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Abstract. There are many ways to define richness of a dis-
crete time signal. This paper considers a particular defini-
tion and explores the conditions under which a linear time
invariant system preserves the richness property. Several
examples are presented to clarify the issues involved in the
problem. Some sufficient conditions are presented. Also
presented are necessary and sufficient conditions for some
special cases. A set of necessary and sufficient conditions
for the most general case is not known at this time.1

1. INTRODUCTION

Signals are often considered to be “rich” if they satisfy
certain fullness properties appropriate for an application
under discussion. In some applications a signal is regarded
as rich if it has nonzero energy at all frequencies. In some
applications a sequence of M × 1 vectors x(n), n ≥ 0 is
defined to be rich or rank-rich if the matrix

[x(0) x(1) . . . x(Kx) ]

has rank M for sufficiently large Kx. This property is im-
portant, for example, when we try to identify an unknown
communication channel from output measurements alone
using filter bank precoders [4]. Now, signals are sometimes
preconditioned by linear transformations before they are
used in such an application. An example is the case where
antipodal paraunitary matrices [3] are used to precondi-
tion the signal before being sent through the filter bank
precoder. The advantages of the use of such antipodal pre-
conditioners are explained in detail in [3].

In these and other applications an interesting theoreti-
cal question that comes up is this: if a rich signal is input to
a linear time invariant (LTI) system, then does the output
continue to have the richness property? This fundamental
question, rather than the applications, is the focus of this
paper. Let the linear time invariant system be character-
ized by the M × M transfer matrix

H(z) =
∑

n

h(n)z−n

as shown in Fig. 1 so that

y(n) =
∑

k

h(k)x(n − k)
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H(z)x(n) y(n)

Fig. 1. A multi-input multi-output LTI system.

If the system H(z) is such that rank-rich inputs always
produces rank-rich outputs we say that H(z) is richness-
preserving (RP). Some sufficient conditions for this will be
presented in Sec. 3. Also presented are necessary and suf-
ficient conditions for some special cases (Sec. 4.) A set
of necessary and sufficient conditions for the most general
case are not known to the authors at the time of this writ-
ing. Throughout the paper we will use the term richness
to imply rank-richness.

2. FORMULATION AND EXAMPLES

Assume that the system is causal so that the input x(n), n ≥
0 produces a causal output. This output is rich if there ex-
ists an integer Ky such that

[y(0) y(1) . . . y(Ky) ]

has rank M . We assume for simplicity that H(z) is causal
FIR with order N. Then Y = HX where

Y = [y(0) y(1) . . . y(Ky)], H = [h(0) h(1) . . . h(N)]

and

X =





x(0) x(1) x(2) . . . x(Ky)
0 x(0) x(1) . . . x(Ky − 1)
0 0 x(0) . . . x(Ky − 2)
...

...
. . .

...

0 0 0 . . . x(Ky − N)





The matrix H has size M × M(N + 1). With ρy, ρh and
ρx denoting the ranks of Y,H and X respectively, we have
from Sylvester’s inequality [2]:

ρh + ρx − M(N + 1) ≤ ρy ≤ min (ρh, ρx) (1)

Observe that if the output matrix Y has to have rank M
it is necessary that the filter matrix H have rank M. For
example, if one of the h(n)’s has rank M , this is satisfied.
We will produce examples to demonstrate that this neces-
sary condition is in fact not sufficient. In fact the examples



also show that many stantard systems such as unimodular
and paraunitary matrices do not preserve richness!

Example 1. To demonstrate that the rank-M property
of the filter matrix H is not sufficient, consider the follow-
ing example with M = 2:

H(z) =
[

1 1
1 1

]
+ z−1

[
1 −1

−1 1

]

Then

H =
[

1 1 1 −1
1 1 −1 1

]
,

and has rank M = 2. Suppose the input signal is

x(0) =
[

1
−1

]
, x(1) =

[
−1
−1

]
,

with x(n) = 0 otherwise. Clearly this input is rich because

[x(0) x(1) ] has rank two. The output can have only

three nonzero samples, so that the largest output matrix

we need to look at is:

[y(0) y(1) y(2) ] = [h(0) h(1) ]︸ ︷︷ ︸
H

[
x(0) x(1) 0

0 x(0) x(1)

]

︸ ︷︷ ︸
X

We have

[y(0) y(1) y(2) ] =

[
1 1 1 −1

1 1 −1 1

]




1 −1 0

−1 −1 0

0 1 −1

0 −1 −1





=

[
0 0 0

0 −4 0

]

which shows that the output matrix has rank one. Thus,
richness of the input is not preserved at the output even
though the matrix H has full rank M . In this example
H(z) happens to be a paraunitary matrix [5], that is, it

satisfies H†(ejω)H(ejω) = cI, where superscript dagger
denotes transpose conjugation. Thus paraunitary matrices
do not necessarily preserve richness.

Example 2. Consider again M = 2 and let

H(z) =
[

1 + z−1 −z−1

z−1 1 − z−1

]
=

[
1 0
0 1

]
+z−1

[
1 −1
1 −1

]

Then

H =
[

1 0 1 −1
0 1 1 −1

]
,

and has rank M = 2. Consider the input

x(0) =
[

0
1

]
, x(1) =

[
1
1

]
,

with x(n) = 0 otherwise. Then the output matrix is

[y(0) y(1) y(2) ] =
[

1 0 1 −1
0 1 1 −1

]




0 1 0
1 1 0
0 0 1
0 1 1





=
[

0 0 0
1 0 0

]

which has rank one. Again richness of the input is not
preserved at the output, though H has full rank M . In
this example H(z) happens to be a unimodular matrix
[1], that is, it has determinant =1 so that its inverse is an
FIR matrix as well. The example shows that unimodular
matrices do not necessarily preserve richness.

Example 3. An enriching example. If the input to an
LTI system is not rich, then is it at all possible for the
output to be rich? The following example shows that this
can happen. Let M = 2 and consider

H(z) =
[

1 z−1

z−1 1

]
=

[
1 0
0 1

]
+ z−1

[
0 1
1 0

]

Suppose we apply the input

x(n) =
[

1
0

]
δ(n)

This is evidently not rich. The output is

y(0) =
[

1
0

]
, y(1) =

[
0
1

]

with y(n) = 0 otherwise. Since

[y(0) y(1) ] =
[

1 0
0 1

]

has rank two, it follows that y(n) is rich. So this system
can turn a nonrich input into a rich output. But this same
system can also turn a rich input into a nonrich output as
the next example shows. Thus let

x(0) =
[

1
0

]
, x(1) =

[
0
−1

]

with x(n) = 0 otherwise. This is a rich input, and

[y(0) y(1) y(2) ] =
[

1 0 −1
0 0 0

]

This has rank one. Since y(n) = 0 for all other n, this
shows that the output is not rich.

A consequence of the preceding example is this: suppose
we have a cascade of two systems such that the first sys-
tem does not preserve richness. This does not prove that
the cascade is not richness-preserving because it is possi-
ble that the second system can make up for it. A trivial
example is a cascade of the unimodular matrix in Example
2 with its inverse (which is also causal and unimodular).



Since the product is identity it preserves richness. But at
least one of the factors in the product is not a richness
preserving system.

3. SUFFICIENT CONDITIONS

Even though we do not know of a necessary and sufficient

condition on the system that preserves richness we can find

some nontrivial sufficient conditions. For example suppose

H(z) is a constant, that is, H(z) = A. Then the necessary

condition that H have full rank implies that A should have

full rank, and it turns out that this is also sufficient for

richness. This follows by writing

[y(0) y(1) . . . y(Ky) ] = A [x(0) x(1) . . . x(Ky) ]

If Ky is large enough such that X has rank M then Y
indeed has rank M because A is nonsingular. Thus rich-
ness is trivially preserved. A more general family of LTI
systems preserving richness is given next.

Theorem 1. Consider the N th order FIR system

H(z) = A
(
g0 + g1z

−1 + . . . + gNz−N
)

where A is an M × M nonsingular matrix and g0 �= 0.
This system preserves richness. ♦

Proof. Consider a rich input x(n) and write the output
matrix Y = HX as

[y(0) y(1) . . . y(Kx) ]︸ ︷︷ ︸
Y

= [ g0A g1A . . . gNA ]︸ ︷︷ ︸
H

×





x(0) x(1) x(2) . . . x(Kx)
0 x(0) x(1) . . . x(Kx − 1)
0 0 x(0) . . . x(Kx − 2)
...

...
. . .

...

0 0 0 . . . x(Kx − N)





︸ ︷︷ ︸
X

Let us assume that Kx is large enough so that

[x(0) x(1) x(2) . . . x(Kx) ] (2)

has full rank M. Since x(n) is rich such a Kx exists. We
now prove that y(n) is rich by proving that Y has rank M
as well. Assume the contrary, that is, suppose there exists
a vector v �= 0 such that

v† [y(0) y(1) . . . y(Kx) ] = 0,

that is,

[ g0v†A g1v†A . . . gNv†A ]

×





x(0) x(1) x(2) . . . x(Kx)
0 x(0) x(1) . . . x(Kx − 1)
0 0 x(0) . . . x(Kx − 2)
...

...
. . .

...

0 0 0 . . . x(Kx − N)




= 0

From the 0th column of this equation, we have v†Ax(0) =
0 because g0 �= 0. From the next column,

g0v†Ax(1) + g1v†Ax(0) = 0

which implies v†Ax(1) = 0 because the second term is

zero. From the next column, g0v†Ax(2) + g1v†Ax(1) +
g2v†Ax(0) = 0 and since the last two terms are zero this

implies v†Ax(2) = 0. Proceeding like this, we see that

v†Ax(n) = 0 for 0 ≤ n ≤ Kx, that is,

v†A [x(0) x(1) x(2) . . . x(Kx) ] = 0

Since A is nonsingular, v†A �= 0 and the preceding equa-
tion contradicts the full-rank property of (2). This proves
the claim of the theorem. ���

It is easily argued that if H(z) satisfies the conditions of
the Theorem, then a non-rich input cannot produced rich
output. The reason is that the output samples y(n) are
just linear combinations of Ax(n−k) so the space spanned
by the output vectors {y(n)} cannot have dimension larger
than the space spanned by the input vectors {x(n)}.

The form shown in Theorem 1, though sufficient for
richness-preservation, is not necessary. This is shown by
the following example: let

H(z) =
[

1 a
0 0

]
+ z−1

[
0 0
1 a

]
(3)

This system is not in the form of Theorem 1, but it pre-
serves richeness for any a.

Justification. Observe that

[y(0) y(1) . . . ] =
[

1 a 0 0
0 0 1 a

] [
x(0) x(1) . . .
0 x(0) . . .

]

We assume the input is rich but the output is not, and
exhibit a contradiction. When the output is not rich, there
exists a nonzero vector [ v0 v1 ] which annihilates the
preceding matrix from the left, that is,

[ v0 v1 ]
[

1 a 0 0
0 0 1 a

] [
x(0) x(1) x(2) . . .
0 x(0) x(1) . . .

]
= 0

or equivalently

[ v0 av0 v1 av1 ]
[
x(0) x(1) x(2) . . .
0 x(0) x(1) . . .

]
= 0

(4)

If v0 or v1 is zero this implies [ 1 a ] [x(0) x(1) . . . ] =
0 and contradicts the assumed richness of the input. So
let us assume v0, v1 �= 0. Eq. (4) yields a succession of
equations:

v0 [ 1 a ]x(n) + v1 [ 1 a ]x(n − 1) = 0, n ≥ 0

Note that the first equation simply says [ 1 a ]x(0) = 0
because x(−1) = 0. By substituting from the first equa-
tion into the second, and then into the third, and so forth,



we conclude from this that [ 1 a ]x(n) = 0 for all n ≥ 0,
which contradicts the assumed richness of the input. This
concludes the proof that (3) preserves richness. ���

For the system shown in Eq. (3) if x(n) =
[

1
0

]
δ(n)

then y(0) =
[

1
0

]
and y(1) =

[
0
1

]
which shows that the

output is rich though the input is not. So the system is
not only richeness-preserving, it can in fact enrich some
nonrich signals!

4. A SPECIAL CASE

For the special case of first order 2 × 2 systems with non-
singular h(0), the form given in Theroem 1 is not only
sufficient but necessary as well. More precisely, we have
the following:

Theorem 2. Consider the first order FIR system

H(z) = h(0) + z−1h(1)

with size 2 × 2 and assume h(0) is nonsingular. Then
H(z) preserves richness if and only if h(1) = ρh(0) for
some scalar constant ρ. ♦

Proof. Since h(0) is nonsingular, we can write H(z) =
h(0)(I + Bz−1). The nonsingular factor h(0) does not
affect the rank of the output matrix. So H(z) is richness

preserving if and only if (I + Bz−1), which has the form

G(z) = I + z−1

[
a b
c d

]
,

preserves richness. Let us explore the conditions for this.
Consider the input

x(0) =
[

1
0

]
, x(1) =

[
d
−c

]

with x(n) = 0 otherwise. This produces the output

y(0) =
[

1
0

]
, y(1) =

[
a + d

0

]
, y(2) =

[
ad − bc

0

]
,

and y(n) = 0 otherwise. We see that if c �= 0 then the
input is rich ([x(0) x(1) ] has rank 2) but the output
is not. So c = 0 is a necessary condition for richness
preservation. A slight variation of this construction shows
that b = 0 is necessary as well. Thus, in order to preserve
richness G(z) has to be of the form

G(z) = I + z−1

[
a 0
0 d

]

If we now choose the input

x(0) =
[

1
2

]
, x(1) =

[
d
2a

]
,

with x(n) = 0 otherwise, then

y(0) =
[

1
2

]
, y(1) = (a + d)

[
1
2

]
, y(2) = ad

[
1
2

]
,

with y(n) = 0 otherwise. If a �= d, then the input is
rich whereas the output is not. This shows that a = d is
a necessary condition. Thus G = I + ρIz−1, so h(1) =
ρh(0) indeed. ���

5. CONCLUDING REMARKS AND OPEN ISSUES

Under the definition of richness considered in this paper,
it remains to find a set of necessary and sufficient condi-
tions on the LTI system that preserves richness. The def-
inition given in this paper is equivalent to the statement

that v†X(ejω) be not identically zero for all ω for a fixed
nonzero vector v. It is also of interest to consider varia-
tions in the definition. For example, a variation would be
as follows: x(n) is rich if there is no frequency interval

of the form [ω0, ω0 + ε] such that v†X(ejω) is identically
zero there for constant v �= 0. Another definition could be
this: x(n) is rich if for any initial time n0 there exists an
integer K such that

[x(n0) x(n0 + 1) . . . x(n0 + K) ]

has rank M (with K not necessarily the same for all n0).
This appears to be a more practical definition for richness.
It is clear that paraunitarity and unimodularity are still not
sufficient for preservation of this richness. Thus consider
Example 1 again. Redefine the input as the periodic signal

a,b,0, . . .0,a,b,0, . . .0,a,b, . . .

where a = x(0) and b = x(1) as in Example 1. With
a sufficiently large block of zeros separating the nonzero
input samples it is clear that the output is the periodic
signal

0,

[
0

−4

]
,0, . . .0,

[
0

−4

]
,0, . . .0, . . .

Though the input is rich according to the revised definition,
the output is not, because the rank of the output matrix
Y can never exceed unity. If we adopt one of these defini-
tions, and want a similar kind of richness to be preserved
at the output, then what are the necessary and sufficient
conditions on the LTI system? These are open questions
and demand further investigation.
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