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Abstract— It is well-known that redundant filter bank pre-
coders can be used for blind identification as well as equalization
of FIR channels. Several algorithms have been proposed in the
literature exploiting trailing zeros in the transmitter. In this
paper we propose a generalized algorithm of which the pre-
vious algorithms are special cases. By carefully choosing system
parameters, we can jointly optimize the system performance and
computational complexity. Simulation shows that the proposed
algorithm outperforms the previous ones when the parameters
are optimally chosen. 1

I. INTRODUCTION

Wireless communication systems often suffer from a prob-
lem due to multi-path fading created by frequency-selective
channels. Channel coefficients are often unknown to the re-
ceiver so that channel identification needs to be done before
equalization can be performed. Among techniques for identi-
fying unknown channel coefficients, blind methods have long
been of great interest. In the literature many blind methods
have been proposed based on the knowledge of second order
statistics (SOS) or higher-order statistics of the transmitted
symbols [6],[7]. These methods often need to accumulate a
large number of received symbols until channel coefficients
can be estimated accurately. This requirement leads to a
disadvantage when the system is working over a fast-varying
channel.

A deterministic blind method using redundant filterbank
precoders was first proposed by Scaglione et al.[1] by exploit-
ing trailing zeros introduced at the transmitter. Figure 1 shows
a typical linearly redundant precoded system. Source symbols
are divided into blocks with size M and linearly precoded into
P -symbol blocks which are then transmitted to the channel.
It is well known when P ≥ M +L, where L is the maximum
order of the FIR channel, inter-block interference (IBI) can be
completely eliminated in the absence of noise. When the block
size M increases, the bandwidth efficiency η = (M + L)/M
approaches unity asymptotically. The deterministic method
proposed in [1] (which we will call SGB method) exploits
trailing zeros with length L introduced in each transmitted
block and assumes the input sequence is rich. That is, the
matrix composed of finite source blocks achieves full rank.
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Fig. 1. Communication System with Redundant Filter Bank Precoders

The method in [1] requires the receiver to accumulate at
least M blocks before channel coefficients can be identified.
This still prevents the system from identifying channel coeffi-
cients accurately when the channel is fast-varying, especially
when the block size M is large. More recently, Manton et
al. pointed out that the channel could be identifiable with
only two received blocks [2]. An algorithm based on viewing
the channel identification problem as finding the greatest
common divisor (GCD) of two polynomials is proposed in
[3]. While greatly reducing the number of received blocks
needed for channel identification, the algorithm has much more
computational complexity especially when the block size M
is large.

In this paper, we propose a generalized algorithm of which
the SGB algorithm proposed in [1] and the GCD algorithm in
[3] are both special cases. By carefully choosing parameters,
the system performance and computational complexity can
be jointly optimized. The rest of the paper is organized as
follows. Section II describes the system structure with linear
precoder filter banks and reviews the existing blind algorithms.
In section III we present the generalized algorithm, derive the
conditions on the input sequence under which the algorithm
operates properly, and analyze the computational complexity
with different system parameters. Simulation results are shown
in section IV and conclusions are made in section V.

A. Notations

Boldfaced lower case letters represent column vectors, and
boldfaced upper case letters are reserved for matrices. Super-



Fig. 2. The zero-padding system with precoder R1

scripts as in AT and AH denote the transpose and transpose-
conjugate operations, respectively, of a matrix or a vector. All
the vectors and matrices in this context are complex-valued.

If v =
[

v1 v2 · · · vM

]T
is an M ×1 column vector,

then T (v, q) denotes an (M + q − 1) × q Toeplitz matrix
whose first row and first column are

[
v1 0 · · · 0

]
and[

v1 v2 · · · vM 0 · · · 0
]T

, respectively.

II. PROBLEM FORMULATION AND EXISTING RESULTS

A. Redundant Filter Bank Precoders

Consider a communication system depicted in Fig. 1. Source
symbols s1(n), s2(n), ..., sM (n) may come from M different
users or from a serial-to-parallel operation on data of a single
user. For convenience we consider the blocked version s(n)
as indicated. The vector s(n) is precoded by a P ×M matrix
R where P > M . The information with redundancy is then
sent to the channel H(z). We assume H(z) is an FIR channel
with a maximum order L, i.e., H(z) =

∑L
k=0 hkz−k. The

signal is corrupted by a random noise e(n) and then the
received symbols y(n) are further divided into P × 1 block
vectors y(n). The M × P matrix G is the channel equal-
izer and ŝ1(n), ŝ2(n), ..., ŝM (n) are the recovered symbol
streams. Also, for simplicity we define h as the column vector[

h0 h1 · · · hL

]T
. We set P = M + L, that is, the

redundancy introduced in a block is equal to the maximum
channel order.

B. Trailing Zeros as Transmitter Guard Interval

Throughout the paper we assume the precoder R =
[

R1

0

]
where R1 is an M × M invertible matrix and the L × M
zero matrix 0 represents zero-padding with length L in each
transmitted block, as indicated in Fig. 2. In absence of noise,
the received blocks can be written as

[
y(1) y(2) · · · y(J)

]
︸ ︷︷ ︸

Y matrix; size P × J

= HR1

[
s(1) s(2) · · · s(J)

]
︸ ︷︷ ︸

S matrix; size M × J

where H = T (h,M) is the Toeplitz channel matrix. As long
as vector h is nonzero, the matrix H has full column rank M .
Now, we assume the signal s(n) is rich, that is, there exists an
integer J such that the matrix S has full row rank M . Since
R1 is an M×M invertible matrix, we conclude that the P ×J
matrix Y has rank M . So there exists a P ×L matrix U0 with
L linearly independent columns which are annihilators of Y,
that is, UH

0 Y = UH
0 HR1S = 0. Now that R1S has rank M ,

this implies

UH
0 H = UH

0 T (h,M) = 0. (1)

The channel coefficients h can then be determined by solving
Eq. (1) in the least square sense. In practice where channel
noise is present, the computation of the annihilators is replaced
with the computation of the eigenvectors corresponding to the
smallest L singular values of Y. In this and the following
sections, the channel noise term is not shown explicitly.

Note that this algorithm [1] works under the assumption
that S has full row rank M . Obviously J ≥ M is a necessary
condition for this assumption. This means the receiver must
accumulate at least M blocks (i.e., a duration of M(M + L)
symbols ) before channel identification can be performed. This
could be a major disadvantage when the system is working
over a fast-varying channel.

C. The GCD approach

Another approach proposed in [3] requires only two re-
ceived blocks for blind channel identification. Recall that the
channel is described by y = Hu = T (h,M)u, or




y1

y2

...
yP


 =




h0 0

h1
. . .

... h0

hL h1

. . .
...

0 hL







u1

u2

...
uM


 . (2)

By multiplying
[

1 x x2 · · · xP−1
]

to both sides of
Eq. (2), we obtain y(x) = h(x)u(x), where y(x) � y1+y2x+
· · · + yP xP−1, h(x) � h0 + h1x + · · · + hLxL, and u(x) �
u1+u2x+· · ·+uMxM−1 are polynomial representations of the
output vector, channel vector, and input vector, respectively.
This means, Eq. (2) is nothing but a polynomial multiplication.
Now, suppose we have two received blocks y(1) and y(2), and
let y1(x) = h(x)u1(x) and y2(x) = h(x)u2(x) represent the
polynomial forms of these. Then the channel polynomial h(x)
can be found as the GCD of y1(x) and y2(x), given that the
input polynomials u1(x) and u2(x) are co-prime to each other.



To compute the GCD of y1(x) and y2(x), we first construct
a (2P − 1) × 2P matrix

Y �




y11 0 · · · 0 y21 0 · · · 0

y12 y11
. . .

... y22 y21
. . .

...
... y12

. . . 0
... y22

. . . 0

y1P

... y11 y2P

... y21

0 y1P y12 0 y2P y22

...
. . .

. . .
...

...
. . .

. . .
...

0 · · · 0 y1P 0 · · · 0 y2P




.

One can verify that

Y =




h0 0

h1

. . .
... h0

hL h1

. . .
...

0 hL




︸ ︷︷ ︸




u11 0 u21 0

u12

. . . u22

. . .
... u11

... u21

u1M u12 u2M u22

. . .
...

. . .
...

0 u1M 0 u2M




︸ ︷︷ ︸

.

matrix H matrix U
size (2P − 1) × (M + P − 1) ; size (M + P − 1) × 2P

When u1(x) and u2(x) are co-prime to each other, the
matrix U has full row rank M + P − 1. Since H also has
rank M + P − 1, rank(Y) = M + P − 1 and hence Y has L
left annihilators (i.e., there exists a (2P − 1) × L matrix U0

such that UH
0 Y = 0). These annihilators are also annihilators

of each column of matrix H, and we can therefore identify
channel coefficients h0, h1, ..., hL up to a scalar ambiguity.

III. A GENERALIZED ALGORITHM

Comparing the two algorithms described in the previous
section, we find that the GCD approach needs much fewer
received symbols for blind identifiability. However, it has more
computational complexity. Each received block is repeated P
times to build a big matrix. In this section we will show that
the number of repetitions of the blocks can be greatly reduced
to save computation without degrading system performance
significantly.

A. Algorithm Description

Observe Eq. (2) again and note that it is equivalent to

T (y,Q) = T (h,M + Q − 1)T (u,Q),

where Q can be any positive integer. Suppose the receiver
gathers J blocks with J ≥ 2. Then we have Y(J)

Q = HU(J)
Q ,

where

Y(J)
Q =

[
T (y(1), Q) T (y(2), Q) · · · T (y(J), Q)

]
,

H = T (h,M + Q − 1),

and
U(J)

Q =
[
T (R1s(1), P ) · · · T (R1s(J), P )

]
. (3)

Note that U(J)
Q has size (M +Q−1)×QJ and Y(J)

Q has size

(P +Q−1)×QJ . Assume now the matrix U(J)
Q has full row

rank M +Q− 1. Taking singular-value decomposition (SVD)
of Y(J)

Q we have

Y(J)
Q =

[
UrU0

] [
Σ

0

] [
VrV0

]H
.

The size of Σ is (M + Q − 1) × (M + Q − 1) since both H
and U(J)

Q have full rank (M + Q − 1). The columns of the
(M + Q − 1) × L matrix U0 are left annihilators of matrix
Y(J) and also of H since U(J) has full row rank. Suppose
U0 has the structure

UH
0 =




u11 u12 · · ·u1,P+Q−1

u21 u22 · · ·u2,P+Q−1

...
...

uL1 uL2 · · ·uL,P+Q−1


 ,

then we have [
UH

1 UH
2 · · · UH

L

]H

︸ ︷︷ ︸h = 0

U matrix; size L(M + Q − 1) × (L + 1)

where

Uk �




uk1 uk2 · · · uk,L+1

uk2 uk3 · · · uk,L+2

...
...

uk,M+Q−1 uk,M+Q · · · uk,P+Q−1




for all k, 1 ≤ k ≤ L. Vector h can thus be identified up to a
scalar ambiguity.

B. System Parameters

The blind channel identification algorithm described above
uses two parameters: the number of received blocks J and the
number of repetitions per block Q. The algorithm works for
any J and Q as long as U(J)

Q has full row rank M + Q − 1.
This is the only constraint for choosing parameters J and Q.
Note that if we choose Q = 1 and J ≥ M , then the algorithm
reduces to the SGB algorithm [1]. If we choose Q = P and
J = 2, it becomes the GCD algorithm [3].

Since U(J)
Q has size (M + Q − 1) × QJ , U(J)

Q having full
row rank implies QJ ≥ M + Q − 1, or

Q ≥ M − 1
J − 1

. (4)

Also note that we cannot choose J = 1 since U(J)
Q can never

have full rank unless the block size M = 1. This coincides
with the theory that two blocks are required for blind channel
identification [2]. While inequality (4) is a necessary condition
for U(J)

Q to have full rank, it is not sufficient. Nevertheless,

when inequality (4) is satisfied, the probability of U(J)
Q having

full rank is usually close to unity in practice, especially when
a large symbol constellation is used. Thus,

Q =
⌈

M − 1
J − 1

⌉

appears to be a selection that minimizes the computational
cost given the number of received blocks J .
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Fig. 3. Normalized least squared channel error estimation.

When J = 2, Q can be chosen as small as M − 1 rather
than P . If we take J = 3, Q =

⌈
M−1

2

⌉
makes the matrix

Y twice smaller. We can choose Q = 1 only when J ≥ M .
This coincides with the SGB algorithm which uses a richness
assumption [1].

C. Complexity Analysis

The SVD computation dominates the complexity of the
algorithm described above. The number of blocks J , the
number of repetitions per block Q, and the received block
size P decide the size of the matrix on which SVD is taken.
The complexity of SVD operation on an n × m matrix [5] is
on the order of O(mn2) with m ≥ n. Since Y(J)

Q has size
(P + Q − 1) × QJ , the complexity is O(QJ(P + Q − 1)2).
We can see that the complexity can be greatly reduced by
choosing a smaller Q. The SGB method [1] uses Q = 1 and
the GCD method [3] uses Q = P . So the GCD method has
a complexity around 4P times the complexity of the SGB
method for any J . A choice of Q between 1 and P could
be seen as a compromise between system performance and
complexity. When J is large, we have the freedom to choose
a smaller Q, as explained in the previous subsection.

IV. SIMULATIONS AND DISCUSSIONS

In this section, our proposed method is tested and compared
with the existing methods [1], [3] described in Sec. II . A
Rayleigh fading channel of order L = 4 is used. The size
of transmitted blocks is M = 8 and received block size is
P = M + L = 12. The normalized least squared channel
error, denoted as Ech, is used as the figure of merit for channel
identification and is defined as follows.

Ech =
||ĥ − h||2
||h||2

where ĥ and h are the estimated and the true channel vectors
respectively. The simulated normalized channel estimation
error is shown in Figure 3 and the corresponding BER is
presented in Figure 4. When the number of blocks J = 10, the
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Fig. 4. Bit error rate.

GCD method (with the number of block repetitions Q = 12)
outperforms the SGB method (Q = 1) by a considerable
range. Taking Q = 2 saves a lot of computation and yet still
yields a good performance as indicated. In the case of J = 2,
inequality (4) suggests that any system with Q ≥ 7 works.
Simulation results show that the system with Q = 8 even
outperforms the original GCD method with Q = 12.

V. CONCLUDING REMARKS

In this paper we introduced a generalized algorithm for blind
channel identification with linear redundant precoders. The
number of accumulated received blocks can be chosen freely
depending on the speed of channel variation. The minimum
number of repetitions of each received block is derived to
optimize the computation complexity while retaining good per-
formance. Simulation shows that in certain cases the proposed
algorithm outperforms existing methods.

In the future, finding the conditions on the input sequence
and linear precoders so that the matrix U(J)

Q defined in Eq.
(3) has full rank remains an interesting theoretical question to
answer. Also, extending this work to MIMO channels can be
a challenging but important problem.
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