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ABSTRACT 1.1. Notations

There are many ways to define richness of a discrete time signal. Ingoldfaced lower case letters represent column vectors, and bold-
this paper we consider a particular definition and explore the con- faced upper case letters are reserved for matrices. Superscripts
ditions under which a linear time invariant (LTI) system preserves asinA” and A¥ denote the transpose and transpose-conjugate

the richness property. A set of necessary and sufficient conditionspperations, respectively, of a matrix or a vectb(z) represents
has been found. Using this, paraunitary and unimodular matricesHH(l/Z*) and[v]. denotes théth element of vectow

. 1 1 .
can be shown not to preserve richness unless they are constant ma-

trices (or a delayed version in the paraunitary case). A structured 2. MAIN THEOREM AND EXAMPLES
proof of the necessary and sufficient conditions is also presénted.
1. INTRODUCTION In this section we will describe the necessary and sufficient con-

ditions for an LTI system to preserve richness. The proof of the

In some applications a sequenceldfx 1 vectorsx(n),n > 0is theorem will be given in Sec. 4.

defined to beich or rank-rich if the matrix

[ x(0) x(1) - x(K.) ] Theorem 1:An Nth order,M x M polynomial matrix
N
has rank)/ for sufficiently largeK,, [1]. This property is impor- H(z) = Z h(k)z”“
tant, for example, when we try to identify an unknown communi- o

cation channel from output measurements alone using filter bank ) _ o
precoders [3]. Now, signals are sometimes preconditioned by lin- IS arichness-preserving (RPLTI systemif and only if either one
ear transformations before they are used in such an applicationof the following conditions is true:

[4]. This leads us to explore the conditions under which the linear (3) There exist a nonsingula¥/ x M matrix A and constants

precoders will preserve richness of the vectorized signals. In [1] g0, 91, -+ , gn Of which at least one is nonzero such thét:)
some nontrivial sufficient conditions have been presented. Specific ~ — g, A

examples given in [1] also show that paraunitary and unimodular

matrices do not in general preserve richness. In this paper, we will (b) There exist a nonzero row vector and a set of column vec-

present the most general necessary and sufficient conditions for 'S0, a1, ,an such thath(k) = a,v" for any k, and
preserving richness. [a0 a - ay ]hasfullrankM. OO
Let the linear time invariant system be characterized by the
M x M polynomial matrix It is obvious that conditions (a) and (b) cannot be satisfied at
N the same time. We can hence say there are two types of RP ma-
H(z) =Y h(k)z" trices, namely, Type A and Type B, according to the statement of
k=0 Theorem 1. For Type A matrices, each nonzero coefficient matrix
so that N is nonsingular while for Type B matrices, each nonzero coefficient
y(n) = Z h(k)x(n — k). matrix has unit rank. Notice in particular that the ordémand the
—o size M of a Type B matrix must satisiv > M — 1 to meet the
We say the syster(z) is richness-preserving(RP) if for any full rank criterion of[ a0 a1, -+ an ]

rank-rich inputx(n), the outputy (n) is also rank-rich. A set of Some special cases have already been noticed in [1JVAn
necessary and sufficient conditions will be presented in Sec. 2. In°rder FIR system with the form
Sec. 3 we will show that paraunitary (PU) matrices and unimod- < -1 _N>
. . - H(z)=A e
ular matrices cannot satisfy the necessary conditions unless they (2) gotgiz 4Nz
are constant matrices (with a possible delay in the PU case). The.

. . L is sufficient to preserve richnessA is a nonsingular matrix and
proof of the_maln theorem WI|| be given in Sec. 4. Throughout the go # 0. This is an example of Type A matrices. It had also been
paper we will use the term richness to imply rank-richness.

shown that, for a first order RP matrif(z) = h(0) + h(1)z*,

work supported in parts by the NSF grant CCF-0428326 and the h(1) is necessarily;1 h(0) for some constany; if h(0) is nonsin-
Moore Fellowship of the California Institute of Technology. gular. A useful corollary of Theorem 1 is as follows:




Corollary 1: Consider theVth order,M x M FIR systenH(z) = The constant ternz®) of H(z)H(z) would be
ZkN:O h(k)z~* and assumé(0) is nonsingular. TheH(z) is N N

RPif and only if there exist a nonsingular/ x M matrix A and Z val agvt! = Z aay | vl
constantgpo, g1, - - ,gn Wherego # 0 such thah(k) = grA. O = =

For RP matrices wheri(0) is singular, a simple example has sinceaf! ay, are all constants. The matrixs” obviously has rank

also been given in [1]: one. This contradict®l(z)H(z) = I, completing the proof]
H(z) = 1 a e 0 0 Corollary 4: If a unimodular matrixt (=) is richness-preserving,
0 0 1 a |’ thenH(z) is a constant matrix.
This is an example of Type B matrices. In this example, each Proof: If H(z) = >, h(k)z" is unimodulardet (h(0)) =
row of all coefficient matrices is proportional to row vectof = det (H(oo)) = 1. Soh(0) must be nonsingular. [F(z) is also
[1 a ].Columnvectorag=[1 0 ]T anda; = [0 1 }T RP, it must satisfy condition (a) in Theorem 1. ThEKz) =

are used in this example. According tp conditipn (p) of Theorem (kavzo gk[k) A anddet(H(z)) = (Ziv:o gszk>M det(A) —
1, one can generate a Type B RP matrix by arbitrarily picking up a

nonzero row vectov’ and column vectorso, a1, - - - , ay Where
[a a1 --- an | hasfull rank. For an RP matrix, (0)

is singular but nonzero, it must be a Type B matrix. Another corol-
lary of Theorem 1 is as follows:

1, whereA is nonsingular. So we hawg, = 0 for £ > 0 and
henceH (z) must be a constant matrik]

4. PROOF OF THE MAIN THEOREM

4.1. Sketch of the Proof
Corollary 2: Consider theVth order,M x M FIR systenH(z) =
SN h(k)z " with sizeM x M and assumi(0) # 0 is singu-
lar. ThenH(z) is RPif and only if there exist a nonzero row vec-
torv” andN + 1 column vectorso, ai, - - - an such thah(n) =
a,v',[ a ai --- ay | hasfullrank, ancy # 0. O

In this section, we will prove Theorem 1 step by step. We will
first show that conditions (a) and (b) are sufficient. Then we will
describe several lemmas for proof of necessity. A teaefficient
rank will be defined to denote the ranks of all nonzero coefficient
matrices since they will prove to be the same. The coefficient rank
will later on prove to be either unity ab/. Finally, for the case

of unity coefficient rank, we will show condition (b) is necessary,
and for the case of full coefficient rank, condition (a) is necessary.

The proofs of the preceding two corollaries will be automati-
cally covered when we prove Theorem 1 in Sec. 4. In these corol-
laries we have not considered the case whei@ = 0. If this
is true, howeverH(z) is simply a delayed version of another LTI
system whose first coefficient is nonzero. Sitf€z) is RP if and
only if z7™H(z) is RP for anym, the assumptioh(0) # O is We first prove conditions (a) and (b) in Theorem 1 are sufficient
not a loss of generality. for preserving richness.

4.2. Proof of Sufficiency

Proof: If H(z) satisfies condition (a), by Theorem 1 in [1], it is
3. PARAUNITARY AND UNIMODULAR MATRICES RP. Suppos#l(z) satisfies condition (b) but is not RP. Then there
exists a rich inpuk(n) such that the output(n) is not rich, i.e.,
there exists a row vectox” such thatw”'y(n) = 0,Vn. Using
y(n) = S h(k)x(n — k), we have the following equations:
(whag)(v'x(0)) = 0

We now present some applications for Theorem 1. Wd&y) is

a paraunitary (PU) matrix iH(z)H(z) = I, [2]. A causal sys-
temH(z) is said to be unimodular flet(H(z)) = 1, so that the
inverse ofH(z) is still a causal FIR system [2]. Using Theorem

1, we can show that paraunitary and unimodular matrices cannot (whao)(vix(1)) + (wha)(v'x(0)) = 0
preserve richness unless they are constant matrices (with a possi-
ble delay in the PU case).
N
T T —
Corollary 3: If a paraunitary matridi(z) is richness-preserving, ;O(W ap) (v x(N —k)) = 0.

thenH(z) is a constant unitary matrix or a delayed version of it.
If v7'x(0) is not zero, then from the first equation we hav€ag =

Proof: Without loss of generality, assuntg0) # 0. Suppose 0. Substituting this into the second equation, we get

H(z) = Y+, h(k)z" is paraunitary and richness-preserving

but not a constant matrix (i.eN > 0 andh(N) is nonzero). From (w"a1)(v'x(0)) =0.
properties of paraunitary matrices we know baift) andh(xV) Sow”a, has to be zero. Repeat these substitutions and we will
are singular [2]. Using Corollary 2 of Theorem 1, there exist row havewTa, = 0,Vk,0 < k < N. This contradicts the state-
vectorv’ and N + 1 column vectorsap, ai, - -+ ,ay such that  ment thafiag, a1, ..., ax] has rank)M. Sov”x(0) has to be zero.
H(z) = Y5 parv2 7% SoH(2) = YL, vai’ 2! and Substituting this into all equations and repeating the same deriva-
N N tic;ns, we will havevTx(l). :.0 as wgll. Repeating t'his we get
H(z)H(z) = Z Z val agvH 5= =D v x(n) = 0 for all n. This violates richness of the inpu{(n).

So condition (b) is also sufficienf]



4.3. Lemmas for Proof of Necessity

Lemma Lifan M x M polynomial matrixH(z) = >~ h(k)z~*
is richness-preserving, then there exist\dnx M constant matrix
A andM x M diagonal matrice®;, such that(k) = D, A.

Proof: For0 < k < N, we assume

h(k) = [ aix  ag apmk }Tv

where

T
A = [ Ailk A2k AiNk }

is theith row of h(k). Focusing on theth row of H(z), we use

bf = [ bir  bag byk }

to denotea’; for simplicity. SinceH(z) is richness preserving,
any row of H(z) cannot be all zeros. So there exists that is
nonzero. Without loss of generality, assume # 0. Construct
the input as:

x(0) = baoer — bioe2
x(1) = baier —biiez
x(N) = baner —biner

x(M(N+1)+k) = bunyo) k€l — bikemsz,

0<m<M-20<k<N.

For simplicity, we will usex.,, (k) to denotex(m(N + 1) + k)

By the definitions above, one can verify the following things for
0<m<M-2 0<k,I<N.

Wb %, (k) = 0.

(2) b xm (1) + bl xm (k) = 0.

Using these results, it can be shown that

[Z h(k)x(n — k)}

N
k=

[y ()i

7

= bex(n —k)=0.

0

Hence the outpuy(n) is not rich. SinceH(z) is richness pre-
serving,x(n) must also be not rich. Define the x M matrix

X1 =] x(0) x(1) x1(0) x2(0) xm—2(0) ].
One can verify the absolute value of the determinaniXaf is
|det(X1)| = ‘b10|]\/[_2|b10b21 — bubzo‘. Sincex(n) is not rich,
det(X1) = 0. Sincebio is nonzero, we gebioba1 = bi1b20,
or ba1 = ds;1b2o, Whered;; is chosen a$:1/b10. Now we de-
fine anotheM x M matrix by replacingz(1) in the definition of
X with anotherx,, (1), and we obtairb,,, 2y, 1 = di1b(m2),0-
These results for ath imply thatb; = d;1bo, Ora;; = d;1a40.

If we replacex(1) in the definition ofX; with x,,, (k), we can
show that3d;;, such thaby, = d;xbo, Or a;, = dira. Finally,
definev;, = a;o andd;o = 1, then we haven;;, = d;rv; for
all 7 andk. The reader has to note that here we assigasa;o
just because of the assumption that is nonzero without loss of
generality. Ifb;o = 0, we can find anothéy;;, that is nonzero and
do similar derivation, and; here will be assigned as anothey,

rather tham;o. After all, 3d;x, v; such thata;, = d;rv; is still
true for allz andk. Now we simply assign
A = [ Vi

va var 7

and
D, = dlag[ dik

Then the proof is completé]

Lemma 1 will play an important role in the proof of necessity
for both conditions (a) and (b). Some other useful lemmas will be
presented here.

dok dark ] .

Lemma 2:H(z) is RP if and only ifAH(z) is RP, whereA is any
nonsingulard x M matrix.

Proof: This lemma becomes obvious when we recognizest(ia}
is rich if and only if Ax(n) is rich for any nonsingular matriA..CJ

Lemma 3:H(z) is RP if and only ifz~*H(z) is RP, wherek is
any nonnegative integer.
Proof: This is self-evidentO

Lemma 2 allows us to do invertible row operationsHifz)
since each invertible row operation corresponds to a nonsingular
matrix. Lemma 3 allows us to assurh€0) # 0 for an RP matrix

4.4. Coefficient Rank of an RP System

Lemma 4: For an FIR systenH(z) = Zszo h(k)z~* which
preserves richness, the ranks of all nonzero coefficient matrices
must be the same. We call this value tteefficient ranlof an RP
system.

Proof: Supposeh(j) has the smallest rank among all nonzero
h(k) (p > 0). By Lemma 2, we can do invertible row operations
onH(z) such thath(j) can be expressed as

T

AP Vp  Vp Vp ]
wherevy, ..., v, are linearly independent nonzero column vectors.
By Lemma 1, there exist a constant matt>and a diagonal matrix
D, such thath(j) = D;A. Since each row ch(j) is nonzero,
all diagonal entries aD; must be nonzero and also has rank.

Now for any other nonzero coefficient mattiX%), there ex-
ists a diagonal matril, such thah(k) = D A. Sorankh(k))<
rank(A) = p. Sinceh(j) has the smallest nonzero ramkwe have

rankh(k)) = p. O

Lemma 5:The coefficient rank of an RP system can only be unity

or M.

Proof: Suppose there exists an RP maf#Xz) that has a coeffi-

cient rankp where2 < p < M — 1. By Lemmas 2 and 3, we can

assuméh(0) # 0 and do invertible row operations d(z) such

that
h(0)=[ a1 as a, 0 --- 0]"

Sincep < M, the last row ofh(0) must be a zero vector. The

last rows of otheh(k), however, cannot be all zeros. By Lemma

1, there exist a constant matrik and a diagonal matrifd, such

thath(0) = DoA. By Lemma 4 we know ranfd) = p. So



the last row ofA, namelyv?, must be a linear combination of
T T T
aj,az, - 7ap'
Sincep > 2, we can find an, 1 < ¢ < p such thata; and
vy are linearly independent. For convenience we define- a;.
Now we can find a set of linear independent vectwis wo, - - - |
w s such thaw is orthogonal tove, wo is orthogonal tovy, and

w s are orthogonal to botk; andvs. (For example,
we can letw; = vy — “I"}T%VQ)

Now we focus on théth and theM th rows ofH(z). They are
vi+ 3N pavizTmandY | g.v3 27", respectively, where
{gn}5_, are not all zeros. Construct the input sequence as:

W3, W4, ...,

x(n) Wnt3,0<n<M-—3
x(M—-2) = w2
x(M —2+4k) = qgwi+pew2,1<k<N
x(n) = 0,Yn>M+N —1.

Then one can verify thdly (n)], = [y(n)],, for all n and hence
y(n) is not rich. But the inpuk(n) is rich. This contradicts the
assumption thaH(z) is RP. So the coefficient rank &(z) can
only be unity orM. O

4.5. Completion of Proof of Necessity

Now we are ready to prove conditions (a) and (b) are necessary forandy (n) = [ 1

richness preserving property.

Proof: Let H(z) be RP. By Lemma 3 we assurbg0) # 0. If
h(0) is singular, the coefficient rank dfi(z) must be unity by
Lemma 5. So there exist a nonzero row vecidr and column
vectorsap, ay, - - - ,ay such thath(k) = a,v’. Now we only
need to provéag, a1, ..., anx] has full rank. If this is not true, we
can find an annihilatow” for all a;. Then no matter what the
input is, the outputy(n) will have an annihilatow?”, and thus
H(z) becomes richness-destroying. [@g, a1, ..., an| must have
rank M and thus condition (b) must be true.

If h(0) is nonsingular, the coefficient rank &1(z) must be
M. By Lemma 2 we assumie(0) = I without loss of generality.
Using Lemma 1H(z) must have the form

arm ).

N
H(z) =1+ Z 2 *diag([ ar1 ane

k=1

Suppose there existj, k such that; # ar; andi # j. Let

x(0) e; +ej

x(n) = anj€i+anie;, 1 <n<N
(xS = {erl <k < Mk#ik#j}

x(n) = 0,Yn>M+N—1.

Sinceay; # ax;, One can verify thak(n) is rich. It is also easy
to verify the foIIowing things forl < k < N:

@) (el — ej)x(0) =0.

(2) (a;“e ak]eT) (k’) = 0.

(3) (el — ] )x(k) + (arie] — axje])x(0) = 0.

@) (arel aljeT)x(k)Jr(a;ﬂ-eiTfakjejT)x(l) =0,1<I<N.
(5) (avie! —arje] )x(1) =0, N+1<I< M+ N —2.

Using these facts, we can shdw(n)], = [y(n)];,n > 0 and
hencey(n) is not rich. So in order to |eH(z) preserve richness,
ar: = ar; Must be true for any # j and anyk. This means each
coefficient matrix ofH(z) is proportional to identity matrix and
hence condition (a) must be true.

The proof of Theorem 1 is now complete.

5. CONCLUDING REMARKS AND OPEN ISSUES

It would be interesting to consider variations in the definition of
richness. For example, a variation would be thk$n) is rich if
for any initial timeng there exists an integédt,,, such that

[ x(no) x(no+1) x(no + Kn,) |

has full rank. This appears to be a more practical definition for
richness. However, conditions for preserving richness according
to this definition could be different from what we have found in

1 .1 0

0 1 +z 01 ob-
viously preserves richness according to the old definition. It does
not, however, preserve richness according to the new definition. To
seethis, lek(2n) =1 0 }Tandx(2n+1) =[0 1 ]Tfor

all nonnegativer. Then the output would bg(0) = [ 1 0 ]T

1 ]T for any positiven. Here the inpuix(n)
is rich according to both old and new definitions. But the output
y(n) is not rich according to the new definition. The exact suffi-
cient and necessary conditions for preserving richness according to
the new definition are not known at the time of writing this paper.
Another issue of interest is the evaluation of the probability for
an LTI system to preserve richness. For an LTI system that does
not satisfy necessary conditions in Theorem 1, we can manage to
find a rich input sequence such that the output of the system is
not rich. In practical applications, however, the probability of ap-
pearance of such input could almost be zero! This suggests there
may exist some LTI systems that, although not satisfying neces-
sary conditions of Theorem 1, still preserve richness with proba-
bility one. These systems would still be very useful in practical
applications. Finding conditions for such systems under different
input statistics could be a challenging but important problem.

this paper. For examplé&I(z) =
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