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ABSTRACT

There are many ways to define richness of a discrete time signal. In
this paper we consider a particular definition and explore the con-
ditions under which a linear time invariant (LTI) system preserves
the richness property. A set of necessary and sufficient conditions
has been found. Using this, paraunitary and unimodular matrices
can be shown not to preserve richness unless they are constant ma-
trices (or a delayed version in the paraunitary case). A structured
proof of the necessary and sufficient conditions is also presented.1

1. INTRODUCTION

In some applications a sequence ofM × 1 vectorsx(n), n ≥ 0 is
defined to berich or rank-rich if the matrix

[
x(0) x(1) · · · x(Kx)

]

has rankM for sufficiently largeKx [1]. This property is impor-
tant, for example, when we try to identify an unknown communi-
cation channel from output measurements alone using filter bank
precoders [3]. Now, signals are sometimes preconditioned by lin-
ear transformations before they are used in such an application
[4]. This leads us to explore the conditions under which the linear
precoders will preserve richness of the vectorized signals. In [1]
some nontrivial sufficient conditions have been presented. Specific
examples given in [1] also show that paraunitary and unimodular
matrices do not in general preserve richness. In this paper, we will
present the most general necessary and sufficient conditions for
preserving richness.

Let the linear time invariant system be characterized by the
M ×M polynomial matrix

H(z) =

N∑

k=0

h(k)z−k

so that
y(n) =

N∑

k=0

h(k)x(n− k).

We say the systemH(z) is richness-preserving(RP) if for any
rank-rich inputx(n), the outputy(n) is also rank-rich. A set of
necessary and sufficient conditions will be presented in Sec. 2. In
Sec. 3 we will show that paraunitary (PU) matrices and unimod-
ular matrices cannot satisfy the necessary conditions unless they
are constant matrices (with a possible delay in the PU case). The
proof of the main theorem will be given in Sec. 4. Throughout the
paper we will use the term richness to imply rank-richness.

1Work supported in parts by the NSF grant CCF-0428326 and the
Moore Fellowship of the California Institute of Technology.

1.1. Notations

Boldfaced lower case letters represent column vectors, and bold-
faced upper case letters are reserved for matrices. Superscripts
as inAT andAH denote the transpose and transpose-conjugate
operations, respectively, of a matrix or a vector.H̃(z) represents
HH(1/z∗), and[v]i denotes theith element of vectorv.

2. MAIN THEOREM AND EXAMPLES

In this section we will describe the necessary and sufficient con-
ditions for an LTI system to preserve richness. The proof of the
theorem will be given in Sec. 4.

Theorem 1:An N th order,M ×M polynomial matrix

H(z) =

N∑

k=0

h(k)z−k

is arichness-preserving (RP)LTI systemif and only if either one
of the following conditions is true:

(a) There exist a nonsingularM × M matrix A and constants
g0, g1, · · · , gN of which at least one is nonzero such thath(k)
= gkA.

(b) There exist a nonzero row vectorvT and a set of column vec-
torsa0,a1, · · · ,aN such thath(k) = akv

T for any k, and[
a0 a1 · · · aN

]
has full rankM . ¤

It is obvious that conditions (a) and (b) cannot be satisfied at
the same time. We can hence say there are two types of RP ma-
trices, namely, Type A and Type B, according to the statement of
Theorem 1. For Type A matrices, each nonzero coefficient matrix
is nonsingular while for Type B matrices, each nonzero coefficient
matrix has unit rank. Notice in particular that the orderN and the
sizeM of a Type B matrix must satisfyN ≥ M − 1 to meet the
full rank criterion of

[
a0 a1, · · · aN

]
.

Some special cases have already been noticed in [1]. AnN th
order FIR system with the form

H(z) = A
(
g0 + g1z

−1 + · · ·+ gNz−N
)

is sufficient to preserve richness ifA is a nonsingular matrix and
g0 6= 0. This is an example of Type A matrices. It had also been
shown that, for a first order RP matrixH(z) = h(0) + h(1)z−1,
h(1) is necessarilyg1h(0) for some constantg1 if h(0) is nonsin-
gular. A useful corollary of Theorem 1 is as follows:



Corollary 1: Consider theN th order,M×M FIR systemH(z) =∑N
k=0 h(k)z−k and assumeh(0) is nonsingular. ThenH(z) is

RP if and only if there exist a nonsingularM ×M matrixA and
constantsg0, g1, · · · , gN whereg0 6= 0 such thath(k) = gkA. ¤

For RP matrices whereh(0) is singular, a simple example has
also been given in [1]:

H(z) =

[
1 a
0 0

]
+ z−1

[
0 0
1 a

]
.

This is an example of Type B matrices. In this example, each
row of all coefficient matrices is proportional to row vectorvT =[

1 a
]
. Column vectorsa0 =

[
1 0

]T
anda1 =

[
0 1

]T

are used in this example. According to condition (b) of Theorem
1, one can generate a Type B RP matrix by arbitrarily picking up a
nonzero row vectorvT and column vectorsa0,a1, · · · ,aN where[

a0 a1 · · · aN

]
has full rank. For an RP matrix, ifh(0)

is singular but nonzero, it must be a Type B matrix. Another corol-
lary of Theorem 1 is as follows:

Corollary 2: Consider theN th order,M×M FIR systemH(z) =∑N
k=0 h(k)z−k with sizeM ×M and assumeh(0) 6= 0 is singu-

lar. ThenH(z) is RPif and only if there exist a nonzero row vec-
torvT andN +1 column vectorsa0,a1, · · ·aN such thath(n) =
anvT ,

[
a0 a1 · · · aN

]
has full rank, anda0 6= 0. ¤

The proofs of the preceding two corollaries will be automati-
cally covered when we prove Theorem 1 in Sec. 4. In these corol-
laries we have not considered the case whereh(0) = 0. If this
is true, however,H(z) is simply a delayed version of another LTI
system whose first coefficient is nonzero. SinceH(z) is RP if and
only if z−mH(z) is RP for anym, the assumptionh(0) 6= 0 is
not a loss of generality.

3. PARAUNITARY AND UNIMODULAR MATRICES

We now present some applications for Theorem 1. We sayH(z) is
a paraunitary (PU) matrix if̃H(z)H(z) = IM [2]. A causal sys-
temH(z) is said to be unimodular ifdet(H(z)) = 1, so that the
inverse ofH(z) is still a causal FIR system [2]. Using Theorem
1, we can show that paraunitary and unimodular matrices cannot
preserve richness unless they are constant matrices (with a possi-
ble delay in the PU case).

Corollary 3: If a paraunitary matrixH(z) is richness-preserving,
thenH(z) is a constant unitary matrix or a delayed version of it.

Proof: Without loss of generality, assumeh(0) 6= 0. Suppose
H(z) =

∑N
k=0 h(k)z−k is paraunitary and richness-preserving

but not a constant matrix (i.e.,N > 0 andh(N) is nonzero). From
properties of paraunitary matrices we know bothh(0) andh(N)
are singular [2]. Using Corollary 2 of Theorem 1, there exist row
vectorvT andN + 1 column vectorsa0,a1, · · · ,aN such that
H(z) =

∑N
k=0 akv

Hz−k. SoH̃(z) =
∑N

l=0 vaH
l zl and

H̃(z)H(z) =

N∑

k=0

N∑

l=0

vaH
l akv

Hz−(k−l).

The constant term(z0) of H̃(z)H(z) would be

N∑

k=0

vaH
k akv

H =

[
N∑

k=0

aH
k ak

]
vvH

sinceaH
k ak are all constants. The matrixvvH obviously has rank

one. This contradicts̃H(z)H(z) = IM , completing the proof.¤

Corollary 4: If a unimodular matrixH(z) is richness-preserving,
thenH(z) is a constant matrix.

Proof: If H(z) =
∑N

k=0 h(k)z−k is unimodular,det (h(0)) =
det (H(∞)) = 1. Soh(0) must be nonsingular. IfH(z) is also
RP, it must satisfy condition (a) in Theorem 1. ThenH(z) =(∑N

k=0 gkz−k
)
A anddet(H(z)) =

(∑N
k=0 gkz−k

)M

det(A) =

1, whereA is nonsingular. So we havegk = 0 for k > 0 and
henceH(z) must be a constant matrix.¤

4. PROOF OF THE MAIN THEOREM

4.1. Sketch of the Proof

In this section, we will prove Theorem 1 step by step. We will
first show that conditions (a) and (b) are sufficient. Then we will
describe several lemmas for proof of necessity. A termcoefficient
rank will be defined to denote the ranks of all nonzero coefficient
matrices since they will prove to be the same. The coefficient rank
will later on prove to be either unity orM . Finally, for the case
of unity coefficient rank, we will show condition (b) is necessary,
and for the case of full coefficient rank, condition (a) is necessary.

4.2. Proof of Sufficiency

We first prove conditions (a) and (b) in Theorem 1 are sufficient
for preserving richness.

Proof: If H(z) satisfies condition (a), by Theorem 1 in [1], it is
RP. SupposeH(z) satisfies condition (b) but is not RP. Then there
exists a rich inputx(n) such that the outputy(n) is not rich, i.e.,
there exists a row vectorwT such thatwT y(n) = 0,∀n. Using
y(n) =

∑N
k=0 h(k)x(n− k), we have the following equations:

(wT a0)(v
T x(0)) = 0

(wT a0)(v
T x(1)) + (wT a1)(v

T x(0)) = 0

...
N∑

k=0

(wT ak)(vT x(N − k)) = 0.

If vT x(0) is not zero, then from the first equation we havewT a0 =
0. Substituting this into the second equation, we get

(wT a1)(v
T x(0)) = 0.

SowT a1 has to be zero. Repeat these substitutions and we will
havewT ak = 0,∀k, 0 ≤ k ≤ N . This contradicts the state-
ment that[a0,a1, ..., aN ] has rankM . SovT x(0) has to be zero.
Substituting this into all equations and repeating the same deriva-
tions, we will havevT x(1) = 0 as well. Repeating this we get
vT x(n) = 0 for all n. This violates richness of the inputx(n).
So condition (b) is also sufficient.¤



4.3. Lemmas for Proof of Necessity

Lemma 1:If anM×M polynomial matrixH(z) =
∑N

k=0 h(k)z−k

is richness-preserving, then there exist anM ×M constant matrix
A andM ×M diagonal matricesDk such thath(k) = DkA.

Proof: For0 ≤ k ≤ N , we assume

h(k) =
[

a1k a2k · · · aMk

]T
,

where
aT

ik =
[

ai1k ai2k · · · aiNk

]

is theith row ofh(k). Focusing on theith row ofH(z), we use

bT
k =

[
b1k b2k · · · bNk

]

to denoteaT
ik for simplicity. SinceH(z) is richness preserving,

any row ofH(z) cannot be all zeros. So there existsbjk that is
nonzero. Without loss of generality, assumeb10 6= 0. Construct
the input as:

x(0) = b20e1 − b10e2

x(1) = b21e1 − b11e2

...

x(N) = b2Ne1 − b1Ne2

x(m(N + 1) + k) = b(m+2),ke1 − b1kem+2,

0 ≤ m ≤ M − 2, 0 ≤ k ≤ N.

For simplicity, we will usexm(k) to denotex(m(N + 1) + k)
By the definitions above, one can verify the following things for
0 ≤ m ≤ M − 2, 0 ≤ k, l ≤ N.
(1) bT

k xm(k) = 0.
(2) bT

k xm(l) + bT
l xm(k) = 0.

Using these results, it can be shown that

[y(n)]i =

[
N∑

k=0

h(k)x(n− k)

]

i

=

N∑

k=0

bT
k x(n− k) = 0.

Hence the outputy(n) is not rich. SinceH(z) is richness pre-
serving,x(n) must also be not rich. Define theM × M matrix

X1 =
[

x(0) x(1) x1(0) x2(0) · · · xM−2(0)
]
.

One can verify the absolute value of the determinant ofX1 is
|det(X1)| = |b10|M−2|b10b21 − b11b20|. Sincex(n) is not rich,
det(X1) = 0. Sinceb10 is nonzero, we getb10b21 = b11b20,
or b21 = di1b20, wheredi1 is chosen asb11/b10. Now we de-
fine anotherM ×M matrix by replacingx(1) in the definition of
X1 with anotherxm(1), and we obtainb(m+2),1 = di1b(m+2),0.
These results for allm imply thatb1 = di1b0, orai1 = di1ai0.

If we replacex(1) in the definition ofX1 with xm(k), we can
show that∃dik such thatbk = dikb0, or aik = dikai0. Finally,
definevi = ai0 anddi0 = 1, then we haveaik = dikvi for
all i andk. The reader has to note that here we assignvi asai0

just because of the assumption thatb10 is nonzero without loss of
generality. Ifb10 = 0, we can find anotherbjk that is nonzero and
do similar derivation, andvi here will be assigned as anotheraik

rather thanai0. After all, ∃dik,vi such thataik = dikvi is still
true for alli andk. Now we simply assign

A =
[

v1 v2 · · · vM

]T

and
Dk = diag

[
d1k d2k · · · dMk

]
.

Then the proof is complete.¤
Lemma 1 will play an important role in the proof of necessity

for both conditions (a) and (b). Some other useful lemmas will be
presented here.

Lemma 2:H(z) is RP if and only ifAH(z) is RP, whereA is any
nonsingularM ×M matrix.
Proof: This lemma becomes obvious when we recognize thatx(n)
is rich if and only ifAx(n) is rich for any nonsingular matrixA.¤

Lemma 3:H(z) is RP if and only ifz−kH(z) is RP, wherek is
any nonnegative integer.
Proof: This is self-evident.¤

Lemma 2 allows us to do invertible row operations onH(z)
since each invertible row operation corresponds to a nonsingular
matrix. Lemma 3 allows us to assumeh(0) 6= 0 for an RP matrix
H(z).

4.4. Coefficient Rank of an RP System

Lemma 4: For an FIR systemH(z) =
∑N

k=0 h(k)z−k which
preserves richness, the ranks of all nonzero coefficient matrices
must be the same. We call this value thecoefficient rankof an RP
system.
Proof: Supposeh(j) has the smallest rankρ among all nonzero
h(k) (ρ > 0). By Lemma 2, we can do invertible row operations
onH(z) such thath(j) can be expressed as

h(j) =
[

v1 v2 · · ·vρ vρ · · · vρ

]T

wherev1, ...,vρ are linearly independent nonzero column vectors.
By Lemma 1, there exist a constant matrixA and a diagonal matrix
Dj such thath(j) = DjA. Since each row ofh(j) is nonzero,
all diagonal entries ofDj must be nonzero andA also has rankρ.

Now for any other nonzero coefficient matrixh(k), there ex-
ists a diagonal matrixDk such thath(k) = DkA. So rank(h(k))≤
rank(A) = ρ. Sinceh(j) has the smallest nonzero rankρ, we have
rank(h(k)) = ρ. ¤

Lemma 5:The coefficient rank of an RP system can only be unity
or M .
Proof: Suppose there exists an RP matrixH(z) that has a coeffi-
cient rankρ where2 ≤ ρ ≤ M − 1. By Lemmas 2 and 3, we can
assumeh(0) 6= 0 and do invertible row operations onH(z) such
that

h(0) =
[

a1 a2 · · · aρ 0 · · · 0
]T

.

Sinceρ < M , the last row ofh(0) must be a zero vector. The
last rows of otherh(k), however, cannot be all zeros. By Lemma
1, there exist a constant matrixA and a diagonal matrixD0 such
that h(0) = D0A. By Lemma 4 we know rank(A) = ρ. So



the last row ofA, namelyvT
2 , must be a linear combination of

aT
1 ,aT

2 , · · · ,aT
ρ .

Sinceρ ≥ 2, we can find ani, 1 ≤ i ≤ ρ such thatai and
v2 are linearly independent. For convenience we definev1 = ai.
Now we can find a set of linear independent vectorsw1,w2, · · · ,
wM such thatw1 is orthogonal tov2, w2 is orthogonal tov1, and
w3, w4, ...,wM are orthogonal to bothv1 andv2. (For example,

we can letw1 = v1 − vT
1 v2

||v2||2 v2)
Now we focus on theith and theM th rows ofH(z). They are

vT
1 +

∑N
n=1 pnvT

1 z−n and
∑N

n=1 qnvT
2 z−n, respectively, where

{qn}N
n=1 are not all zeros. Construct the input sequence as:

x(n) = wn+3, 0 ≤ n ≤ M − 3

x(M − 2) = w2

x(M − 2 + k) = qkw1 + pkw2, 1 ≤ k ≤ N

x(n) = 0, ∀n ≥ M + N − 1.

Then one can verify that[y(n)]i = [y(n)]M for all n and hence
y(n) is not rich. But the inputx(n) is rich. This contradicts the
assumption thatH(z) is RP. So the coefficient rank ofH(z) can
only be unity orM . ¤

4.5. Completion of Proof of Necessity

Now we are ready to prove conditions (a) and (b) are necessary for
richness preserving property.

Proof: Let H(z) be RP. By Lemma 3 we assumeh(0) 6= 0. If
h(0) is singular, the coefficient rank ofH(z) must be unity by
Lemma 5. So there exist a nonzero row vectorvT and column
vectorsa0,a1, · · · ,aN such thath(k) = akv

T . Now we only
need to prove[a0,a1, ..., aN ] has full rank. If this is not true, we
can find an annihilatorwT for all ak. Then no matter what the
input is, the outputy(n) will have an annihilatorwT , and thus
H(z) becomes richness-destroying. So[a0,a1, ..., aN ] must have
rankM and thus condition (b) must be true.

If h(0) is nonsingular, the coefficient rank ofH(z) must be
M . By Lemma 2 we assumeh(0) = I without loss of generality.
Using Lemma 1,H(z) must have the form

H(z) = I +

N∑

k=1

z−kdiag
([

ak1 ak2 · · · akM

])
.

Suppose there existi, j, k such thataki 6= akj andi 6= j. Let

x(0) = ei + ej

x(n) = anjei + aniej , 1 ≤ n ≤ N

{x(n)}M+N−2
n=N+1 = {ek|1 ≤ k ≤ M, k 6= i, k 6= j}

x(n) = 0,∀n ≥ M + N − 1.

Sinceaki 6= akj , One can verify thatx(n) is rich. It is also easy
to verify the following things for1 ≤ k ≤ N :
(1) (eT

i − eT
j )x(0) = 0.

(2) (akie
T
i − akje

T
j )x(k) = 0.

(3) (eT
i − eT

j )x(k) + (akie
T
i − akje

T
j )x(0) = 0.

(4) (alie
T
i −alje

T
j )x(k)+(akie

T
i −akje

T
j )x(l) = 0, 1 ≤ l ≤ N.

(5) (akie
T
i − akje

T
j )x(l) = 0, N + 1 ≤ l ≤ M + N − 2.

Using these facts, we can show[y(n)]i = [y(n)]j , n ≥ 0 and
hencey(n) is not rich. So in order to letH(z) preserve richness,
aki = akj must be true for anyi 6= j and anyk. This means each
coefficient matrix ofH(z) is proportional to identity matrix and
hence condition (a) must be true.¤

The proof of Theorem 1 is now complete.

5. CONCLUDING REMARKS AND OPEN ISSUES

It would be interesting to consider variations in the definition of
richness. For example, a variation would be this:x(n) is rich if
for any initial timen0 there exists an integerKn0 such that

[
x(n0) x(n0 + 1) · · · x(n0 + Kn0)

]

has full rank. This appears to be a more practical definition for
richness. However, conditions for preserving richness according
to this definition could be different from what we have found in

this paper. For example,H(z) =

[
1 0
0 1

]
+z−1

[
1 0
0 1

]
ob-

viously preserves richness according to the old definition. It does
not, however, preserve richness according to the new definition. To
see this, letx(2n) =

[
1 0

]T
andx(2n+1) =

[
0 1

]T
for

all nonnegativen. Then the output would bey(0) =
[

1 0
]T

andy(n) =
[

1 1
]T

for any positiven. Here the inputx(n)
is rich according to both old and new definitions. But the output
y(n) is not rich according to the new definition. The exact suffi-
cient and necessary conditions for preserving richness according to
the new definition are not known at the time of writing this paper.

Another issue of interest is the evaluation of the probability for
an LTI system to preserve richness. For an LTI system that does
not satisfy necessary conditions in Theorem 1, we can manage to
find a rich input sequence such that the output of the system is
not rich. In practical applications, however, the probability of ap-
pearance of such input could almost be zero! This suggests there
may exist some LTI systems that, although not satisfying neces-
sary conditions of Theorem 1, still preserve richness with proba-
bility one. These systems would still be very useful in practical
applications. Finding conditions for such systems under different
input statistics could be a challenging but important problem.
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