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Abstract— Blind channel identification using linear redundant
filterbank precoders (LRP) has been studied extensively in the
literature. Most methods are proposed based on the assumption
that block synchronization is perfect. In practice, a blind block
synchronization algorithm must be used to justify this assump-
tion. This paper studies the blind block synchronization problem
in systems using a zero-padding (ZP) precoder. A previously
reported method is reviewed and a new approach for the problem
is proposed. Generalized versions of both approaches are then
developed using a parameter called repetition index. Simulation
results show that when the repetition index is chosen to be greater
than unity, the block synchronization error rate performance of
the proposed algorithm has a significant improvement over the
previously reported method.1

Index Terms— Frame synchronization, Blind Block Synchro-
nization, Zero-Padding, Repetition Index.

I. I NTRODUCTION

Blind channel identification using linear redundant filter
bank precoders (LRP) has been studied extensively in the
literature [1]–[6]. Besides a constant bandwidth overhead
introduced in each block, a blind channel estimation method
usually requires very little extra bandwidth to perform channel
estimation. Most existing blind estimation methods for LRPs
assume the boundaries of blocks of the received stream are
perfectly known to the receiver. In practical applications, how-
ever, this assumption is usually not true since no extra known
samples are transmitted. In this paper we study the problem
of blind recovery of block boundaries for the received signal.
In particular, we consider the problem on a block transmission
system using a zero-padding (ZP) precoder. Scaglione et al.
proposed the first blind block synchronization algorithm in
[1] as well as two blind channel identification/equalization
algorithms. The blind equalization algorithm uses a matrix
composed of elements in received blocks which is rank defi-
cient in absence of noise. Now, the blind block synchronization
algorithm exploits the fact that when the synchronization of
received blocks is incorrect, the rank deficiency property of
this matrix used for blind equalization is no longer valid.

More recently in the literature, Manton et al. pointed out
that blind channel estimation can be done with fewer received
blocks by repeated use of each block [2], [3]. This concept
was later generalized by Su and Vaidyanathan [4], [5] using
a parameter calledrepetition index. The repetition index idea
can also be used for blind synchronization. This paper explores
this idea. Another novelty is that the method is based on a
subspace of dimensionL rather than one as in [1] (whereL
is the channel order). This idea, combined with the repetition
index, is shown to significantly improve the performance.

1Work supported in parts by the NSF grant CCF-0428326 and the Moore
Fellowship of the California Institute of Technology.
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Fig. 1. A typical zero-padding system

The rest of the paper is organized as follows. Section
II formulates the problem statement and briefly reviews a
blind block synchronization algorithm proposed in [1]. In
Section III we first propose a new approach for blind block
synchronization and then develop the generalized versions
of both algorithms using the concept of repetition index.
Simulation results and discussions are presented in Section
IV and conclusions are made in Section V.

A. Notations

Boldfaced lower case letters represent column vectors. Bold-
faced upper case letters are reserved for matrices. Superscripts
T and† as inAT andA† denote the transpose and transpose-
conjugate operations, respectively.In is the n × n identity
matrix. All the vectors and matrices in this paper are in general
complex-valued. Ifv = [ v1 v2 · · · vm ]T is an m × 1
vector, we useTn(v) to denote the(m+n−1)×n full-banded

Toeplitz matrix[7] whose first column is
[

vT 0T
(n−1)×1

]T

and whose first row is[ v1 01×(n−1) ].

II. PROBLEM FORMULATION AND L ITERATURE REVIEW

Figure 1 shows a typical zero-padding (ZP) transceiver.
The data samples,s(n), are blocked into vectorss(n) of size
M . The precoded vector,uzp(n), of size P = M + L, is
composed of anM -vectoru(n) = Rs(n) followed by a zero
segment of lengthL. The vector sequenceuzp(n) is then
unblocked into a sample sequenceu(n) before sending to
the channel. The channel is characterized as an FIR system
H(z) =

∑L
k=0 hkz−k whose order is upper-bounded byL.

We use an(L + 1)-vectorh to express the coefficients

h = [ h0 h1 · · · hL ]T .

At the receiver side, the received sample streamy(n) is
blocked into vectorsy(n) of size P . Due to trailing zeros
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Fig. 2. Illustration of blind block synchronization problem in ZP systems

introduced in each block at the transmitter, the inter-block
interference (IBI) is eliminated. The received blocksy(n),
in absence of noise, can be written in terms of channel
coefficients and transmitted blocks:

y(n) = TM (h)u(n). (1)

A blind channel estimation algorithm aims at estimating
channel coefficientsh using only observation of blocksy(n)
without knowledge ofu(n). In the literature, many algorithms
[1]–[6] have been proposed based on the assumption that block
boundaries ofy(n) are perfectly known to the receiver.

Suppose there is an unknown timing mismatchd0 ∈
[−P/2, P/2) between the transmitter and the receiver so that
instead ofy(n), the signaly(n−d0) is received. The problem
of interest is how we can recoverd0 without knowledge of
transmitted datau(n) and the channel coefficientsh so that
all blind estimation methods [1]–[6] can proceed to work.

Without loss of generality and for convenience of presen-
tation, we assumed0 = 0 throughout the paper. Figure 2
illustrates the problem statement. We find that the signalu(n)
has clear block boundaries due to the presence of zero samples
of length L at the end of each blockuzp(n). However, due
to theLth order FIR channelH(z), the received signaly(n)
does not have zero-segments and hence boundary lines can
not be detected by looking for zero-samples iny(n).

In Eq. (1), samplesy(n) are collected as

y(n) = [ y(nP ) y(nP + 1) · · · y(nP + P − 1) ]T

when block synchronization is perfect. Now suppose the
blocking is performed as if there were a timing mismatch
d ∈ [−P/2, P/2). Then the samples collected in thenth block
will be

y(d)(n) = [ y(nP + d) y(nP + d + 1) · · · y(nP + d + P − 1) ]T .

We review a blind synchronization method proposed in [1].
SupposeN consecutive blocks are collected at the receiver
with a timing mismatch ofd samples. Given any integerd ∈
[−P/2, P/2), define theP ×N matrix as

Y(d)
N =

[
y(d)(0) y(d)(1) · · · y(d)(N − 1)

]
. (2)

Let Jn denote ann× n square shift matrix

Jn =
[

0T 0
In−1 0

]

and consider theP ×NL matrix

Y(d)
N :=

[
Y(d)

N JP Y(d)
N · · · JL−1

P Y(d)
N

]
(3)

The following theorem has been proved regarding the rank of
Y(d)

N Y(d)†
N .

Theorem 1:Consider the noise-free situation and assume
thatu(n) is rich2. ThenY(d)

N Y(d)†
N has full rankP whend 6= 0

and has rankP − 1 whend = 0.
Proof: See Theorem 4 in [1].

The block synchronization problem can thus be solved by
finding thed which makes the matrixY(d)

N Y(d)†
N rank deficient.

In practice when the noise is present, we use the a cost function
defined as

λ1(d) := min
{

eigenvalues ofY(d)
N Y(d)†

N

}
. (4)

The optimald can be chosen aŝd = arg min−P
2 ≤d< P

2
λ1(d).

The matrixY(d)
N defined in Eq. (3) was first proposed for

blind direct channel equalization [1]. It was also exploited in
the blind synchronization method of [1]. The blind synchro-
nization algorithms we propose next will exploit properties
from existing blind channel estimation algorithms in the
literature [1], [4].

III. PROPOSEDMETHODS

A. A New Approach for Blind Block Synchronization

Consider the matrixY(d)
N defined in Eq. (2). Whend = 0, it

had been shown that in absence of noise,Y(d)
N has exactlyL

left annihilators which are useful for blind channel estimation.
In this section, we will exploit this property to develop a new
approach for blind block synchronization.

Theorem 2:Consider the noise-free situation and assume
that u(n) is rich. Then whend = 0, Y(d)

N Y(d)†
N has exactly

L zero eigenvalues. Whend 6= 0, Y(d)
N Y(d)†

N has strictly less
thanL zero eigenvalues.

Proof: The proof is part of [8]. Please see [9] for ready
access.

Using Theorem 2, a noise-free version of a blind block
synchronization algorithm can be readily developed by finding
the only d ∈ [−P/2, P/2) which makes theL smallest
eigenvalues ofY(d)

N Y(d)†
N all zeros. When the noise is present,

we use the sum of theseL eigenvalues as a cost function:

λ2(d) :=
L∑

k=1

{
the kth smallest eigenvalue ofY(d)

N Y(d)†
N

}
.

Similarly, the estimated timing offset is chosen as thed that
minimizesλ2(d).

The new approach is conceptually simpler than the method
reviewed in Section II in the way that it involves a much
smaller matrixY(d)

N , although there areL eigenvalues, rather
than one, needed to be computed. As we will see from the
simulation results presented in Section IV, this new approach
is actually less robust to noise than the method reviewed in
Section II. However, we will soon demonstrate the value of
presenting this approach when we develop the generalized
algorithm of it next.

2We say a sequence ofM -vectorsu(n), n ≥ 0, is rich if there exists an
integerN ≥ M such that[ u(0) u(1) · · · u(N − 1) ] has full row
rank M [1].



B. Generalized Versions of Blind Synchronization Algorithms
We first introduce the concept of repetition index for blind

channel estimation and then develop generalized versions of
blind synchronization algorithms. It can be readily verified that
the noiseless channel equation (1) implies

TQ (y(n)) = TM+Q−1(h)TQ (u(n)) , (5)

whereQ is an arbitrary positive integer and the notation for
the full-banded Toeplitz matrixTn(·) was defined in Section
I-A. Note that Eq. (1) is a special case of Eq. (5) whenQ =
1. When Q > 1, Eq. (5) is similar to Eq. (1) in the sense
thatTM+Q−1(h) is still a full-banded Toeplitz matrix, except
that the size is larger byQ − 1. Note thatTQ(y(n)) is a
(P + Q− 1)×Q matrix. Focusing on a particular column of
TQ(y(n)) and the corresponding column ofTQ(u(n)) in Eq.
(5), the resulting equation is exactly equivalent to the channel
equation for a ZP system with a larger block size. Since there
are Q linearly independent columns inTQ(y(n)), for every
single received blocky(n), we have equivalentlyQ blocks
for the “virtual” ZP system whose block size isP + Q −
1. The parameterQ is called the repetition index since each
received block is repeatedly usedQ times. The concept of
repetition index first arose in [5] for generalization of blind
channel estimation algorithms. Now we will use it to develop
generalized blind block synchronization algorithms.

As a generalization of Eq. (2), we define the(P +Q−1)×
QN matrix

Y
(d)
N,Q =

[
TQ(y(d)(0)) TQ(y(d)(1)) · · · TQ(y(d)(N − 1))

]
.

(6)
Also, generalizing (3), define the(P +Q−1)×QNL matrix

Y(d)
N,Q :=

[
Y(d)

N,Q JP+Q−1Y
(d)
N,Q · · · JL−1

P+Q−1Y
(d)
N,Q

]
.

(7)
A generalized version of the method reviewed in Section II

is obtained by simply replacingY(d)
N in Eq. (4) with Y(d)

N,Q.
It can be shown [8] that, as a generalization of Theorem 1,
Y(d)

N,QY(d)†
N,Q has full rankP + Q − 1 when d 6= 0 and has

rank P + Q − 2 when d = 0. Note that by choosingQ = 1
the generalized algorithm reduces to the original algorithm.
We designate the generalized version as Algorithm 1 and
summarize it below.

Algorithm 1:
1) Choose the repetition indexQ ≥ 1 and the number of

collected blocksN ≥ P .
2) Collect (N +1)P consecutive received samples and form

the matrixY(d)
N,Q as in Eq. (7) for eachd ∈ [−P/2, P/2).

3) Evaluate the cost function

λ1,Q(d) := min
{

eigenvalues ofY(d)
N,QY(d)†

N,Q

}

for eachd and decide the estimated timing offsetd̂ =
arg min−P

2 ≤d< P
2

λ1,Q(d).
Similarly, the algorithm proposed in Section III-A can be

generalized by replacingY(d)
N with Y(d)

N,Q defined in Eq. (6).
We designate it as Algorithm 2 and summarize it as follows.

Algorithm 2:
1) Choose the repetition indexQ ≥ 1 and the number of

collected blocksN ≥ P .
2) Collect (N +1)P consecutive received samples and form

the matrixY(d)
N,Q as in Eq. (6) for eachd ∈ [−P/2, P/2).

3) Perform eigen-decomposition on the matrixY(d)
N,QY(d)†

N,Q

and take theL smallest eigenvaluesσ2
L,(d) ≥ σ2

L−1,(d) ≥
· · · ≥ σ2

2,(d) ≥ σ2
1,(d) ≥ 0.

4) Calculate the cost functionλ2,Q(d) :=
∑L

k=1 σ2
k,(d),

and decide the estimated timing offset̂d =
arg min−P

2 ≤d< P
2

λ2,Q(d).

IV. SIMULATION RESULTS AND DISCUSSION

In this section, we conduct simulations to compare the
performance of Algorithms 1 and 2 under different repetition
indices Q = 1, 2, 3. In all simulations, the number of data
samples per block is chosen asM = 16 and the length of
padding zeros per block isL = 4 (which impliesP = 20).
The number of blocks collected for the algorithms isN =
20. The constellation of data samples is QPSK. Simulations
are conducted with two different 4th order FIR channels.
Channel 1 has zero locations at(1.2,−0.9, 0.7j,−0.7) and
Channel 2 has zero locations at(0.8,−0.8, 0.5j,−0.5j), which
is a minimum-phase system. Note that the special case of
Algorithm 1 with Q = 1 is equivalent to the existing method
proposed in [1] (SGB method).

A. Noise-free Case

We first apply the algorithms in absence of noise. Figures 3
and 4 show the plots for average values ofλk,Q(d), k = 1, 2
for Channels 1 and 2, respectively. For a clearer view of the
values ofλk,Q(d) in the neighborhood ofd = 0, a close-up
window is put at the top of each plot. As expected,λk,Q(d) =
0 when d = 0 and are nonzero otherwise for allk and Q.
The robustness of Algorithmk against noise perturbation for
a specificQ may be roughly evaluated by looking at the values
∆k,Q

left := λk,Q(−1)−λk,Q(0) and∆k,Q
right:= λk,Q(1)−λk,Q(0).

For both channels, Algorithm 2 withQ = 3 has the largest
values of∆k,Q

left and ∆k,Q
rightamong all cases, even though the

very same algorithm withQ = 1 has the smallest among all
cases. This shows the potential benefit to system performance
by using a largeQ. Another noteworthy observation could be
made for Channel 2. Both algorithms withQ = 1 have a very
small value of∆k,Q

right. This situation could contribute to a high
synchronization error rate in a noisy environment. However,
∆k,Q

rightincreases dramatically whenQ > 1 for both algorithms.

On the contrary, values of∆k,Q
left of Algorithm 2 for Channel 2

do not increase very much even whenQ = 3.

B. Performance in Presence of Noise

Now we test the performance of the proposed algorithms in
the presence of noise.3 The additive noisee(n) is white and
Gaussian. Over 2000 independent realizations were performed
to produce the simulation plots. Figures 5 and 6 show the
blind block synchronization error rate versus the SNR at the
channel output for Channels 1 and 2, respectively. We observe
that when Algorithm 1 is used, increasing the repetition index
Q does not significantly improve the error rate performance
except in a high SNR region (> 25dB) for Channel 2. For
Algorithm 2, on the contrary, the performance of the case
Q = 1 is worse than the SGB method, but the performances

3In a private communication with the first author of [1], we confirmed that
some plots (Figure 3(a)-(c)) presented in the original work of [1] contain some
minor errors in the scales of SNR levels. After correction, curves in Figure
3(c) in [1] match perfectly with the blue curves shown in Figures 5 and 6.
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for Q = 2, 3 have a significant improvement and outperform
the SGB method by a large margin for both channels.

As a final comment, the performance curves for each
algorithm are highly dependent on the channel zero locations.
To achieve the same performance, the SNR level for Channel
2 must be much higher than that for Channel 1 (a difference
of around 10 dB!). A more thorough study of performances
of other different channels will be undertaken in the future.

V. CONCLUSIONS

In this paper we proposed two generalized algorithms for
blind block synchronization in zero-padding (ZP) systems with
a parameter called repetition index (Q) which can be chosen
as an arbitrary positive integer. In particular, a special case
of Algorithm 1 with Q = 1 reduces to a previously reported
method proposed in [1]. Simulation results over two different
LTI channels show that Algorithm 2, with a choice ofQ >
1, has a significantly better performance than the previously
reported method.

In the future, performance evaluation of the proposed al-
gorithms for time-varying channels will be important for a
more realistic scenario. A theoretical analysis of the system
performance is also of interest. Furthermore, it would be of
great importance to develop counterparts of these algorithms
in cyclic prefix (CP) systems since most currently popular
standards (e.g., OFDM, SC-CP, etc.) use cyclic prefix (CP)
rather than zero-padding (ZP) precoders.
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Fig. 5. Blind block synchronization error rate performance for a
channel with zeros at (1.2, -0.9, 0.7j, -0.7j).
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