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Generalized Signal Richness Preservation Problem
and Vandermonde-Form Preserving Matrices
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Abstract—In this paper, a theoretical problem arising in digital
communications, namely the generalized signal richness preser-
vation problem, is addressed and studied. In order to solve the
problem, a special class of square matrices, namely the “Vander-
monde-form preserving” (VFP) matrices, is introduced and found
to be highly relevant to the problem. Several properties of VFP
matrices are studied in detail. The necessary and sufficient condi-
tions of the problem have been found, and a systematic proof is also
presented.

Index Terms—Blind identification, greatest common divisor,
matrix theory, signal richness.

I. INTRODUCTION

I N DIGITAL communications, blind channel identification
has been studied in the literature for a considerable period

[11]–[14]. Almost every blind identification method assumes a
special kind of redundancy in the input signal that facilitates
blind identification. In particular, a method using linear redun-
dant precoders with zero padding (ZP), proposed by Scaglione
et al.[1], assumes the input signal to be rich. That is, for a se-
quence of vectors , , there exists a finite integer

such that the matrix

has full rank. Now, in some applications, the input signals are
usually preconditioned by a linear transformation before being
sent to the channel [9]. We are thus interested in whether the
signal richness property is preserved after the linear transform.
A theoretical treatment of the richness preservation problem has
been presented in [10].

More recently, Manton et al.proposed another blind identi-
fication algorithm for transmitters using ZP that imposes less
stringent conditions on input signals [2], [3], requiring only
the coprimality property. We propose in a companion paper
[5]a generalized algorithm of which both blind identification
methods mentioned above are special cases. The algorithm re-
quires a generalized definition on signal richness with a param-
eter . When , it reduces to the conventional definition of
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richness. When , it becomes equivalent to the copri-
mality property stated in [3]. Under this new definition of signal
richness, the conditions on the linear precoders which preserve
signal richness become a different problem. In order to find a
guideline to choose precoders in these new applications, we are
motivated to find out these conditions.

In this paper, we will focus on the theoretical issues of the
generalized signal richness preservation problem and find out
the necessary and sufficient conditions for linear precoders to
preserve generalized signal richness. The rest of the paper is
organized as follows. In Section II we give a definition of gen-
eralized signal richness and briefly describe several important
properties thereof. Some examples will be given to clarify these
properties. In Section III, we will address the problem of pre-
serving generalized signal richness. In Section IV, the class of
Vandermonde-form preserving (VFP) matrices will be intro-
duced, and several properties of VFP matrices will be studied
in detail. In Section V, the necessary and sufficient conditions
for linear precoders to preserve generalized richness will be pre-
sented. In Section VI some deeper issues on -richness will
be studied. For example, the relation between such richness and
the “rank” of a signal is studied. Finally, Section VII gives the
conclusion and possible future directions. Some results of this
paper have been presented in a conference [15].

A. Notations

Boldfaced lower case letters represent column vectors. Bold-
faced upper case letters are reserved for matrices. Superscripts
as in and denote the transpose and transpose-conjugate
operations, respectively, of a matrix or a vector. denotes the
th element of vector , denotes the th row of matrix ,

and denotes the entry at the th row and the th column
of matrix . Column and row indices of all vectors and ma-
trices begin at one. denotes the th column of the identity
matrix and is often abbreviated as when there is no am-
biguity about the value of . All the vectors and matrices in
this paper are complex-valued. If and are multisets (a mul-
tiset is like a set, but it may contain identical elements repeated
a finite number of times [6]), , , and denote
the multisets defined as follows: if an element occurring exactly

times in and times in , it occurs exactly times in
, exactly times in , and exactly

times in . A matrix is said to be a Toeplitz matrix if
has constant values along diagonals, i.e.,
for all , , such that the indices of in the above equation
are within the size of . A matrix is said to be a Hankel
matrix if has constant values along all skew diagonals, i.e.,
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for all , , such that the indices of in
the above equation are within the size of . For example,

is a Toeplitz matrix and

is a Hankel matrix.

II. GENERALIZED SIGNAL RICHNESS

A. Definition of Generalized Signal Richness

Definition 1: A sequence of vectors , , over
the field is said to be rich if there exists a finite integer such
that the matrix

has full row rank .
The definition of the generalized signal richness for an

signal will be given in Definitions 2 and 3 as follows. We first
build up the definition of a notation , representing a shifted
and repeated version of , using the following examples.

Example 1: is itself.
Example 2: Consider a sequence of 3 1 vectors de-

fined as

and for . Then can be expressed as

(1)

(2)

and for . And can be expressed as

(3)

(4)

and for .
The formal definition of is given as follows.

Definition 2: Given a positive integer and a sequence of
vectors over the field , is a sequence of

vectors defined as

for , .
Note that the matrices shown in (2) and (4) are similar to

Sylvester’s resultant matrices [6]in the manner of Toeplitz-like
structures. The definition of generalized signal richness is given
as follows.

Definition 3: An sequence , , is said to be
-rich if is rich.

Note that when , Definition 3 reduces to the conven-
tional signal richness given in Definition 1. For the example
given in Example 2, we can verify that is (1/2)-rich and
(1/3)-rich but not 1-rich.

An alternative definition of -richness can be given im-
mediately by using the following theorem.

Theorem 1 ( -Richness): Given an vector se-
quence , , is -rich if and only if there
does not exist a nonzero Hankel matrix such that

, .
Proof: See the Appendix.

B. Properties of -Richness

It can be shown that the condition of -richness is
stronger when the integer is smaller, as shown in the fol-
lowing lemma.

Lemma 1: If a sequence of vectors , is
-rich, then is -rich.

Proof: The proof of this lemma becomes straightfor-
ward when we use the result of Theorem 1. Suppose
is -rich but not -rich. Then there exists a
nonzero Hankel matrix such that
for all . Let and be Hankel matrices whose
rows are composed of the first rows of and the last
rows of , respectively. Note that at least one of and
is nonzero and implies for .
This violates the assumption that is -rich.

Lemma 1 states a basic property of generalized signal rich-
ness: the smaller the value of is, the “stronger” the condi-
tion of -richness is. For example, if an sequence

is 1-rich, or simply rich, then it is (1/2)-rich, (1/3)-rich, and
-rich for any positive integer . This is why we use the

notation of -richness. On the contrary, a (1/2)-rich signal
is not necessarily 1-rich. We can thus define a measure of

generalized signal richness, namely the degree of nonrichness
for a given sequence as follows.

Definition 4: Given an sequence , , the
degree of nonrichness of is defined as

is rich (5)
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If is not -rich for any , then . The
property of an infinite degree of nonrichness can be described
in the following lemma, in which we use the notation of
to denote the column vector:

Lemma 2: Consider a sequence of vectors , .
The following statements are equivalent.

1) is not -rich for any .
2) The degree of nonrichness of is infinity.
3) Either for some or

.
4) Polynomials , , either share a

common zero or all have orders less than .
Proof: See [5].

Lemma 1 suggests that if the value of is larger, the less
“rich” is the signal . By definition, a 1-rich signal has “full
rank.” If is not 1-rich but has only one annihilator (i.e.,

), intuitively it is still likely to be (1/2)-rich, or
-rich for other larger . Lemma 2 suggests, however, this

is not the case if the annihilator happens to be in the form defined
in condition 3) of Lemma 2. If an sequence has
a finite degree of nonrichness, or is -rich for some
integer , then it can be shown that the maximum possible value
of is , as described in the following lemma.

Lemma 3: If and an sequence is not
-rich, then it is not -rich for any .

Proof: See [5].
With Lemma 3, we can see that for an sequence ,

-richness is the weakest form of generalized rich-
ness. Given an vector sequence , the degree of non-
richness can only be one of values , or .

C. Vandermonde-Form Vectors and Generalized Zero Location

Consider a complex-valued row vector
which has the form

(6)

for some , , . We call a vector in the form of (6)
a Vandermonde-form vector since it can be a row of a Vander-
monde matrix. Now, consider the vector

(7)

for some , . In view of condition 3) of Lemma 2, for
generality we want to include vectors as in (7) into the defini-
tion of Vandermonde-form vectors. A formal definition of Van-
dermonde-form vectors is given as follows.

Definition 5 (Vandermonde-Form Vectors): A row vector
is said to be in the “Vandermonde form”

if there exist , , , such that

The set of -vectors in Vandermonde form, denoted as , is
defined as

and is in the Vandermonde form

By the definition above, we have

if

if

A straightforward observation on Definition 5 is described
below.

Property 1: If , a nonzero row vector is
always a Vandermonde-form vector.

Proof: Self-evident.
In view of Definition 5, it would be useful if we define a Van-

dermonde ratio for each -row vector in Vandermonde form.
Definition 6 (Vandermonde Ratio): For a row vector

where , , the “Vandermonde ratio” is
defined as

if
if

Lemma 4: Let be a Vandermonde vector with
Vandermonde ratio . Let be an nonzero
vector. Then if and only if we have the following.

1) Polynomial has a zero at if .
2) Polynomial has a degree less than if

.
Proof: See the Appendix.

Now, let us turn our attention to the sequence of polynomials
, . Lemma 2 states that

has an infinite degree of nonrichness if and only if the polyno-
mials either a) have a common factor or b) all have an
order less than . Conditions a) and b), although seem-
ingly unrelated to each other, can be unified in one statement
using the following definition.

Definition 7: Given an nonzero column vector .
Suppose is an th-order polynomial, where

, (i.e., , ). The
“zero locations” of , is defined as a multiset of el-
ements from (possibly with multiplicity), as follows:

where are the zeros of the polynomial
whose degree is . The number of occurrences of is

.
Example 3: For example, if , then

.
If , then .
If , then .
If , then .
As an extreme case, if , then

.
This definition may seem unusual at the first sight since in-

finity can never be a zero of a polynomial. Nevertheless, we gave
this definition on a vector for convenience in our context and
will find it useful in later discussions. So far, we have not given
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Fig. 1. Multi-input multioutput LTI system.

a formal definition of set of zero locations on a zero vector .
However, there is no loss of generality in the following discus-
sions to assume that

which means any number in the complex plane is a zero location
of the vector with a multiplicity .

With the new definitions addressed above, we can rewrite
Lemma 2 in a clearer manner.

Lemma 5 (Lemma 2 Rewritten): Consider a sequence of
vector , . The following statements are equivalent.
1) is not -rich for any .
2) The degree of nonrichness of is infinity.
3) There exists a Vandermonde-form vector (with a

Vandermonde ratio ) such that ,
.

4) such that (i.e., vectors
, share a common zero ).

Using Lemmas 2 and 3, we readily obtain the following useful
lemma.

Lemma 6: Column vectors , have no common
zeros if and only if is -rich.

III. PRESERVING GENERALIZED SIGNAL RICHNESS

A. Problem Statement

In this section, we will describe the main problem addressed
in this paper. Consider an th-order, -input, -output
LTI causal system, depicted in Fig. 1, with a transfer function

.
Definition 8: An system

is said to be -richness preserving if and only if for any
-rich signal , the output

is also a -rich signal.
We want to find out the necessary and sufficient conditions

for the LTI systems to be -richness preserving. The
special case of this problem when was solved in [10]. In
particular, for memoryless systems, an constant matrix

preserves 1-richness if and only if is nonsingular. However,
in the case when , a nonsingular memoryless system
does not necessarily preserve -richness. This can be seen
in the following simple example.

Example 4: Let , , and
for . By observing that

has full rank 4, we know that is (1/2)-rich. Now let

which is an invertible permutation matrix. Then we can ob-
tain the output as and

. Note that if ,
then for all . So is not -rich for any

. This suggests that an invertible constant precoder, although
preserving the “rank” of a signal, does not preserve -rich-
ness in general!

In this paper we will limit our focus of the problem on mem-
oryless systems, as described below.

Main Problem: Given integers , , where and
, what are the necessary and sufficient conditions

for an matrix to be -richness preserving?

B. Special Case When

From Lemmas 2, 3, and 6, we know that is
-rich if and only if there is no row vector such that

, . This suggests that a -rich-
ness preserving matrix may have something to do with Van-
dermonde-form vectors.

Theorem 2: An matrix preserves -rich-
ness if and only if for all . An
constant matrix satisfying this condition is said to be a “Van-
dermonde-form preserving” (VFP) matrix.

Proof: See the Appendix.
While a rigorous proof of Theorem 2 can be found in the

Appendix, here we seek to present an intuitive understanding
of it. Recall that signal being -rich means that
vectors , do not share a common zero
(see Definition 7). Denote the set of zeros of the vector as

. Then we have

If the matrix is chosen arbitrarily, the zeros of the vector
for a given , , compared to , are likely to

“reshuffle randomly.” This is mainly because the zero locations
of a vector are a nonlinear function of the vector contents, so
it is usually hard to decide simply by inspecting .
Hence one usually can manage to find a sequence of vectors

which do not share common zeros but vectors do
share a common zero. On the other hand, if we choose as a
VFP matrix defined above, each zero of can be uniquely
“predicted,” given the zeros of : suppose is a
zero of , that is, there exists with Vandermonde
ratio such that . Then the Vandermonde ratio of

, say , must be a zero location of the vector .
As we will show in the Section IV-B, the transformation of zero
locations, due to the VFP matrix, is a one-to-one mapping. Thus
if the vectors do not share a common zero, then vectors

also will not have a common zero.
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IV. VANDERMONDE-FORM PRESERVING MATRICES

Given the knowledge that Vandermonde-form preserving
(VFP) matrices preserves -richness, we will
consider in this section the representation of general
Vandermonde-form preserving (VFP) matrices. We will also
present several properties of VFP matrices which help to
answer the problem addressed in the previous section.

A. Representation of Vandermonde-Form Preserving Matrices

We start from focusing on what VFP matrices look like. Ob-
viously the identity matrix and any nonzero multiple of it are
VFP matrices. A permutation matrix, however, is in general not
a VFP matrix, such as the one given in Section III-A. So is there
any VFP matrix other than a multiple of an identity matrix? First
we recognize that a VFP matrix has the following property.

Lemma 7: If an matrix is a Vandermonde-form
preserving matrix, then both the first row of and the last row
of , and , are in .

Proof: See the Appendix.
An identity matrix certainly satisfies this condition since

the first row and the last row, and , respectively, are in
Vandermonde form. Now if we choose the first row and the last
row of an matrix as vectors in other than
and , will we be able to construct a VFP matrix ? The an-
swer turns out to be yes if we choose the first row and the last
row of as two Vandermonde-form vectors with different Van-
dermonde ratios. The following theorem gives the most general
characterization of VFP matrices.

Theorem 3: An matrix is
Vandermonde-form preserving if and only if there exists a 2
2 invertible matrix

such that

where is the polynomial representation of the column
vector , i.e., (see definition of in
Section II-B). The 2 2 matrix is called the characteristic
matrix of the VFP matrix .

Proof: See the Appendix.
Theorem 3 essentially provides us a construction method of

an VFP matrix using a “seed” 2 2 nonsingular matrix

Note that is always a VFP matrix as long as it is nonsingular
(i.e., ) since a 1 2 nonzero vector is always in the
Vandermonde form. Besides, we can see that any VFP
matrix can be parameterized by a 2 2 Vandermonde-form
preserving matrix. Thus the number of freedoms of
Vandermonde-form preserving matrices is always a constant for
any . For convenience, we denote

where , as the Vandermonde-form pre-
serving matrix generated with polynomials and ,
e.g.,

(8)

Some more numerical examples are presented below for a better
“visual” understanding of VFP matrices.

Example 5: If we choose

then

If we choose

then

Example 6: A VFP matrix can also be a full matrix. If we
choose

then

If we choose

then

If we choose

then
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B. Zero-Location Transformation

The key reason that a VFP matrix preserves -rich-
ness is that it transforms each zero location of a column vector
(see Definition 7) with a transformation function. This function
depends only on its characteristic matrix and is independent
from any other zeros of the column vector. In this subsection
we will explore how VFP matrices transform zero locations of
a column vector.

Consider an vector and the set of zero locations

where for all , as defined in
Definition 7. Now, consider an VFP matrix whose
characteristic matrix is

Suppose the set of zero locations of is

How can we find each element of given its corresponding
zero in and the values of ? This question is directly related
to how the Vandermonde ratio of is related to that of
when , as presented in the following theorem.

Theorem 4: Suppose has a Vandermonde ratio
and is a VFP matrix with a nonsingular

characteristic matrix

Then is also a Vandermonde-form vector with
Vandermonde ratio where
is called the characteristic function of , defined as

(9)

Proof: See the Appendix.
In view of Theorem 4, when , the function

gives the value of infinity. On the other hand, if is infinity,
the function gives the value when or gives the value

when and . Notice that and cannot both be
zero due to the nonsingularity of matrix. Also note that the
characteristic function of a VFP matrix depends only on the 2

2 characteristic matrix and not on the size of the VFP matrix.
Some numerical examples are presented below to demonstrate
Theorem 4 and clarify the concept.

Example 7: We take

as in Example 6. Then the 4 4 VFP matrix characterized by
is

The characteristic function of is

Let , which has a Vandermonde ratio
. Then

has a Vandermonde ratio .
If , which has a Vandermonde ratio

, then

has a Vandermonde ratio .
If , which has a Vandermonde ratio ,

then

has a Vandermonde ratio .
From the discussions above, we find that a VFP matrix

“bilinearly” transforms the Vandermonde ratio of a Vander-
monde-form vector with the characteristic function defined
in Theorem 4. Note that the function is a one-to-one and onto
function. The inverse function of can be expressed as

(10)

A direct corollary of Theorem 4 is presented below.
Corollary 1: If is a zero with multiplicity of an

vector , then

is a zero with multiplicity of the vector .
Proof: Since , we have where

whose Vandermonde ratio is . From Theorem 4 there exists
whose Vandermonde ratio is

such that . Then .
So .

Example 8: We choose the same as in Example 7. Let
, which has zeros at , , and

, respectively. Then we have

The zero locations of are at , , and
. Note that and have the relationship as predicted in

Corollary 1. The function defined in (10) is thus called the
zero-location transformation (ZLT) function of the VFP matrix

.
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C. Other Properties of VFP Matrices

Some other noteworthy properties of VFP matrices, although
not directly related to solving the main problem, are briefly pre-
sented here. The reader can verify these with some effort.

1) First of all, VFP matrices are in general not Hermitian nor
symmetric, even if the 2 2 characteristic matrix is. In
fact, one can prove that for , if matrix is
both VFP and Hermitian, then must be a diagonal matrix
or an antidiagonal matrix (i.e., could be nonzero only
when ).

2) VFP matrices are invertible. The inverse of a VFP matrix is
also a VFP matrix. In addition, the characteristic function
of the inverse of a VFP matrix [as defined in (9)] is the
inverse function [as defined in (10)] of the characteristic
function of the original VFP matrix.

3) The product of two VFP matrices is a VFP matrix. The
characteristic function of the product is the composition
of two characteristic functions of the original two VFP
matrices.

4) DFT and IDFT matrices are in general not VFP unless
. It can also be shown that Hadamard matrices are

not VFP in general. This means some most commonly used
precoders do not preserve -richness. It can also
be shown that a unitary matrix is not VFP unless it is the
identity matrix (or a nonzero scaled version of it) or an an-
tidiagonal matrix with identical antidiagonal entries.

5) Define the set of all characteristic functions

Then , where “ ” denotes the function composition
operation, is a group which is algebraically isomorphic to
the group , where is the set of all VFP
matrices and “ ” is the matrix multiplication operation.

6) Eigenvalues and eigenvectors of a VFP matrix can be easily
found given its size and its 2 2 characteristic matrix.
Suppose is a VFP matrix with a characteristic matrix

whose eigenvalues are and . Then the eigenvalues
of are

So the determinant of is

Now suppose is an eigenvector of associated with
the eigenvalue for . That is,
where and .
Then it can be shown that
where [see definition in (8)] and

.
7) Using the property mentioned above, a VFP matrix with

unit-norm eigenvalues can be easily constructed by simply

choosing a characteristic matrix whose eigenvalues
and satisfy . But it should be no-
ticed that matrices created in this way are usually still
not unitary. In fact, one can show that for , an

VFP matrix is in general not a normal matrix
(i.e., ) [7]unless is diagonal or antidiag-
onal. This more general fact also explains properties 1) and
4) mentioned above.

D. VFP Matrices as a Linear Precoder

In real applications when a VFP matrix is used as the pre-
coder, we multiply the input vectors by the VFP matrix at the
transmitter and multiply the inverse of the VFP matrix (which
is also a VFP matrix) at the receiver after equalization. In many
applications, we may want to choose an optimal VFP matrix that
satisfies certain constraints (e.g. power constraint, noise reduc-
tion, etc.). Since all VFP matrices can be characterized using
four parameters (see Theorem 3), an optimization problem can
be formulated with respect to only four parameters according
to the specific application. In addition, since a VFP matrix is
in general not unitary as discussed above, at the receiver it can
amplify the signal subspace and noise subspace with different
values. Hence, if the channel state information is known to both
the transmitter and the receiver, we can accordingly choose the
optimal values of such that the signal-to-noise-ratio (SNR)
is maximized.

V. MAIN THEOREM

Now let us return to the problem stated in Section III: what is
the necessary and sufficient condition for an matrix
to be -richness preserving for any ,

? In Section III we have already shown that when ,
needs to be nonsingular and when , needs

to be Vandermonde-form preserving. With properties of VFP
matrices presented in the previous section, we are now ready to
solve the general case of problem for any , .

A. Necessary Conditions

We first show that the VFP condition is necessary for an
matrix to preserve -richness for any .

From Lemma 2, we learn that if some is an annihi-
lator of , then cannot be -rich for any . On the
other hand, if some not in is the only annihilator of
(i.e., the signal space has rank deficiency equal to one), we can
show that the degree of nonrichness of is 2. Following this
argument, we can easily obtain the following lemma.

Lemma 8: For , consider an matrix . If
and is -richness preserving, then

must be VFP.
Proof: See the Appendix.

Notice that when , is not necessarily VPF to
be -richness preserving (nonsingularity is sufficient).
Lemma 8 is true only when .

B. Hankel-Form Preservation

As for sufficient conditions of the main problem (for the case
), we explore in this subsection another property of VFP

matrices.
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Theorem 5 (Hankel-Form Preservation): Given an
nonzero Hankel matrix . Let be a 2 2 invertible
matrix. Let and be and

VFP matrices, respectively (the notation was de-
fined in Section IV-A). Then is also a nonzero
Hankel matrix.

Proof: See the Appendix.
Theorem 5 shows another capability of VFP matrices: besides

preserving Vandermonde-form vectors, they also preserve the
property of Hankel matrices if we use two VFP matrices with
the same characteristic matrix. An example is shown below.

Example 9: Let

and

is a nonzero Hankel matrix. Then we have

which is also a nonzero Hankel matrix.

C. Main Theorem

Using Theorem 5 and Lemma 8, the main problem described
in Section III can now be completely answered by the following
theorem.

Theorem 6: ( -richness Preservation) For ,
, an matrix is -richness pre-

serving if and only if is Vandermonde-form preserving.
Proof: The necessity comes directly from Lemma 8. As for

sufficiency, suppose a Vandermonde-form preserving matrix

is not -richness preserving for some , where is
a 2 2 invertible matrix. Then there exists a -rich signal

such that the output is not -rich.
Using Theorem 1, there exists a nonzero Hankel matrix

...
...

. . .
...

such that for all . This implies
for all . Let

We have for all . Using Theorem 5,
we know that is also a Hankel matrix. Now using

Theorem 1 again, we conclude that is also not -rich,
contradicting the assumption that it is -rich. So a Van-
dermonde-form preserving matrix must be -richness pre-
serving for .

A summary of the answer of the main problem is given as
follows. Given an matrix , then

1) when , preserves -richness if and only if
is nonsingular;

2) when , preserves -richness if and
only if is a VFP matrix.

VI. OTHER RELEVANT ISSUES ON -RICHNESS

In this section we will discuss some deeper issues on
-richness.

A. Relationship Between Degree of Richness and Rank
of a Signal

As we already know, given an -vector signal, the degree of
nonrichness of the signal can only be one of the values

, and . And the larger is, the “less rich”
the signal is. And by definition, a signal is 1-rich if and only if a
matrix composed of finite sample vectors of has full rank

. This gives us an intuition that as the degree of nonrichness
of increases, the “rank” of should decrease. Before
further discussion, we shall give a formal definition to the rank
of a signal as follows.

Definition 9: The rank of an sequence is defined
as

rank rank

In other words, the rank of is the maximum number
of linearly independent column vectors among , .
The rank of an signal is an integer between zero
and . In particular, if rank , then . If
rank , then . If rank , then
the degree of nonrichness can be found in the following lemma,
which we have already known when exploring necessary con-
ditions of the main problem (see Section V-A).

Lemma 9: If a sequence of vectors is not 1-rich
but rank , then the degree of nonrichness of
is either 2 or .

Proof: See the Appendix.
While a high rank signal (as high as ) can have a “bad”

degree of nonrichness as depicted in Lemma 9, a signal with a
low degree of nonrichness always implies it has a sufficiently
high rank, as explained in the following lemma.

Lemma 10: If an sequence has a finite degree of
nonrichness , then

rank

In particular, if rank , then .
Proof: See the Appendix.

If has a degree of nonrichness , Lemma 10
says the obvious fact that rank . If , then
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the minimum rank must have is . As in-
creases, the minimum rank required by is approximately
inverse proportional to , around of full rank. This
is also a reason why we call -rich.

Now let us look at Lemma 10 from the view point of the rank
of . If we consider a signal with rank , then
Lemma 10 says . In other words, the degree of
nonrichness of is either or infinity. More generally,
consider an FIR signal with , , i.e., considering
an matrix

Then the condition in Lemma 10 can be rewritten as

rank rank (11)

This implies

rank
(12)

The equality in the left part of inequality (12) always holds
true when , as long as has no annihilator in the
Vandermonde form (i.e., ). This can be readily veri-
fied using Lemmas 9 and 10. When , there are, however,
situations when this is not true, as can be seen in the following
example.

Example 10: Let and be chosen as

and when .
Then rank . So

as indicated in (12), and vectors , do not share a
common zero ( ,

, and
) so is finite. However, it can be verified that

has two annihilators [2 1 1 1 1] and [1 1 1 1 2] and so the
2 5 Hankel matrix

satisfies . So is not (1/2)-rich and
(actually since the Hankel matrix cannot be

extended into three rows in this case).
We summarize the relationship between degree of nonrich-

ness and rank of an sequence in Table I.

B. Distribution of Degree of Nonrichness

In this subsection we want to discuss the distribution of de-
gree of nonrichness for a sequence of vectors when
all entries of come from a finite constellation. We per-
form a Monte Carlo experiment with 2 500 000 samples of

matrices for each , , whose entries are ran-
domly chosen from commonly used communication constella-

TABLE I
RELATIONSHIP BETWEEN DEGREE OF NONRICHNESS AND RANK OF s(n).

NOTICE AMBIGUITY OF FINITE VALUES FORM � 5. SEE TEXT

Fig. 2. Distribution of degree of nonrichness of signals whose entries are from
BPSK constellation.

Fig. 3. Distribution of degree of nonrichness of signals whose entries are from
the QPSK constellation.

tions: BPSK, QPSK, and 16-QAM. BPSK constellation has an
alphabet size of two (1 and 1). QPSK constellation has a size
of four and 16-QAM has a size of 16. Each matrix can
represent a causal FIR eight-vector signal whose first samples
are nonzero. In Figs. 2–4, the length of each bar segment with
specific color represents the proportion of samples which have
the corresponding degree of nonrichness . For example, in
Fig. 2, around 77% of samples of 8 9 matrices have a degree of
nonrichness while most of the rest have around 23%.
In view of these figures, we find that the degree of nonrichness
tends to achieve the lower bound predicted in (12) when entries
of the signal come from a larger constellation. This indicates that
in real applications (see [5] for more detailed reference) where

is given, it is usually sufficient to collect
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Fig. 4. Distribution of degree of nonrichness of signals whose entries are from
the 16-QAM constellation.

samples of vectors when a large constellation is used. On the
contrary, when using a small constellation like BPSK, it is quite
probable that the signal has a degree of nonrichness larger than
the lower bound described in (12).

As a final comment, in real applications when these signals
are precoded by a VFP matrix, the degree of nonrichness of the
input signal is guaranteed not to decrease. However, since a VFP
matrix would not turn a non- -rich signal into -rich,
the degree of nonrichness would not increase and thus would be
always unchanged. On the contrary, for an arbitrary non-VFP
matrix, although the property of -richness could some-
times be destroyed, it is sometimes possible that a non-VFP
matrix turns a non- -rich signal into a -rich signal.
Whether an arbitrary matrix increases or decreases the proba-
bility of -richness is not clear at the time of writing this
paper.

VII. CONCLUDING REMARKS

In this paper, we described a mathematical problem that arises
in some applications on blind channel identification. We intro-
duced Vandermonde-form preserving matrices as a new sub-
class of invertible matrices which are highly relevant to the
problem. Several properties of VFP matrices have been pre-
sented clearly and the proof of the answer to the problem has
been presented systematically.

In the future, it may be useful to consider the problem in
general for a system with memory. That is, the transfer func-
tion of the precoder is an polynomial matrix

. It is also of interest to deal with a rectangular
system . Finding other engineering applications of

VFP matrices will also be interesting.

APPENDIX

Proof of Theorem 1: If is not -rich, there exists a
nonzero row vector

such that , . Then we have

for all , . This leads to

...
...

. . .
...

for all where is a nonzero Hankel matrix.
On the other hand, suppose there exists a nonzero

Hankel matrix

...
...

. . .
...

such that for all . It can be readily verified
that the nonzero row vector

satisfies So is not -rich.
Proof of Lemma 4: If , the statement is self-evident.

If , then for some . So
polynomial does not have

the term of and hence has a degree less than .
Proof of Theorem 2: Suppose is Vandermonde-form pre-

serving (VFP) but does not preserve -richness (i.e.,
there exists such that is -rich but
is not). Then there exists such that .
This leads to , where is also in .
This contradicts the fact that is -rich. So
being VFP implies it preserves -richness.

On the other hand, if is not VFP, then there exists
such that is not in . We can thus create

a -rich signal such that ,
. (In fact, we can even create a (1/2)-rich signal , which

is stronger than a -rich signal. See also the proof
of Lemma 8.) This implies , , which
means is not -rich. So does not preserve

-richness.
Proof of Lemma 7: We first learn that both and are

in (with Vandermonde ratios 0 and , respectively). Since
, , and is Vandermonde-form

preserving, the lemma is proved immediately.
Proof of Theorem 3: Let be the polynomial represen-

tation of the th column of , i.e.,

Then we have

(13)

for . (Otherwise we can find such that
and hence while

.)
We first argue that all columns of must be nonzero. If
for some , then (13) implies that only and can be
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nonzero among ’s. If only one of them is nonzero, say
and , then there exists such that
and hence . If both and are nonzero
(which implies ), then there exists such that
and are both nonzero. Choose , then

.
Since all columns of are nonzero, (13) implies that there

exist nonzero polynomials and , which are coprime to
each other, such that

for . This leads to

Since and are coprime to each other, we obtain that
is a factor of . So

for some nonzero polynomial . We now have

Note that since otherwise
. Similarly we have .

and cannot both be constants since otherwise there exists
such that . (This can be chosen

as if is a zero of . If is a constant, we can
choose as .)

Now that at least one of and must be a first-order
polynomial, must be a constant, for otherwise either

or would be greater than .
Without loss of generality, we can assume . Now let

and . Since and are
coprime to each other and they cannot be constants simultane-
ously, this implies and the proof of necessity is
done.

The sufficiency is easily verified.
Proof of Theorem 4: From the proof of Theorem 3 we learn

that where
, . Suppose has a

Vandermonde ratio . When , can be expressed as

for some . The output is thus

When , it is readily verified that the Vandermonde
ratio of is for all , . This
is

If , then . So . Finally,
when , for some . So

and when and when . In summary,

if

if and

if and

Proof of Lemma 8: Assume is not VFP. Then there exists
such that . Construct a vector se-

quence , as follows. Let be
selected as linearly independent column vectors that are
orthogonal to . Let for all . Since

is the only annihilator of , there does not exist
a nonzero Hankel matrix such that . So

is (1/2)-rich and hence is -rich for any . Now
consider . We have

. By Lemma 2, is not -rich for any . So
is not -richness preserving for any .
The proof of Theorem 5 requires the following lemma.
Lemma 11: Let be an Hankel matrix whose entry

values come from an vector . That is,
Let and be and column vec-

tors, respectively, and and are the
polynomials representing two vectors. Let
and be an vector whose polynomial repre-
sentation is (i.e., ). Then

Proof: The lemma is immediately verified by observing
that the coefficient associated with in the sum is

(Assuming when or .)
Proof of Theorem 5: Denote the th column of as

and the th column of as . Let
and . From construction of VFP matrices
we know and

. The th entry of , , can be
expressed as . Using Lemma 11, we have

(14)

where the polynomial representation of the
vector is

. The polynomial stays unchanged when
is fixed. So from (14), the value of is a function of

and hence is also a Hankel matrix. being nonzero
is readily verified by observing that both and are
invertible.

Proof of Lemma 9: In view of proof of Lemma 8, this lemma
is self-evident.
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Proof of Lemma 10: If has rank , then rank
. Since is -rich, then is rich and hence

rank So
and hence the proof is complete.
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