear transformation before being
sent to the channel [9]. We are thus interested in whether the Definition of Generalized Signal Richness

signal richness property is preserved after the linear transformp .sinition 1 A sequence of\/ x 1 vectorss(n),n > 0, is

A theoretical treatment of the richness preservation probleggid to berich if there exists a finite integes such that the
has been presented in [10]. M x J matrix

More recently, Mantoret al. proposed another blind identi-
fication algorithm for transmitters using ZP that imposes less [ s(0) s(1) - s(J—1) ]
stringent conditions on input signals [2], [3], requiring only
the coprimality property. A generalized algorithm has beehas full row rank/. [ ]
proposed in [5] of which both blind identification methods
mentioned above are special cases. The algorithm requires @he definition of thegeneralized signal richnesfor an
generalized definition on signal richness with a param@ter M x 1 signal will be given in Definition 3 as follows. We
When @Q = 1, it reduces to the conventional definition offirst build up the definition of a notatiosg (n), representing
richness. When) = M — 1, it becomes equivalent to thea shifted and repeatedersion ofs(n), using the following
coprimality property stated in [3]. examples.

In this paper, we will focus on the theoretical issues of the
generalized signal richness preservation problem and find ouExample 1:s;(n) is s(n) itself. u
the necessary and sufficient conditions for linear precoders tcExample 2:Consider a sequence & x 1 vectorss(n)
preserve generalized signal richness. The rest of the papetiéfined as
organized as follows. In Section Il we give a definition of

. Notations
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ands(n) = 0 for n > 3. Thensg(n) can be expressed as  the condition of (1/@Q)-richness is. We can thus define a
measureof generalized signal richness, namely thegree of

[ $200) s2(1) s2(2) $2(3) s2(4) s2(5) ] non-richnesdor a given M x 1 sequence(n) as follows.
1 04070
_ 2 1 5 4 8 7 Definition 4: Given anM x 1 sequences(n),n > 0, the
326 5 9 8| degree of non-richnessf s(n) is defined as:
0 306 09 1
A : .
ands,(n) = 0 for n > 6. And s3(n) can be expressed as @min = min { s(n) is S-rich | . @

If s(n) is not (1/Q)-rich for any @, then Q,,;n, = oc.

[53(0),53(1),53(2),53(3),53(4),53(5),53(6),S3(7),Sg(8)] With Lemma 2’ we can see that for aif x 1 sequence
100400700 s(n), (1/(M —1))-richness is the weakest form of generalized
2105402870 richness. Given @/ x 1 vector sequence(n), the degree of

=132 165498 7], non-richness can only be one of valueg, ..., M — 1, or cc.
032065098 An M x 1 sequences(n) has an infinite degree of non-
00300600079 richness if and only if there exists g/ + Q — 1)-element
andsz(n) =0 for n > 9. m row vectorv’ such thatv”sq(n) = 0 for any Q. This is true
The formal definition ofsg(n) is given as follows. in particular when an\/-element row vector in the form

o ] . . T _ 1 2 .. M-1 2
Definition 2: Given a positive intege) and a sequence of W ¢ [ @« “ ] @
M x 1 vectorss(n), sg(n) is a sequence dfM +Q —1) x 1 is an annihilator ofs(n) (i.e., w’s(n) = 0). In this case we

vectors defined as can show that
O x1 vT:[l a o .- aM'*‘Q_Q]
sQ(nQ + k) = s(n) _ " L
0(0—k-1)x1 is an annihilator ofsg(n). In another situation, if am/-

element row vector
forn>0,k=0,1,...,Q — 1. .
The definition of generalized signal richness is given as wi=10 - 0 c] )

follows. is an annihilator ofs(n), it can also be readily shown that

s(n) has an infinite degree of non-richness. Furthermore, it is
shown [5] that ifs(n) has an infinite degree of non-richness,
there must exist ai/-element row vector in a form of either
Eqg. (2) or Eq. (3) so that it is an annihilator ofn). We can
ive a unifying definition to row vectors in forms of Egs. (2)
nd (3) as follows.

Definition 3: An M x 1 sequences(n),n > 0 is said to
be (1/Q)-rich if sg(n) is rich.

Note that when@ = 1, Definition 3 reduces to the
conventional signal richness given in Definition 1. For th
example given in Example 2, we can verify tlsét) is (1/2)-

rich and (1/3)-rich but notl-rich. Definition 5 (Vandermonde Form Vectorsk row vector

An alternative definition of(1/Q)-richness can be given 7 _ [v1 va - vy | is said to be in the Vander-
immediately by using the following theorem. monde forrh if there exista, 3 € C, |a]? + |32 > 0, such
Theorem 1 (1/Q)-richness): Given anM x 1 vector se- that
quences(n),n > 0, s(n) is (1/Q)-rich if and only if there vi=[ M-t oqpM=2 ... oM=23 oM-1],
does not exist a nonzer@ x M Hankel matrixH such that ) T )
Hs(n) = 0,¥n > 0. The “Vandermonde ratiby € C|J{oo} of v* is defined as
Proof. See [6]. | . { % if 340
B. Basic Properties of1/@)-richness oo if f=0

Several basic properties dfl/Q)-richness are reviewed The set of allM-vectors in Vandermonde form, denoted as
below, whose proofs have been presented in previous papers, is defined as

[51. [6]. Vi = {v'|v e CM andv” is in the Vandermonde forinm
Lemma 1:If a sequence of\/ x 1 vectorss(n),n > 0 is
(1/Q)-rich, thens(n) is (1/(Q + 1))-rich. Using this definition, the properties ofl/Q)-richness

Lemma 2:1f M > 1 and anM x 1 sequences(n) is not discussed above can be summarized in the following lemma.
(1/(M — 1))-rich, then it is not(1/Q)-rich for any Q.
Proof: See [5]. u Lemma 3:Consider a sequence 8f x 1 vectors(n),n >
0. The following statements are equivalent:
Lemma 1 states a basic property of generalized signal) s(n) is not(1/Q)-rich for any Q.
richness: the smaller the value @ is, the “stronger” 2) The degree of non-richness &fn) is infinity.



3) There exists a Vandermonde form vectdr € V,; (with 3 there existsv” € V), such thatv?u(n) = 0. This implies
a Vandermonde ratig € C|J{oc}) such thatv's(n) = vTRs(n) = 0. SinceR is a VFP matrix,vIR is also in
0,vn > 0. Vandermonde form. This contradicts the assumption staf
m is1/(M — 1)-rich.
On the contrary, being a VFP matrix is also a necessary
C. Main Problem condition for R to preservel /(M — 1)-richness. In fact, if
Definition 6: An M x M matrix R is said to be(1/Q)- R is nota VFP matrix, we can always constructlg2)-rich
richness preservingf and only if for any (1/Q)-rich signal signals(n) such thatu(n) = Rs(n) has an infinite degree of
s(n), the outputu(n) = Rs(n) is also a(1/Q)-rich signal.m non-richness, as shown in the following lemma.
Lemma 4:For M > 1, consider anM x M matrix R. If
The problem of interest in this paper is to find the < Q < M —1 andR is (1/Q)-richness preserving, theéR
necessary and sufficient conditions fof x M matrices that must be VFP.
preserves(1/Q)-richness. Sincel/(M — 1)-richness is the Proof: See Appendix. u
weakest form of generalized signal richness for@hx 1~ Suymmarizing these arguments, we obtain the following
vector sequence (as depicted in Lemma 2), we will solfBeorem, which solves the main problem for the case when
this problem for cases when< ) < M — 1. For the case @ = p7 — 1.
WhenQ =1, it is obvious that an\/ x M constant matriR Theorem 2:An M x M matrix R preserves‘l/(M _ 1)_
preserved-richness if and only iR is nonsingular. However, richness if and only iR is VFP. u
in the case wher) > 1, a nonsingular matri® does not
necessarily preserve /Q)-richness. This can be seen in thd. Representation of Vandermonde-form preserving Matrices

following simple example. Before we proceed to solve the main problem for other
T Q’s, we want to first find out what VFP matrices look like.
Example ?}: Let s(0) = [1 -1 0], s(1) = Obviously the identity matrixi,; and any nonzero multiple
[1 1 2], ands(n)=0 for n > 1. By observing that  of it are VFP matrices. A permutation matrix, however, is in
general not a VFP matrix, such as the one given in Example
1 0 10 3. So is there any VFP matrix other than a multiple of
A= -1l an identity matrix? The following theorem gives the most
0 -1 21 general representation of VFP matrices.
0 0 0 2
has full rank 4, we know that(n) is (1/2)-rich. Now let Theorem 3:An M xM matrixR= [ r1 ry -+ ry |
is Vandermonde-form preserving if and only if there exists a
L 00 2 x 2 invertible matrix
R=]0 01
010

Re=| 0 )] @
which is an invertible permutation matrix. Then we can obtain

the outputu(n) = Rs(n) asu(0) = [1 0 -1 ]T and Such that

u() = [1 2 1]" Note thatifv” — [ 1 —1 1], re(@) = (a+ )™ (b4 do)* k= 1,2, M

thenvTu(n) = 0 for all n. Sou(n) is not(1/Q)-rich for any ) ) )
Q. This suggests that an invertible constant precoder, althodtjiér®7x(z) is the polynomial representation of the column

H _ M—-1
preserving the “rank” of a signal, does not presefygQ)- Vectorry, i-e., ri.(z) = [1 @ - 2™ r. The2 x 2
richness in general! matrix R, is called thecharacteristic matrixof the M x M
VFP matrix R.
[1l. VANDERMONDE-FORM PRESERVINGMATRICES Proof: See [6]. ]

In this section we introduce a new class of square matrices,Theorem 3 essentially gives us a construction method for
namely theVandermonde-form preservifyFP) matrices. We an M x M VFP matrix using a “seed2 x 2 nonsingular
will study several important properties of VFP matrices whichatrix R, defined in Eq. (4). Note thaR is always a VFP
are useful for solving the main problem described in tH®atrix as long as it is nonsingular (i.ewd — bc # 0) since

previous section. a1 x 2 nonzero vector is always in the Vandermonde form.
_ _ Besides, we can see that ahy x M VFP matrixRj,; can be
A. Preservation ol /(M — 1)-richness parameterized by 2x 2 Vandermonde-form preserving matrix.

Definition 7: An M x M constant matrid is said to be a Thus the number of freedoms 8f x M Vandermonde-form
“Vandermonde-form preserving/FP) matrix if vIR € V), Preserving matrices is always a constant for ady> 1. For

for all v € Vy,. convenience, we denote
It is not difficult to verify that M x M VFP matrices are a b
1/(M — 1)-richness preserving. Consider &d x M VFP R ([ e d D ,

matrix R and anM x 1 vector sequence(n) which is1/(M —
1)-rich. AssumeR is not1/(M — 1)-richness preserving andwhere ad — bc # 0, as the M x M Vandermonde-form
henceu(n) = Rs(n) is not1/(M — 1)-rich. Then by Lemma preserving matrix generated with polynomiais+ cx and



b+ dz. For example, If vZ'! = [1 -1 1 —1 ], which has a Vandermonde
ratioa = —1, then

b a? ab b
R3(|:a }) 2ac ad+bec 2bd | . (5) WT:vTR4:[O 0 0 1]

c d 2 2
¢ od d has a Vandermonde ratjp = f(a) = co.

Some more numerical examples are presented below for df v = [ 0 0 01 } which has a Vandermonde ratio

better understanding of VFP matrices. a = oo, then
Example 4:1f we chooseR; = { (1) i } then wi=viIRy=[1 1 1 1]
111 1 has a Vandermonde ratip= f(a) =1/1 =1. [ |
1 11 01 2 3 From the discussions above, we find that a VFP matrix “bi-
R;=|0 1 2| andRy = 00 1 3 linearly” transforms the Vandermonde ratio of a Vandermonde
0 0 1 00 0 1 form vector with the characteristic functiofi defined in
Theorem 4. Note that the functighis a one-to-one and onto
A VFP matrix can also be a full matrix. If we choo®g, = function. The inverse function of can be expressed as
12 }
[ , then ) ay — b)
1 1 = lim ( — . 6
o(6) = tim (2= ©
1 2 4 L2 4 182 D. Hankel-form Preservation
Rs=|2 3 4| andRy = g i 2 6 Another interesting property of VFP matrices is the
1 11 111 1 following.

u Theorem 5 (Hankel-form Preservationiven anm x n
. . nonzero Hankel matri¥l = [h;;]. Let R, be a2 x 2 invertible
C. Vandermonde Ratio Transformation _ matrix. LetR,, = R,(Rs) andR,, = R, (Rs) bem x m

Theorem 4:Supposev’” € V), has a Vandermonde ratioand n x n VFP matrices, respectively (the notatid®y,(-)
a € CJ{oo} andRy, is a VFP matrix with a nonsingular was defined in Section 11I-B). TheH’ = RZ HR,, is also a

characteristic matrix nonzero Hankel matrix.
a b Proof: See Appendix. |
R, = { c d ] Theorem 5 shows another capability of VFP matrices: be-

sides preserving Vandermonde form vectors, they also preserve
Thenw” = vIR), is also a Vandermonde form vector withthe property of Hankel matrices if we use two VFP matrices
Vandermonde ratig = f(a) wheref : C|J{oo} — C|J{oc} with the same characteristic matrix. An example is shown

is called thecharacteristic functiorof R,,, defined as below.
. b+dx Example 6:Let Ry = Ll , Rs = R3(Ry), and
f(a) = lim : 20
T—a a + cxT
H— hi hy hs
Proof: See [6]. [ ] ha hs hy

Some numerical examples are presented below to dem%—a nonzero Hankel matrix. Then
strate Theorem 4 and clarify the concept. '

H = RJHR;
Example 5:We take R, = 1 1] as in Example 4. { 1 2 } [ hi hs hs ] { 411 % (1) }
. - . - 1 0 ha hs h
Then thed x 4 VFP matrix characterized bR, is 2o 4 00
1 2 4 8 N h1 + 6ho + 12h3 +8ha  hi + 4ho +4hs  hy + 2ho
- h1 4+ 4ha + 4hs h1 + 2h2 h1
R,_ |3 5 8 12
4= 13 4 5 ¢ |- is also a nonzero Hankel matrix. [ |
i1l IV. MAIN THEOREM
The characteristic function dR, is Now we are ready to solve the problem stated in Section
24 [I-C. Using Theorem 5 and Lemma 4, the problem can now
f(a) = lim - g be completely answered by the following theorem.
Let vi=[1 -3 9 -27 ], which has a Vandermonde Theorem 6:(1/Q-richness Preservation) Fad > 1, 2 <
ratio « = —3. Then Q < M-—1,anM x M matrix Ry, is (1/Q)-richness pre-
wl =vIR, = [ 8 4 -2 1 } serving if and only ifR,; is Vandermonde-form preserving.

Proof: The necessity comes directly from Lemma 4.
has a Vandermonde ratip= f(«) = (2—-3)/(1—-3) =1/2. As for sufficiency, suppose a Vandermonde-form preserving



matrix Ry, = Ras(Rz2) is not (1/Q)-richness preserving for Proof: The Lemma is immediately verified by observing
some@ > 2, whereR, is a2 x 2 invertible matrix. Then that the coefficient associated with, in the sumu”Hyv is
there exists a(1/Q)-rich signal s(n) such that the output ;" wvi_i+1. (Assumingy; =0 when/ <0or/>n.) ®
u(n) = Ryss(n) is not (1/Q)-rich. Using Theorem 1, there
exists a x M nonzero Hankel matri¥l such thau(n) = 0
for all n > 0. This impliesHR y;s(n) = 0 for all n > 0. Let
Rq = Re(R2). We haveRGHR yrs(n) = 0 for all n > 0. . _
Using Theorem 5, we know th®ZHR,, is also a Hankel 1 = 2" ! Jr,,. From CO”SU‘:C“O” of kV'jP ma-
matrix. Now using Theorem 1 again, we conclude thiat) rices we knOWka(v;U) (a l+lcx)m_ (b + da)"~ an,d
is also not(1/Q)-rich, contradicting the assumption that it is7”nl,(l‘) = (a4 cz)""(b+ dz)"". The ki-th entry of H',
(1/Q)-rich. So a Vandermonde-form preserving matrix mustL'Jr, can be expressed ag, , Hr,, ;. Using Lemma 5, we
be (1/Q)-richness preserving fap > 2. m have
A summary of the answer of the main problem is given as @)
follows. Given anM x M matrix R, then
1) when@ = 1, R preserveg1/Q)-richness if and only if Where the polynomial representation of (he+n—1)}>€<1l vec-
R is nonsingular; tor kal,l;s wi(z) = rml_c(x)Tnl(x) = (a + cz)™Hn=k=l(b 4
2) when?2 < Q < M — 1, R preserveg1/Q)-richness if @x)""'~*. The polynomiakuy, (x) stays unchanged when-I
and only if R is a VFP matrix. is fixed. So from Eq. (7), the value dH'],; is a function
of (k4 1) and henceH’ is also a Hankel matrixHH' being
V. CONCLUDING REMARKS nonzero is readily verified by observing that b&l andR.,,

In this paper, we described a mathematical problem tHafie invertible. ]

Proof of Theorem 5: Denote the kth column of
R, as r,; and thelth column of R, as r,;. Let
Tk () [ 1 =z ™1 ]rm,k and 7, ()

[H']i = wi h,

arises in some applications on blind channel identification. We
introduced Vandermonde-form preserving (VFP) matrices as a
new subclass of invertible matrices which are highly relevani!
to the problem. Several properties of VFP matrices have been
presented clearly and the proof of the answer to the probleif]
has been presented systematically.

In the future, it may be useful to consider the problem ingz
general for a system with memory, in which case the transfer
function of the precoder is aii/ x M polynomial matrix
R(z) = ZkN:O r(k)z~". It is also of interest to deal with a [4]
rectangularP x M systemR(z). Finding other engineering

applications of VFP matrices will also be interesting. [5]

APPENDIX

Proof of Lemma 4AssumeR is not VFP. Then there exists
vl € Yy such thatw” = vI'R. ¢ V,,. Construct a vector
sequenca(n),n > 0 as follows. Lets(0),s(1),--- ,s(M —2)
be selected agM — 1) linearly independent column vectors (7]
that are orthogonal tev” ¢ V). Lets(n) = 0 forall n > (g
M — 1. Sincew” ¢ V), is the only annihilator of(n), there

(6]

does not exist & x M nonzero Hankel matri such that (]
Hs(n) = 0. Sos(n) is (1/2)-rich and hence i$1/Q)-rich for
anyQ > 2. Now consideni(n) = Rs(n). We haveviu(n) = [10]
vIRs(n) = wls(n) = 0. By Lemma 3,u(n) is not 1/Q- [11]
rich for any@. SoR is not(1/Q)-richness preserving for any
Q=2
[12]

The proof of Theorem 5 requires the following lemma.

Lemma 5:Let H be anm x n Hankel matrix whose entry [13]
values come from arfm + n — 1) x 1 vector h. That is, »

[H]” = [h]iJrj,l = hi+j71~ Letu andv bem x 1 andn x 1
column vectors, respectively. Therf Hv = w”h, wherew
is an(m+n—1)-vector whose entries come from convolution
of u andv:

m

(Wl = Z[u]l[v}k—lﬂ-

=1
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