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Abstract— Recently, a new subspace-based blind channel es-
timation algorithm in cyclic prefix (CP) system was reported.
A persistency of excitation (PE) property of the input signal is
required for the algorithm to work. In this paper, the probability
of fulfilling the PE property under different situations is studied.
Four factors in the algorithm affect the PE property of the input
signal: 1) signal constellation used; 2) precoder coefficients; 3)
number of consecutive blocks; 4) a number called the repetition
index. Theoretical derivations as well as numerical simulations
are given to demonstrate the main points of this paper. Important
conclusions are 1) that the probability of fulfilling the PE
property increases and converges to unity when the number
of received blocks increases but is always upper-bounded by
a value less than unity when the repetition index increases;
2) that the probability of fulfilling the PE property is smaller
when the algorithm is applied in orthogonal frequency division
multiplexing (OFDM) systems than in single-carrier-cyclic-prefix
(SC-CP) systems.1

I. I NTRODUCTION

Blind estimation of channel coefficients for communication
systems with cyclic prefix (CP) in the transmitter has recently
become a problem of interest in the literature [1]–[5]. This
is partly due to the growing popularity of CP systems in
the standards of orthogonal frequency division multiplexing
(OFDM) and single-carrier cyclic prefix (SC-CP) systems.
Among many blind methods proposed in the literature, meth-
ods based on subspace decomposition [1]–[4] are considered
to possess attractive features such as applicability to arbitrary
signal constellations with a reasonable computational com-
plexity. However, subspace-based methods usually rely on a
certain kind of persistency of excitation (PE) property of the
input signals. Under such a constraint, the minimum required
number of received blocks (or received OFDM symbols) had
been considered to be around twice the block size [4]. This
becomes one of the disadvantages of a subspace-based blind
estimation algorithm especially when the channel coefficients
are fast-varying.

More recently, Su and Vaidyanathan proposed a new gen-
eralized subspace-based algorithms [11] using a concept of
repetition index which requires a relaxed form of the PE
property. The relaxation of the PE property makes the new
algorithm potentially able to work using onlythree received
blocks (or OFDM symbols). However, the reliability of the
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algorithm still depends on the conditions required to fulfill
the PE property, which are still under investigation, especially
when the number of blocks used at the receiver is small. In this
paper, we study the conditions under which this PE criterion is
satisfied. The roles of different constellations, precoders, num-
ber of received blocks, and repetition indices are considered.
Several theorems will be derived and numerical simulations
will also be presented to demonstrate the discoveries. An
important result is that the PE property is more likely to be
satisfied for SC-CP systems than OFDM systems.

The rest of this paper is organized as follows. Section II
briefly reviews the algorithm proposed in [11]. In Section III,
theories of persistency of excitation for the algorithm are pre-
sented. In Section IV, numerical simulations are presented to
give a clearer view on the subject studied. Finally, conclusions
are made in Section V.

A. Notations

Boldfaced lower case letters represent column vectors. Bold-
faced upper case letters and calligraphic upper case letters are
reserved for matrices. SuperscriptsT , and † as in AT , and
A† denote the transpose and transpose-conjugate operations,
respectively. All the vectors and matrices in this paper are
complex-valued. The notationWM denotesej2π/M , andWM

is the M × M normalized DFT matrix whosekl-th entry is
W
−(k−1)(l−1)
M /

√
M . Column and row indices of all matrices

and vectors begin at one.IM is theM ×M identity matrix,
and0m×n is them×n zero matrix.C is the set of all complex
numbers. Ifv =

[
v1 v2 · · · vm

]T
is anm× 1 vector,

we useTn(v) to denote the(m + n− 1)× n Toeplitz matrix
[9] whose first column is[vT ,0T

(n−1)×1]
T and whose first row

is [v1,01×(n−1)].
Due to the special property of cyclic prefixes, we will use

the following notation extensively in this paper. Supposey is
anm×1 column vectory =

[
y1 y2 · · · ym

]T
. Then the

notation[y]ab denotes the(b− a + 1)× 1 vector

[y]ab =
[

ya ya+1 · · · yb

]T

if 1 ≤ a ≤ b ≤ m. An extension of this definition to any
arbitrary pair of integersa and b satisfying a ≤ b is made
by definingyk asy(k−1 mod m)+1 for any k > m or k < 1.

For example, ify =
[

y1 y2 y3

]T
, then [y]−1

7 denotes

the vector
[

y2 y3 y1 y2 y3 y1 y2 y3 y1

]T
.
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Fig. 1. A typical cyclic prefix system.

II. REVIEW OF THE BLIND ALGORITHM IN CP SYSTEMS

Figure 1 shows a typical communication system with cyclic
prefix (CP) introduced in each transmitted block. Source
samplessk(n) are drawn from a finite signal constellation
S ⊂ C−{0}. The signals(n) passes through a linear precoder
characterized as anM ×M invertible matrixR and becomes
uM (n) = Rs(n). A cyclic prefix ucp(n) = [uM (n)]M−L+1

M
of lengthL is inserted at the beginning of each block and forms
vectorsu(n) = [ucp(n)T ,uM (n)T ]T of size P = M + L.
Vectors u(n) are then serialized and sent to the channel
characterized as an FIR filterH(z) =

∑L
k=0 hkz−k whose

order is upper bounded byL. At the receiver each received
sample is corrupted by an additive white Gaussian noise and
then blocked into vectorsy(n) of sizeP .

Given the number of collected blocksJ and repetition
indexQ, the following algorithm blindly estimates the channel
coefficientsh =

[
h0 h1 · · · hL

]
using received blocks

y(n) only, without knowledge ofu(n). Due to space limit, the
algorithm presented below is in its simplest form. Readers with
interest in more details of the algorithm are referred to [10],
[11].

Algorithm 1:

1) For two consecutive blocksy(n− 1) andy(n), define

ȳk(n) =




[yM (n− 1)]−k+1
M

ycp(n)
[yM (n)]1M+Q−k−1


 ,

wherek = 0, 1, ..., Q− 1. It can be shown that

ȳk(n) = H̄Qūk(n) + noise (1)

where

H̄Q =

[
Hcir 0M×(M+Q−1)

0(L+Q−1)×(M−L) HL+Q−1 0(L+Q−1)×(M−L)

0M×(M+Q−1) Hcir2

]
,

(2)
and

ūk(n) =

[
[uM (n− 1)]−k+1

M

[u′M (n)]1M+Q−k−1

]
. (3)

Here, Hcir is an M × M circulant matrix [8] whose
first column is

[
hT 0T

M−L−1

]T
, Hcir2 is obtained

by permuting the lastL columns ofHcir to the front

and is still a circulant matrix, andHk := Tk(h)T is a
k × (L + k) Toeplitz matrix.

2) Construct a(2M + Q + L− 1)×Q matrix

YQ(n) =
[

ȳ0(n) ȳ1(n) · · · ȳQ−1(n)
]
.

It follows immediately from (1) that

YQ(n) = H̄QUQ(n) + noise (4)

where

UQ(n) =
[

ū0(n) ū1(n) · · · ūQ−1(n)
]

(5)

is a (2M + Q− 1)×Q matrix.
3) For consecutiveJ blocks y(0), y(1), ... y(J − 1),

construct the(2M + Q + L− 1)×Q(J − 1) matrix

Y(J)
Q =

[
YQ(1) YQ(2) · · · YQ(J − 1)

]
. (6)

Then we have

Y(J)
Q = H̄QU(J)

Q + noise

where

U(J)
Q =

[
UQ(1) UQ(2) · · · UQ(J − 1)

]
(7)

is a (2M + Q− 1)×Q(J − 1) matrix.

4) AssumeU(J)
Q has full row rank2M + Q + L − 1 and

perform SVD onY(J)
Q so that

Y(J)
Q =

[
Us Un

] [
Σs 0
0 Σn

] [
V†

s

V†
n

]

where the diagonal entries ofΣn are theL smallest
singular values ofY(J)

Q .
5) Construct the(2M + Q− 1)L× (L + 1) matrix G using

elements ofUn as described in Section III-A of [10].
6) Let ĥ be the eigenvector ofG†G associated with the

smallest eigenvalue. This is the estimated channel vector
within a scalar ambiguity.

Although the algorithm described above does not require
exact knowledge of the values ofs(n) andR, an assumption
is made in Step 4 thatU(J)

Q has full row rank. This is the
persistency of excitation(PE) property of the algorithm stated
above. The conditions under which this PE assumption is true,
rather than the algorithm itself, are the main focus of this
paper.

III. T HEORETICAL RESULTS

A. A Necessary Condition forU(J)
Q to Have Full Row Rank

A necessary condition forU(J)
Q to have full row rank is

described below.
Lemma 1:U(J)

Q has full row rank(2M + Q− 1) only if

(J − 2)Q ≥ 2M − 1. (8)

Proof: Observe thatU(J)
Q has (2M + Q − 1) rows

and Q(J − 1) columns. The lemma is readily verified by
recognizing that the number of columns cannot be less than
the number of rows in order to make a matrix full row rank.



Lemma 1 imposes a restriction on the choices of parameters
J and Q for the blind algorithm. However, a choice ofJ
and Q satisfying (8) does not automatically guaranteeU(J)

Q

having full rank since it depends on the contents ofU(J)
Q ,

which ultimately are dependent on the source datas(n) and
the precoder matrixR. As long as the contents ofs(n) are
chosen from a finite constellationS, there is always a nonzero
probability that U(J)

Q is rank-deficient. To see this, simply

consider the extreme case where the contents ofU(J)
Q are

always chosen as identical values. Since there is no guaranteed
conditions forU(J)

Q to have full rank, it would be of interest

to study the probability ofU(J)
Q having full rank given signal

constellationS, precoderR, and the values ofJ andQ.

B. The Probability ofU(J)
Q having full rank

Definition 1: Consider a finite constellationS ⊂ C − {0}
(which has at least two elements) and anM ×M nonsingular
precoderR ∈ CM×M . Let each element of theM ×J matrix
S =

[
s(0) s(1) · · · s(J − 1)

]
be independently

selected from the constellationS with equal probabilities for
each element inS. Let uM (n) = Rs(n) and let U(J)

Q be
defined as in Eq. (7). ForJ ≥ 2, Q ≥ 1, the probability that
U(J)

Q has full rank will be denoted asPS,R (J,Q).

Obviously,PS,R (J,Q) = 0 whenever(J − 2)Q < 2M − 1
since (8) is violated. From the discussions above, we have
PS,R (J,Q) < 1 for all J andQ as long asS is a finite set.
The probability, however, can be increased by increasingJ . It
can be shown that

PS,R (J + 1, Q) ≥ PS,R(J,Q) (9)

since the row rank of a matrix never decreases when additional
columns are appended. Furthermore, it can be proved that

lim
J→∞

PS,R (J,Q) = 1

for any constellationS and precoderR (and anyQ ≥ 1). How-
ever, increasingJ means more data needs to be accumulated
at the receiver which causes a delay in channel estimation. In
addition, in the case when a time-varying channel is present,
a largerJ makes the channel estimate less meaningful since
the channel coefficients may have changed significantly while
J blocks are being accumulated.

IncreasingQ, on the other hand, does not require additional
data and hence does not have the drawback described above. It
can be shown that increasingQ also helps increase the value
of PS,R (J,Q). Using the following theorem, it can be shown
that

PS,R (J,Q + 1) ≥ PS,R(J,Q). (10)

Theorem 1:If U(J)
Q has full row rank (2M + Q− 1), then

U(J)
Q+1 also has full row rank (2M + Q).

Proof: AssumeU(J)
Q+1 does not have full row rank while

U(J)
Q does. Then there exists a nonzero row vectorvT =[
v1 · · · v2M+Q

]
such thatvT U(J)

Q+1 = 0T . From the
definition in Eq. (7), we obtain thatvT is a left annihilator
of UQ+1(n) for 1 ≤ n ≤ J − 1. The notation ofUQ(n)

was defined in Eq. (5). Notice thatUQ(n) is a submatrix of
UQ+1(n) and can be obtained by removing the first row and
the first column ofUQ+1(n), or by removing the last row
and the last column ofUQ+1(n). This means that bothvT

1 =[
v1 · · · v2M+Q−1

]
andvT

2 =
[

v2 · · · v2M+Q

]
are

left annihilators ofUQ(n) for 1 ≤ n ≤ J . So vT
1 U(J)

Q =
vT

2 U(J)
Q = 0T . SincevT is nonzero, at least one ofvT

1 and

vT
2 must also be nonzero. This implies thatU(J)

Q does not
have full rank and contradicts the assumption.

Although increasing Q never decreasesPS,R (J,Q),
PS,R (J,Q) can never approach unity even whenQ → ∞.
The probability of U(J)

Q having full rank always stops
increasing whenQ ≥ 2M − 1. This is a consequence of the
following theorem.

Theorem 2:If U(J)
Q does not have full rank whenQ =

2M − 1, thenU(J)
Q does not have full rank for anyQ.

Proof: See [11].

Combining Theorems 1 and 2, we immediately have

PS,R (J,Q) = PS,R (J, 2M − 1)

for anyQ ≥ 2M − 1. Now, givenS, R, andJ ≥ 3, the value
PS,R (J,Q) is zero whenQ < (2M−1)/(J−2). PS,R (J,Q)
first becomes nonzero whenQ = d(2M − 1)/(J − 2)e. From
now on,PS,R (J,Q) may keep increasing untilQ = 2M − 1,
whenPS,R (J,Q) reaches its upper bound. In summary,

0 = PS,R (J,Q) |1≤Q<Qmin < PS,R (J,Qmin)
≤ PS,R (J, 2M − 1) = PS,R (J,Q)|Q≥2M−1 < 1,

whereQmin := d(2M − 1)/(J − 2)e.
IV. N UMERICAL SIMULATIONS

In the previous section we understand that the value of
PS,R (J,Q) increases in general asJ or Q increases. However,
we have not had a chance to look at the real values of
PS,R (J,Q). Since a close-form expression ofPS,R (J,Q)
is difficult to obtain, we perform numerical simulations to
obtain approximate values ofPS,R (J,Q). The simulations
are performed with three commonly used constellations in
communications: BPSK (S = {±1}), QPSK (S = {±1,±j}),
and 16-QAM (S = {a + bj|a, b ∈ {±1,±3}}). The M ×M
precoderR is chosen asIM for SC-CP systems andW†

for OFDM systems. Although the exact probability ofU(J)
Q

having full rank can be actually obtained by testing all possible
transmitted data, an exhaustive simulation is barely feasible.
For eachJ ≥ 3, the simulations are performed for two
values ofQ: Q = 2M − 1 and Q = d(2M − 1)/(J − 2)e.
More than 1,000 independent realizations ofU(J)

Q were used
to evaluate the valuePS,R (J,Q) for any givenS, R, J ,
and Q. When Q = 2M − 1, the simulation gives an upper
bound ofPS,R (J,Q) for a givenJ and the simulation where
Q = d(2M − 1)/(J − 2)e gives a lower bound of nonzero
PS,R (J,Q). M is chosen as 16.

Figures 2 and 3 show the results when the precoderR is
chosen as an identity matrixIM (SC-CP) and a normalized
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Fig. 2. The probability ofU(J)
Q having full rank in SC-CP systems.

IDFT matrix W† (OFDM), respectively. Some comments on
these results are made below.

1) As expected, the probability ofU(J)
Q having full rank is

smaller when a smaller constellation is used or whenJ
is smaller. WhenJ ≥ 12, the probability becomes very
close to unity for all combinations of constellations and
precoders. When a 16-QAM constellation is used, the
probability is already very high whenJ = 5.

2) It should be especially noted that the probability ofU(J)
Q

having full rank is significantly smaller whenR is chosen
as the IDFT matrix than whenR is an identity matrix.
An explanation of this phenomenon can be found in [11].
This phenomenon suggests the algorithm proposed in [10]
is more stable when operated in SC-CP systems than in
OFDM systems when the constellation is small and/or
whenJ is small.

3) Finally, although the theory suggests

PS,R (J, 2M − 1) ≥ PS,R

(
J,

⌈
2M − 1
J − 2

⌉)
,

in simulation the above two quantities look almost the
same so that a conjecture may be made that

PS,R (J,Q) = PS,R

(
J,

⌈
2M − 1
J − 2

⌉)

for any Q ≥ d(2M − 1)/(J − 2)e. This conjecture,
however, has not yet been verified or disproved.

V. CONCLUSIONS

In this paper we studied the persistency of excitation (PE)
property in a recently reported blind channel estimation al-
gorithm in cyclic prefix (CP) systems, which is an essential
property for the algorithm to work properly. Specifically, the
probability of the special-structured matrixU(J)

Q to have full
rank is studied for different constellations, precoders, numbers
of blocksJ , and repetition indicesQ. Theoretical derivations
as well as numerical simulations indicate that the probability of
PE converges to unity whenJ → ∞, but it stops increasing
with Q if Q ≥ 2M − 1. In addition when the precoderR
is chosen as an IDFT matrix, the probability of PE is much
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Fig. 3. The probability ofU(J)
Q having full rank in OFDM systems.

smaller than whenR is chosen as the identity matrix. This
suggests higher stability for the recently reported algorithm to
work on single-carrier-cyclic-prefix (SC-CP) systems than on
OFDM systems, especially when the number of blocksJ is
small.

In the future it remains of interest to theoretically prove or
disprove the conjecture raised in remark 3) of Section IV.
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