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ABSTRACT

Antipodal paraunitary (APU) matrices have been shown to be use-
ful with respect to bit error rate (BER) as linear precoders for
OFDM systems, especially in a fast-varying channel environment.
In this paper we study a broader class of paraunitary matrices,
namely, the distributed antipodal paraunitary (DAPU) matrices, of
which APU matrices are special cases. Systematic methods for re-
cursively generating certain types of DAPU matrices as well as a
fast algorithm to implement them in a system are presented. Simu-
lation results show that under the same distribution length, DAPU
precoded systems with longer precoders have a better BER per-
formance than those with APU precoders, especially in mid- and
high-SNR region.1

1. INTRODUCTION

Linear precoded communication systems have been studied by a
number of researchers[4-7]. In particular, antipodal paraunitary
(APU) precoding technique for OFDM systems proposed by Phoong,
Chang, and Lin [1] has been shown to have a much better bit error
rate performance than the conventional OFDM system, especially
when the channel is fast-varying, if an MMSE receiver is used. In
this paper we are going to study a generalization of APU matrices,
namely thedistributed antipodal paraunitary(DAPU) matrices.

An M×M polynomial matrixT(z) is said to beparaunitary[2]
(PU) if there exists a positive real numberd such that̃T(z)T(z) =
dIM . The tilde notation denotes̃T(z) = TH(1/z∗), whereH is
transpose-conjugation and∗ is the complex conjugation. Ifd = 1,
T(z) is said to benormalized paraunitary. An M × M parau-
nitary matrixT(z) =

∑N−1
l=0 Tlz

−l is called anantipodal pa-
raunitary (APU) matrix[1] if its coefficient matricesTl have en-
tries restricted to be± 1√

MN
. APU matrices are also called lapped

Hadamard matrices[3]. The factor 1√
MN

ensures normalization.
For convenience, we call a constant matrixTl antipodal if all of
its entries have the same magnitude, with either a positive or neg-
ative sign.

A polynomial matrixT(z) is said to bedistributed antipodal
(DA) if there exists a monotonically increasing nonnegative integer
sequence{il}N−1

l=0 such that

T(z) =

N−1∑

l=0

Tlz
−il , (1)

where eachTl in (1) is antipodal. The integer sequence is called
thedistribution vectorof the DA matrix. AnM ×M polynomial
matrix is called adistributed antipodal paraunitary(DAPU) matrix
if it is both DA and paraunitary.
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A precoded OFDM system with DAPU precoding matrixT(z)
is shown in Fig.1. The block size of the system is equal toM ,
the size ofT(z). The channel is characterized by a linear time-
varying FIR system. We assume the channel remains constant
during the period of transmitting an OFDM block and denote the
impulse response of the channel asC(n, k) when thekth block
is transmitted. Assuming the receiver always knows the chan-
nel, a zero-forcing (ZF) receiving filter bank can be derived as
Λ(k) = C−1(k), whereC(k) is a diagonal matrix whose di-
agonal entries are samples of the Fourier Transform of the time-
varying channelC(n, k). SinceT(z) is paraunitary, the system
guarantees perfect reconstruction (PR) of symbols in absence of
noise. In the presence of noise, we can further reduce the mean
square error (MSE) of equalized symbols by applying an MMSE
receiver [1]

Λ(k) = EsC
H(k)

(
EsC(k)CH(k) + N0IM

)−1

, (2)

whereEs is the expected value of symbol energy andN0 is the
noise variance.

In this paper, we first study the existence and construction of
DAPU matrices (Sec. 2) and then use them in OFDM applications.
In Sec. 3 we analyze the mean square error (MSE) of received
symbol and bit error rate (BER) performance of the proposed sys-
tem. Simulation results will be shown in Sec. 4 and a conclusion
made in Sec. 5.

2. EXISTENCE AND GENERATION OF DAPU MATRICES

The existence of DAPU matrices depends on the size of the matrix
M and the distribution vector{i0, i1, ..., iN−1}. The length of this
vector,N , is called thedistribution length. In this section we are
interested in how these factors (i.e.,M , N , and{il}N−1

l=0 ) affect
the existence of DAPU matrices and how these matrices can be
constructed.

For convenience, we also define thedistribution patternto be
a string composed of 0’s and 1’s that represents the time-domain
distribution of a DAPU matrix. For example, distribution vector
{0, 1, 3, 4} corresponds to distribution pattern [11011]. Observe
that if the distribution vector is{0, 1, ..., N − 1} (i.e., the distri-
bution pattern is [111...1]), then this DAPU matrix reduces to an
APU matrix.

Existence conditions and several methods for generation of
APU matrices have been studied in [3]. The APU matrices have
the most “compact” distribution pattern among DAPU matrices
that have the same distribution lengthN , since they do not have
zero terms amongN coefficient matrices. In this section, we will
develop methods for generating DAPU matrices, partly by extend-
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Fig. 1: An OFDM system with DAPU precoding matrixT(z), based on cyclic prefix(CP).

ing existing methods used for generating APU matrices. Further-
more, for distribution patterns that are “recursively symmetric” (to
be defined), we have been able to find a fast implementation.

An obvious way to generate a DAPU matrix is simply interpo-
lating an APU matrix by a factorJ . If T(z) is anM ×M APU
matrix with lengthN , thenT(zJ) is anM × M DAPU matrix
with distribution vector{0, J, ..., (N − 1)J}. More generalized
construction methods will be presented next.

2.1. Recursive method

Lemma 1:SupposeT(k)(z) =
[
A(z) B(z)

]
is anM ×M nor-

malized DAPU matrix whereM is even andA(z) andB(z) are
both M × M

2
matrices. The distribution pattern ofT(k)(z) is

{il}Nk−1
l=0 . The length ofT(k)(z) is Lk = iNk−1 + 1. Then,

T(k+1)(z) =
1√
2

[
A(z) + z−dkB(z) A(z)− z−dkB(z)

]

is also a normalized DAPU matrix whose distribution vector is
{il}Nk−1

l=0

⋃{il + dk}Nk−1
l=0 if dk ≥ Lk. The distribution length

Nk+1 is 2Nk, and the length ofTk+1(z) is Lk+1 = Lk + dk.

Proof: We first show thatT(k+1)(z) is distributed antipodal. Since
T(k)(z) is DA with distribution pattern{il}Nk−1

l=0 , so areA(z) and
B(z). Sincedk ≥ Lk and thusdk > iNk−1, there will be no over-
lapping between sets{il}Nk−1

l=0 and{il + dk}Nk−1
l=0 . Therefore,

A(z)± z−dkB(z), and henceT(k+1)(z), constitute a longer DA
matrix whose distribution pattern is{il}Nk−1

l=0

⋃{il + dk}Nk−1
l=0 .

As for paraunitarity, sinceT(k)(z) is normalized PU, we have
Ã(z)A(z) = B̃(z)B(z) = IM/2 andÃ(z)B(z) = B̃(z)A(z) =

OM/2. With these, one can easily verify thatT̃(k+1)(z)T(k+1)(z)

= IM . SoT(k+1)(z) is also normalized PU. ¤

Using Lemma 1, we can generate DAPU matrices with var-
ious distribution patterns recursively. Starting from anM × M
normalized Hadamard matrix:T(0)(z) = H, whose length is
L0 = 1, the choice of{di}k−1

i=0 decides the generated pattern,
wheredi must satisfydi >

∑i−1
j=0 dj ,∀i > 0. Notice that if we

choose{di}k−1
i=0 = {1, 2, 4, 8, ...} , then the matrices generated by

this method reduce to APU matrices. Consider the set of all pos-
sible distribution patterns generated by this recursive method. We
can show by induction that these patterns are always symmetric.
Note that any pattern in this set whose length is longer than unity
is composed by inserting some padding zeros between two iden-
tical shorter patterns in the same class. Since these two identical
patterns are symmetric by induction, the newly generated pattern
is also symmetric regardless of the number of padding zeros. We
call this special kind of patternsrecursively symmetric.Some pos-
sible recursively symmetric patterns are listed in Table 1.

N {di} Distribution Distribution Remark
vector{il} pattern

1 {0} [1] Hadamard
2 1 {0,1} [1 1] APU(z)
2 2 {0,2} [1 0 1] APU(z2)
2 3 {0,3} [1 0 0 1] APU(z3)
2 4 {0,4} [1 0 0 0 1] APU(z4)
4 1,2 {0,1,2,3} [1 1 1 1] APU(z)
4 1,3 {0,1,3,4} [1 1 0 1 1]
4 2,3 {0,2,3,5} [1 0 1 1 0 1]
4 1,4 {0,1,4,5} [1 1 0 0 1 1]
4 2,4 {0,2,4,6} [1 0 1 0 1 0 1] APU(z2)
4 3,4 {0,3,4,7} [1 0 0 1 1 0 0 1]
4 1,5 {0,1,5,6} [1 1 0 0 0 1 1]
4 2,5 {0,2,5,7} [1 0 1 0 0 1 0 1]
4 3,5 {0,3,5,8} [1 0 0 1 0 1 0 0 1]
4 4,5 {0,4,5,9} [1 0 0 0 1 1 0 0 0 1]
4 3,6 {0,3,6,9} [1 0 0 1 0 0 1 0 0 1] APU(z3)

Table 1: Recursively symmetric patterns for DAPU matrices.

2.2. Butterfly Method and Fast Algorithm

A different method for generating recursively symmetric DAPU
matrices will be described. LetM be even and define twoM ×M
matrices:Θ(z) = diag[ 1 z−1 1 z−1 · · · 1 z−1 ] and

BM = IM/2⊗
[

1 1
1 −1

]
, where⊗ denotes the Kronecker prod-

uct, then we have the following lemma.
Lemma 2:SupposeT(k)(z) is anM ×M normalized DAPU ma-
trix whose distribution vector is{il}Nk−1

l=0 and whose length isLk.
Then

T(k+1)(z) =
1√
2
BMΘ(zdk )T(k)(z)

is also a normalized DAPU matrix whose distribution vector is
{il}Nk−1

l=0

⋃{il + dk}Nk−1
l=0 , if dk ≥ Lk. The distribution length

Nk+1 is 2Nk, and the length ofTk+1(z) is Lk+1 = Lk + dk.

Proof: Notice thatBMΘ(zdk ) has the formIM/2⊗
[

1 z−dk

1 −z−dk

]
.

When multiplied by a DA matrixT(k)(z), it leads to distribution
vectors{il}Nk−1

l=0 and {il + dk}Nk−1
l=0 . Sincedk ≥ Lk, these

two parts do not overlap and thusT(k+1)(z) is also DA. Parauni-
tarity can be easily verified sinceBM , Θ(z), andT(k)(z) are all
paraunitary. ¤

Lemma 2 provides us an alternative method, namely thebut-
terfly method, to generate DAPU matrices with recursively sym-
metric distribution patterns, starting from a normalizedM × M
Hadamard matrixT(0)(z) = H. The generated matrices may not
be the same as those generated by Lemma 1. However, since they
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Fig. 2: Fast algorithm for butterfly method.

have the same distribution vectors, as we will show in Sec. 3, they
have exactly the same performance when applied as precoders for
OFDM systems. Furthermore, transformation of anM×M DAPU
matrix generated by the butterfly method can be implemented with
a fast algorithm, as shown in Fig. 2, inM(log M + log N) addi-
tions per OFDM block.

2.3. DAPU Matrices with Arbitrary Patterns

Patterns of DAPU matrices generated by the two methods above
are always recursively symmetric. DAPU matrices with arbitrary
distribution patterns, however, can be generated by the following
method, if the distribution lengthN equals the size of a Hadamard
matrix.
Lemma 3:Let H be anM × M normalized Hadamard matrix,
N = M , and{i0, i1, ..., iN−1} be arbitrarily specified, then

T(z) = H diag
[

z−i0 z−i1 · · · z−iN−1
]
H

is a normalized DAPU with distribution vector{i0, i1, ..., iN−1}.¤
Using Lemma 3, we can generate DAPU matrices with arbi-

trary distribution patterns, with the only constraint that the distri-
bution lengthN must be equal to the matrix sizeM . However, if
there exists positive integern such thatM = 2nN , we can gen-
erate anN × N DAPU matrixT(0)(z) first and then expand the
size of the matrix up toM using the recursion

T(k+1)(z) =
1√
2

[
T(k)(z) T(k)(z)

T(k)(z) −T(k)(z)

]
, k = 0, 1, ..., n−1.

3. DAPU PRECODED OFDM SYSTEMS

The cyclic prefix eliminates the interblock interference (IBI) and
theM -point FFT and IFFT blocks diagonalize the channel. As a
result, an equivalent vectorized system representation of Fig. 1 is
shown in Fig. 3, whereC(k) is a diagonal matrix whose diagonal
entries represent samples of the channel frequency response at the
time thekth block is transmitted, andν(k) is a noise vector whose
components are independently identically distributed random vari-
ables with varianceN0. The receiver matrix,Λ(k), can be chosen
as the inverse ofC(k) for a ZF receiver, or be defined as in (2) for
an MMSE receiver. In either caseΛ(k) is a diagonal matrix.

3.1. Noise Analysis without Precoders

We denote theith diagonal entry ofv(k) asvi(k), wherev can be
any bold-face lower case vector in the context. We will also denote
the ith diagonal entries ofΛ(k) andC(k) asλi(k) andCi(k),
respectively. Define the noise vector in thekth block β(k) =

-s(k) T(z) -

u(k)

C(k) -

ν(k)

? -

y(k)

Λ(k) -

û(k)
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Fig. 3: Equivalent DAPU precoded-OFDM system based on
cyclic prefix.

û(k) − u(k). The autocorrelation matrices ofβ(k) given by
Rβ(k, l) = E[β(k)βH(k − l)] = δ(l)Rβ(k, 0) can be shown
to be diagonal matrices[1]. It is also known that [1] theith di-
agonal entry ofRβ(k, 0) is equal to the noise variance at theith
subchannelE[|βi(k)|2], which would beN0/|Ci(k)|2 if a ZF re-
ceiver is used orN0/(|Ci(k)|2 +N0/Es) if an MMSE receiver is
used.

3.2. Averaging Effect on Noise Variance Introduced by DAPU
Matrices

Defining the output noise vectore(k) = ŝ(k)− s(k), we have

e(k) =

N−1∑

l=0

TH
il

β(k + il),

and the zeroth autocorrelation matrix ofe(k) is given by

Re(k, 0) = E[e(k)eH(k)] =

N−1∑

l=0

TH
il
Rβ(k + il, 0)Til

Using the fact thatTil is antipodal andRβ(k + il, 0) is diagonal,
the output noise variance at theith subchannel at timek is:

σ2
i,T(k) = theith diagonal entry ofRe(k, 0)

=
1

N

N−1∑

l=0

[
1

M

M−1∑
n=0

E[|βi(k + il)|2]
]

.

HereE[|βi(k + il)|2] depends on whether a ZF or an MMSE re-
ceiver is used. Its value can be found as in Sec 3.1.

Notice that the quantityσ2
i,T(k) is independent ofi: all sub-

channels have the same noise variance, which is the average of
non-precoded noise variances amongM subchannels and over the
N blocks specified by the distribution vector{il}N−1

l=0 .
Just as what has been shown in [1], introducing a DAPU pre-

coderT(z) into the system does not change the mean square er-
ror(MSE) of the detected symbol. It only redistributes the error.
This also explains why the MMSE receiver of the precoded OFDM
system is the MMSE receiverΛ(k) defined in (2) followed by
T̃(z). (However, a more rigorous proof can be given by applying
the orthogonality principle.)

We should also note that the averaging effect depends only on
distribution vectors. Two different DAPU matrices with the same
distribution vector have exactly the same averaging effect when
applied as precoders for OFDM systems and hence have the same
performance.

If we choose a longer DAPU precoder, the averaging effect in-
volves noise coming from more distant blocks, where the channel
state could differ more. Thus, a longer DAPU precoder could have
more “channel diversity” than an APU precoder with the same dis-
tribution lengthN . As we will see in the next section, the perfor-
mance of systems with longer DAPU precoders is better.
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Fig. 4: BER performance comparison for conventional, APU pre-
coded, and DAPU precoded OFDM systems with different distri-
bution patterns in fast varying channels.

4. SIMULATION RESULTS

We carry out Monte-Carlo experiments to compare performances
of conventional OFDM systems and precoded OFDM systems with
precoders of different lengths. The time-variant FIR channel
C(n, k) is generated by linear interpolation described as follows:
given a parameter calledvarying intervalT , and maximum order
of FIR channelL, the channel coefficients are defined as:

C(n, k) =

{
µ( n

T
, k), if n is multiple ofT

λµ(b n
T
c, k) + (1− λ)µ(d n

T
e, k), otherwise

∀n ≥ 0, 0 ≤ k ≤ L, whereλ = d n
T
e − n

T
and µ(t, k) ∼

CN (0, 1) are i.i.d. complex Gaussian random variables∀t ≥
0, 0 ≤ k ≤ L. The varying intervalT decides how fast the channel
is varying. A smallerT indicates the channel is changing faster.

In our simulation, we usedM = N = 8, L = 4, and QPSK
symbol modulation. The channel noiseν(n) is AWGN with vari-
anceN0. We assume the receiver knows the exact channel re-
sponse. Since using ZF receivers in precoded systems would cause
even worse results than conventional OFDM systems[1], we use
only MMSE receivers in our simulation. In order to assure simu-
lation accuracy, each data point in the BER plots has at least accu-
mulated 1,000 occurrences of errors before being shown.

The results forT = 10 are shown in Fig. 4. From the figure,
we see that the BER performance of APU precoded OFDM sys-
tem (with the most “compact” distribution pattern, [11111111]) is
much better than conventional OFDM system in mid- and high-
SNR region, (as argued in [1]). Under the same distribution length
N = 8, DAPU matrices have even better performances, and a
longer distribution pattern yield a better BER performance. If we
compare cases [11111111] and [101010101010101], we can find
that “stretching” the length of precoders two times can yield an
additional gain of more than 1 dB when the bit error rate is10−4.

For a channel that is varying 10 times slower (i.e.,T = 100),
the results are shown in Fig. 5. In [1] it is argued that with a
slowly-varying channel, APU precoders have less improvement
from conventional OFDM systems than in fast-varying channel
case. But from Fig. 5 we see the improvement by using longer
DAPU matrices is even larger. An additional gain of more than
1.5dB is achieved at BER =10−4 by replacing APU precoders
with DAPU precoders with twice the length.
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Fig. 5: BER performance comparison for conventional, APU pre-
coded, and DAPU precoded OFDM systems with different distri-
bution patterns in slowly varying channels.

5. CONCLUDING REMARKS
In this paper we studied distributed antipodal paraunitary (DAPU)
matrices and used them as precoders for OFDM systems. Theoret-
ical and simulation results show that under the same distribution
lengthN , DAPU matrices yield a better BER performance than
conventional APU precoders, especially when the channel does
not vary too fast. This allows us to improve the performance of
precoded OFDM systems without increasing computational com-
plexity and peak-to-average power ratio. The only price paid for
the use of DAPU is longer delay. We also presented several meth-
ods for finding DAPU matrices and a fast implementation method.
Possible future works include finding optimal distribution patterns
for specific channel characteristics and finding methods for gener-
ating wider classes of DAPU matrices.
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