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~ Abstract—Recently, a new subspace-based blind channel es-algorithm still depends on the conditions required to fulfill
timation algorithm in cyclic prefix (CP) system was reported. the PE property, which are still under investigation, especially
A persistency of excitation (PE) property of the input signal is  \yhen the number of blocks used at the receiver is small. In this
required for the algorithm to work. In this paper, the probability aper, we study the conditions under which this PE criterion is
of fulfilling the PE property under different situations is studied. P p X y ! g

Four factors in the algorithm affect the PE property of the input  Satisfied. The roles of different constellations, precoders, num-
signal: 1) signal constellation used; 2) precoder coefficients; 3) ber of received blocks, and repetition indices are considered.
number of consecutive blocks; 4) a number called the repetition Several theorems will be derived and numerical simulations
index. Theoretical derivations as well as numerical simulations il also be presented to demonstrate the discoveries. An

are given to demonstrate the main points of this paper. Important . . . .
conclusions are 1) that the probability of fulfiling the PE Important result is that the PE property is more likely to be

property increases and converges to unity when the number Satisfied for SC-CP systems than OFDM systems.
of received blocks increases but is always upper-bounded by The rest of this paper is organized as follows. Section II
a value less than unity when the repetition index increases; priefly reviews the algorithm proposed in [11]. In Section lII,
2) that the probability of fulfilling the PE property is smaller  yhaqries of persistency of excitation for the algorithm are pre-
when the algorithm is applied in orthogonal frequency division d. In Section IV ical simulati ted
multiplexing (OFDM) systems than in single-carrier-cyclic-prefix Sgnte - In seclion 1V, numerica Slmu.atlons are presente to
(SC-CP) systems! give a clearer view on the subject studied. Finally, conclusions
are made in Section V.

I. INTRODUCTION

. . . - _ . A. Notations
Blind estimation of channel coefficients for communication

systems with cyclic prefix (CP) in the transmitter has recently Boldfaced lower case letters represent column vectors. Bold-
become a problem of interest in the literature [1]-[5]. Thi ced upper case .Ietters and caII_lgraphlcTuppe_r casTe letters are
is partly due to the growing popularity of CP systems iﬁeferved for matrices. Superscripts and as in A™, and
the standards of orthogonal frequency division multiplexing' denote the transpose and transpose-conjugate operations,
(OFDM) and single-carrier cyclic prefix (SC-CP) Systemgespectlvely. All the vectors and matrlceg |r}wthls paper are
Among many blind methods proposed in the literature, meth?MpPlex-valued. The notatioi’y, denotes:’ /M andW

ods based on subspace decomposition [1]-[4] are conside'l%(tf(f fvlf)(;jf)w normalized DFT matrix whosél-th entry is

to possess attractive features such as applicability to arbitraFa, /v/M. Column and row indices of all matrices
signal constellations with a reasonable computational co@?d vectors begin at oné,; is the M x M identity matrix,
plexity. However, subspace-based methods usually rely or®@d0mxn is them xn zero matrix.C |sTthe set of all complex
certain kind of persistency of excitation (PE) property of theumbers. Ifv = [ V1 V2 ot Uy ] is anm x 1 vector,

input signals. Under such a constraint, the minimum requir&® use7,(v) to denote thg§m + n — 1) x n Toeplitz matrix
number of received blocks (or received OFDM symbols) hd@] whose first column igv’, O(Tn_1)x1]T and whose first row
been considered to be around twice the block size [4]. Th&[v1, 01 (,—1)]-

becomes one of the disadvantages of a subspace-based blimdue to the special property of cyclic prefixes, we will use
estimation algorithm especially when the channel coefficierttse following notation extensively in this paper. Suppgsis

are fast-varying. anmx1columnvectoty = [ y1 2 Ym }T. Then the

More recently, Su and Vaidyanathan proposed a new geibtation [y]y denotes théb —a + 1) x 1 vector
eralized subspace-based algorithms [11] using a concept of

repetition index which requires a relaxed form of the PE o =[% varr - ]
property. The relaxation of the PE property makes the new ) ) o
algorithm potentially able to work using ontpreereceived if 1 < a < b < m. An extension of this definition to any
blocks (or OFDM symbols). However, the reliability of thearbitrary pair of integers: and b satisfyinga < b is made
by definingyy aSY(;_1 mod m)+1 foranyk > m or k < 1.

IWork supported in parts by the NSF grant CCF-0428326, ONR grapgr example. ify = T then -1 denotes
N00014-06-1-0011, and the Moore Fellowship of the California Institute of bie, fly [ B 2 U ] ’ [¥l7 T
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and is still a circulant matrix, an@;, := 7 (h)” is a

ﬁjﬁ;{ 2 — };jj:; k x (L + k) Toeplitz matrix.
- \ % - S 2) Construct a(2M + Q + L — 1) x Q matrix
! | i !

e(n)
s L channel Let 3 _ _ _
.<> il i ///. ol H. ) Yo(n) = [ Jo(n) yi(n) - Fo_1(n) ]
: :/// |PIS|{ H(z) SIP|||s : . )

R 1 " T It follows immediately from (1) that
E// ? " " YQ (n) = FIQUQ (n) + noise (4)
sy(n) . 3u(n)
vector —v;cmr " " v(e(c(or vector Where
s(n) uy,(n) w () o) s(n) B _ _
wor-[o] -2 Ug(n) = [ tip(n) w(n) - fgi(n) ] (5)
isa(2M + @ — 1) x @ matrix.
Fig. 1. A typical cyclic prefix system. 3) For consecutiveJ blocks y(0), y(1), ... y(J — 1),

construct the2M + Q + L — 1) x Q(J — 1) matrix

Il. REVIEW OF THEBLIND ALGORITHM IN CP SYSTEMS Yg) =[ Yo(1) Yqo2) -+ Yqo(J-1)]. (6)

Figure 1 shows a typical communication system with cyclic  Then we have
prefix (CP) introduced in each transmitted block. Source
sampless;(n) are drawn from a finite signal constellation
S ¢ C—{0}. The signak(n) passes through a linear precoder  \yhere
characterized as al/ x M invertible matrixR and becomes )
uyr(n) = Rs(n). A cyclic prefix u.,(n) = [uy(n) M5+ Uy’ =[ Ug(l) Ug(2) -+ Ug(J-1)] (7
of length L is inserted at the beginning of each block and forms .
vectorsu(n) = [u,(n)T,up(n)?]" of size P = M + L. sa@M+Q-1)x Q7
Vectors u(n) are then serialized and sent to the channel4
characterized as an FIR filtdd (z) = Zk o hiz~F whose
order is upper bounded bk. At the receiver each received
sample is corrupted by an additive white Gaussian noise and ) » 0 vi
then blocked into vectorg(n) of size P. Yy =[Us U, | [ 0 = ] [ vi ]
Given the number of collected blocké and repetition " "
index @, the following algorithm blindly estimates the channel ~ where the diagonal entries df, are the L smallest
coefficientsh = [ ho hy --- hr ] using received blocks singular values oy
y(n) only, without knowledge ofi(n). Due to space limit, the 5) Construct the2M + Q — 1)L x (L + 1) matrix G using
algorithm presented below is in its simplest form. Readers with  elements ofU,, as described in Section IlI-A of [10].
interest in more details of the algorithm are referred to [10],6) Let h be the eigenvector of'G associated with the

Y(QJ) = FIQUE;;]) + noise

— 1) matrix.

) AssumeU ) has full row rank2M + Q+L-1and
perform SVD oan) so that

[11]. smallest eigenvalue. This is the estimated channel vector
Algorithm 1: within a scalar ambiguity.
1) For two consecutive blockg(n — 1) andy(n), define Although the algorithm described above does not require
. exact knowledge of the values sfn) andR, an assumption
[yam(n— 1))y, is made in Step 4 thaUg) has full row rank. This is the
Yi(n) = Yep(n) ) persistency of excitatio(PE) property of the algorithm stated
[}’M(n)]}\“@,k,1 above. The conditions under which this PE assumption is true,

wherek =0,1,...,Q — 1. It can be shown that

paper.

¥r(n) = Hqtix(n) + noise @) I1l. THEORETICAL RESULTS
where A. A Necessary Condition fcIrI(J) to Have Full Row Rank
_ Heir Onx(M+Q-1) A necessary condition foU(J) to have full row rank is
Hq = 0(64+Q71>X(MfL) Hrto- 0<L+Qﬁ1>x(M*L> » described below.

M (MAQ=D) % 2y Lemma 1:UY has full row rank(2M + Q — 1) only if
and e (J—2)Q>2M — 1. ®8)

) = | el Ul ® )
[}y, (n )}11\4+Q—k—1 Proof: Observe thatU;’ has (2M + Q — 1) rows

and Q(J — 1) columns. The lemma is readily verified by

rather than the algorithm itself, are the main focus of this

Here, H.;, is an M x M circulant matrix [8] whose recognizing that the number of columns cannot be less than

first column is[ h? of, , | ]T, H_;,-» is obtained the number of rows in order to make a matrix full row rank.
by permuting the last. columns ofH;,. to the front ]



Lemma 1 imposes a restriction on the choices of parameteras defined in Eq. (5). Notice th&fg(n) is a submatrix of
J and @ for the blind algorithm. However, a choice of Ug.1(n) and can be obtained by removing the first row and
and  satisfying (8) does not automatically guaran[dé;) the first column ofUg.1(n), or by removing the Ias} row
having full rank since it depends on the contents(f,’, and the last column OUQH(T;)' This means that both; =
which ultimately are dependent on the source dgia and [ o T VaMAQ-d Jandvy =[ vz - ”2”1’“@(;)6“6
the precoder matrisR. As long as the contents af(n) are left annihilators ofUg(n) for 1 < n < J. Sov{ U’ =
chosen from a finite constellatia$, there is always a nonzerovaUg) = 0T. Sincev” is nonzero, at least one of and
probability thatUg) is rank-deficient. To see this, simplyyT myst also be nonzero. This implies thﬁlg) does not
consider the extreme case where the contentaUé’P are have full rank and contradicts the assumption. |
always chosen as identical values. Since there is no guaranteed
conditions forUY;” to have full rank, it would be of interest _Although increasing @ never decreasesPs r (J,Q),

to study the probability oUg) having full rank given signal £5® (J,Q) can never approach unity even wheh— co.

constellationS, precoderR, and the values of and Q. The probability of uy having full rank always stops
; increasing wher) > 2M — 1. This is a consequence of the
B. The Probability ofUéQ) having full rank following theorem.

Definition 1: Consider a finite constellatio§ c C — {0} )
(which has at least two elements) and/&hx A nonsingular ~ Theorem 2:If Uy~ does not have full rank whe@ =
precoderR € CM*M | et each element of tha/ x J matrix 2M — 1, thenU'Y) does not have full rank for ang).
S = [s(0) s(1) --- s(J—1)] be independently Proof: See [11].
selected from the constellatiaf with equal probabilities for [ ]
each element irS. Let uy,(n) = Rs(n) and letUY) be Combining Theorems 1 and 2, we immediately have
defined as in Eq. (7). Foy > 2,Q > 1, the probability that Psr (J,Q) = Psg (J,2M — 1)

Ug) has full rank will be denoted aBs r (J, Q). [ ]
for any @ > 2M — 1. Now, givenS, R, andJ > 3, the value
Obviously, Ps r (J,Q) = 0 whenever(J —2)Q < 2M —1 Psr (J,Q) is zero when) < (2M —1)/(J—2). Psr (J,Q)
since (8) is violated. From the discussions above, we hafitst becomes nonzero whep = [(2M —1)/(J — 2)]. From
Psr (J,Q) < 1forall J and@ as long asS is a finite set. now on, Ps r (J,Q) may keep increasing untf) = 2M — 1,
The probability, however, can be increased by increadiny when Ps g (J, Q) reaches its upper bound. In summary,

can be shown that
0 = PS,R (J7 Q) |1§Q<Qmm < PS,R (Jvazn)
Pswr(J+1,Q) > Psr(J,Q) 9) < Pswr(J,2M —1) = Psr (J,Q)lguan 1 < 1,

since the row rank of a matrix never decreases when additiop@{ere ), ., := [(2M —1)/(J —2)].
columns are appended. Furthermore, it can be proved that
IV. NUMERICAL SIMULATIONS

Jim Psg(/,Q)=1 In the previous section we understand that the value of

for any constellatios and precodeR (and anyQ > 1). How- Ps r (J,Q) increases in general dsor () increases. However,
ever, increasing/ means more data needs to be accumulat¥¢® have not had a chance to look at the real values of
at the receiver which causes a delay in channel estimation fia.r (/; Q). Since a close-form expression @t g (J/, Q)
addition, in the case when a time-varying channel is preseff, difficult to obtain, we perform numerical simulations to
a larger.J makes the channel estimate less meaningful singBfain approximate values ofs g (J/;@). The simulations
the channel coefficients may have changed significantly whge performed with three commonly used constellations in
J blocks are being accumulated. communications: BPSKS = {+1}), QPSK € = {£1, +j}),
Increasing®, on the other hand, does not require addition&"d 16-QAM € = {a + bjla, b € {+1,£3}}). The M x M
data and hence does not have the drawback described abov@8¢0derR is chosen ad,, for SC-CP systems an&\;T
can be shown that increasirg also helps increase the valugor OFDM systems. Although the exact probability bf;’

of Psr (J,Q). Using the following theorem, it can be showrhaving full rank can be actually obtained by testing all possible
that transmitted data, an exhaustive simulation is barely feasible.

Psr(J,Q+1) > Psr(J,Q). (10) For eachJ > 3, the simulations are performed for two
o ’ values of@Q: Q = 2M — 1 andQ = [(2M —1)/(J — 2)].
Theorem 1:If Uy~ has full row rank 2/ + @ — 1), then  pore than 1,000 independent realizationstf’ were used

Ugjl also has full row rankQM + Q). to evaluate the valués g (J,Q) for any givenS, R, J,

Proof: AssumeUgl1 does not have full row rank while @1d Q. When@Q = 2M — 1, the simulation gives an upper
bound of Ps g (J, Q) for a givenJ and the simulation where

J .
U(Q) does. Then there exists a nonzero row veotdr = Q = [(2M —1)/(J — 2)] gives a lower bound of nonzero
[ w1 -+ wanio | such thatVTUé%]ll = 0". From the Psg (J,Q). M is chosen as 16.
definition in Eq. (7), we obtain that’ is a left annihilator  Figures 2 and 3 show the results when the precdtlds
of Ugti(n) for 1 < n < J — 1. The notation ofUg(n) chosen as an identity matriky, (SC-CP) and a normalized
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Fig. 2. The probability oﬂjg) having full rank in SC-CP systems. Fig. 3. The probability ing) having full rank in OFDM systems.

IDFT matrix W1 (OFDM), respectively. Some comments orsmaller than wherR is chosen as the identity matrix. This
these results are made below. suggests higher stability for the recently reported algorithm to
1) As expected, the probability dﬂg) having full rank is work on singIe-carrier-c_yclic-prefix (SC-CP) systems th_an on
smaller when a smaller constellation is used or wHen OFDM systems, especially when the number of blodkss
is smaller. WhenJ > 12, the probability becomes very Small. _ . _ .
close to unity for all combinations of constellations and !N the future it remains c_)f interest to theoretlcally_prove or
precoders. When a 16-QAM constellation is used, tiflisprove the conjecture raised in remark 3) of Section IV.

probability is already very high whesi = 5.

2) It should be especially noted that the probabilitytmg)
having full rank is significantly smaller whdR is chosen
as the IDFT matrix than wheR is an identity matrix.
An explanation of this phenomenon can be found in [11]2
This phenomenon suggests the algorithm proposed in [10]
is more stable when operated in SC-CP systems than i8]
OFDM systems when the constellation is small and/or

(1]

when J is small. 4]
3) Finally, although the theory suggests

2M -1 5

PS’R(%?MUEPS’R(L{H—D’ o)

in simulation the above two quantities look almost the[6]
same so that a conjecture may be made that

2M —1 7

PS,R (J7Q) :PS,R <J7 ’7(]2-‘> 7

for any @ > [(2M —1)/(J —2)]. This conjecture, 18]
however, has not yet been verified or disproved. [9]
[10]

V. CONCLUSIONS

In this paper we studied the persistency of excitation (PE)
property in a recently reported blind channel estimation gl
gorithm in cyclic prefix (CP) systems, which is an essential
property for the algorithm to work properly. Specifically, the
probability of the special-structured matix"”) to have full
rank is studied for different constellations, precoders, numbers
of blocks.J, and repetition indices). Theoretical derivations
as well as numerical simulations indicate that the probability of
PE converges to unity whesi — oo, but it stops increasing
with Q if @ > 2M — 1. In addition when the precoddr
is chosen as an IDFT matrix, the probability of PE is much
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