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Abstract— This paper introduces a new method to generate an
ultra-wideband (UWB) pulse to fill up the Federal Communica-
tions Commission (FCC) mask. One way to generate the pulse
is by summing a weighted delayed elementary waveform (e.g., a
Gaussian monocycle pulse). This method can be reduced to an
FIR filter design problem. In this paper, an IIR-like method is
introduced. It generates the UWB pulse using the weighted sum of
not only the delayed elementary waveform but also the feedback
waveforms. Allpass decomposition and lattice structures are used
to reduce the complexity of the implementation. Simulation shows
that the IIR based method has higher filling efficiency than
the FIR based method. Simulation also shows that the impulse
response of the IIR shaper decays very fast. Therefore the
expected long transient created by the IIR shaper is negligible. 1

I. INTRODUCTION

Ultra-Wideband (UWB) communication technology allows
wireless communication at very high speed data rates across
short distances with a low-power source [1]. Due to its
attractive features, UWB systems have potential for many
applications such as indoor wireless data network. In 2002,
the Federal Communications Commission (FCC) approved a
spectral mask for operation of UWB devices [2]. It allows a
huge bandwidth (3.1 GHz-10.6 GHz). Because the extremely
broad bandwidth overlaps the coexistent RF transmission,
the FCC has imposed restriction on the equivalent isotropic
radiated power (EIRP) spectrum of the UWB signal. The FCC
power spectrum mask M(f) is shown in Fig. 1. The UWB
pulse spectrum is required to be within this mask. It has been
proposed that impulse radio systems (which transmit very
short pulses without using RF carriers) are good candidates
to satisfy these constraints. In order to utilize the bandwidth
allowed by the FCC, the pulse should be designed such that
the radiated power is maximized while satisfying the FCC
constraint. Previous work on pulse shaper design can be found
in [3], [4] and [5].

The EIRP spectrum can be expressed as

SEIRP (f) = |Heq(f)|2 Sm(f) |P (f)|2 ,

where P (f) is the Fourier transform of the pulse, Sm(f)
depends on the modulation and Heq(f) is the transfer function
from modulated pulse train to the radiated electromagnetic
field on which the EIRP mask is imposed. Therefore, the FCC
mask limitation is

|Heq(f)|2 Sm(f) |P (f)|2 ≤ M(f).
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Fig. 1. The FCC mask for UWB communication.

In order to utilize the bandwidth allowed by mask M(f),
the transmitted power should be maximized under the FCC
limitation. The pulse shape p(t) can be optimized for this. So
the optimization problem is:

max
p(t)

∫ Fmax

Fmin

|Heq(f)|2 Sm(f) |P (f)|2 df

subject to |Heq(f)|2 Sm(f) |P (f)|2 ≤ M(f).

Typically one takes Fmin = 0, and Fmax = 13 GHz. To
evaluate the efficiency of the UWB pulse, the mask-filling
efficiency η is defined in [3] by

η =

∫ Fmax

Fmin
|Heq(f)|2 Sm(f) |P (f)|2 df∫ Fmax

Fmin
M(f)df

. (1)

This is a measure of how closely the spectrum fits Fig. 1, while
remaining within the mask. Without any other constraints on
p(t), the ideal solution to this optimization problem is

|P (f)|2 =
M(f)

|Heq(f)|2 Sm(f)
, (2)

which achieves filling efficiency η = 1. In practice, we cannot
generate waveforms with arbitrary P (f) with analog circuits.
However, a practical way to design the UWB pulse is to
approximate this ideal solution using the available waveforms.
In [3], [4], the UWB pulse generator is a zero-order digital to



analog converter (DAC) which generates a signal in the form

p(t) =
M∑

n=0

bng(t − nT ), (3)

where g(t) is some elementary waveform which can be
generated by analog circuitry such as the Gaussian monocycle
pulse. The choice of T will be discussed later. In [3], a global
search algorithm is used to maximize the filling efficiency η.
In [4], the Parks-McClellan algorithm is used to design the
coefficients {bn} so that the frequency response of the pulse
P (f) approximates the ideal solution in Eq. (2).

Eq. (3) can be viewed as an FIR filter {bn} acting on
continuous waveform g(t). It is well know that with the same
complexity, IIR filters have better frequency responses than
FIR filters. In this paper, instead of using the FIR based
method in Eq. (3), we proposed a new way to generate the
pulse by an IIR based method. Experiments show that with
the same complexity, our method has better filling efficiency
than the FIR based method.

II. PREVIOUS WORK

In this section, we will briefly explain what has been done
in [4] and [3]. In [4], the Parks-McClellan algorithm is used to
design the pulse shaper. The frequency response of the pulse
generated using FIR based method in Eq. (3) can be expressed
as

P (f) =
M∑

n=0

bne−i 2πn
T fG(f), Fmin ≤ f ≤ Fmax,

where G(f) is the frequency response of the elementary
waveform g(t). In [4], g(t) is the Gaussain monocycle pulse.
That is

g(t) = 2
√

e
t

τg
e
−2( t

τg
)2

,

where τg represents its peak amplitude. To approximate the
ideal solution in Eq. (2), one can choose {bn} so that∣∣∣∣∣

M∑
n=0

bne−i 2πn
T f

∣∣∣∣∣
2

|Heq(f)|2 Sm(f) |G(f)|2 ≈ M(f),

Fmin ≤ f ≤ Fmax (4)

is satisfied. This reduces the problem to an FIR filter design
problem. In [4], the authors uses the Parks-McClellan algo-
rithm to design the M + 1-tap filter {bn}. This algorithm is
optimal in the sense that the maximum approximation error is
minimized. Note that

∑M
n=0 bne−i 2πn

T f is periodic in f with
period 1

T . However, as long as T is small enough so that there
are no repetitions in the region Fmin ≤ f ≤ Fmax, we can
design {bn} appropriately. In [4], the typical values T = 73ps
and T = 35.7ps are used. For T = 35.7ps, the sampling
rate is 1/35.7ps = 28 GHz. We get full band control over
0 GHz ≤ f ≤ 14 GHz. For T = 73ps, the sampling rate is
1/73ps = 13.7 GHz, so the frequency response in the range
0 GHz ≤ f ≤ 6.85 GHz can be specified. Because {bn} are
real, the magnitude response is symmetric around 6.85 GHz. If

the EIRP spectrum is under the mask for 0 GHz∼6.85 GHz, it
will be also under the mask for 6.85 GHz ∼13.7 GHz because
of symmetry. This leads to a suboptimal design. However,
by thus increase T , the number of filter taps can be reduced
significantly.

In [3], the same FIR based structure in Eq. (3) is adopted.
However, more practical considerations are taken into ac-
count. The transfer function from modulated signal to radiated
electromagnetic field, Heq(f) is actually considered. The
coefficients {bn} are chosen from a finite set S restricted
to the hardware implementation instead of real numbers. The
filling efficiency mentioned in Eq. (1) is developed. Then an
exhaustive search for {bn} that has the highest efficiency η in
S is implemented. The following optimization:

max
{bn}∈S,ac

η =
ac

∫ Fmax

Fmin
|Heq(f)|2 Sm(f) |P (f)|2 df∫ Fmax

Fmin
M(f)df

subject to ac |Heq(f)|2 Sm(f) |P (f)|2 ≤ M(f)

is done, where ac is a scaling factor such that the EIRP
spectrum is under M(f). These papers use the FIR based
method to generate the pulse. They inspire us to think of
generating pulses by an IIR based method.

III. IIR ULTRA-WIDEBAND PULSE SHAPER

Instead of using the FIR based method in Eq. (3), we
propose a new way to generate the pulse by using the equation

p(t) =
M∑

n=0

bng(t − nT ) −
N∑

n=1

anp(t − nT ), (5)

where g(t) is some elementary waveform like the Gaussian
monocycle pulse. This can be implemented by the scheme in
Fig. 2. This is analogous to recursive difference equations,
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Fig. 2. The scheme for generating the pulse p(t) recursively. Here “D”
denotes one unit of analog delay.

hence the name “IIR method”. In this case, the Fourier



transform of the pulse is

P (f) =
∑M

n=0 bne−i 2πn
T f∑N

n=0 ane−i 2πn
T f

G(f),

where G(f) is the Fourier transform of g(t) and a0 = 1 for
convenience. To approximate the ideal solution in Eq. (2), the
power spectrum needs to fit within the mask. One can choose
{an} and {bn} so that∣∣∣∣∣

∑M
n=0 bne−i 2πn

T f∑N
n=0 ane−i 2πn

T f

∣∣∣∣∣
2

|Heq(f)|2 Sm(f) |G(f)|2 ≈ M(f),

Fmin ≤ f ≤ Fmax

This reduces the problem to an IIR filter design problem.
However, the magnitude response of the filter is not simply
highpass or lowpass. It needs to fit to a specific curve
controlled by |Heq(f)|2 Sm(f) |G(f)|2 and the mask M(f).
Unlike the FIR case, there is no standard technique to design
an IIR filter to fit an arbitrary magnitude response. To solve
this, we divide the design problem into two parts. We first
design an IIR equiripple filter H1(z) and then design an FIR
filter H2(z) by the Parks-McClellan algorithm. The overall
IIR filter H1(z) is H(z) = H1(z)H2(z). The IIR filter has a
relatively sharper transition band, therefore we use it to fit the
transition band of M(f). It is designed to have passband over
3.1 GHz ≤ f ≤ 10.6 GHz. That is

∣∣∣H1(ei 2πf
T )

∣∣∣2 ≈
{

1, 3.1 GHz ≤ f ≤ 10.6 GHz
0, otherwise.

On the other hand, after H1(z) is determined, an FIR filter
H2(z) is used to provide the flexibility to compensate the
nonflat passband caused by |Heq(f)|2 Sm(f) |G(f)|2. This
can be done by solving the approximation problem∣∣∣H2(ei 2πf

T )
∣∣∣2

∣∣∣H1(ei 2πf
T )

∣∣∣2 |Heq(f)|2 Sm(f) |G(f)|2 ≈ M(f),

Fmin ≤ f ≤ Fmax

This approximation can be done by the Parks-McClellan
algorithm. By this separated design, we obtain both of the
advantages of IIR equiripple filter and FIR minimax filter.
Sharp transition band and flexibility to fit arbitrary magnitude
response are obtained. Thus the filling efficiency can be
increased under the same complexity.

IV. DESIGN EXAMPLES

Three pulse design examples are compared in this section.
The first example is a reproduction of [4]. The pulse is
generated by the FIR based method in Eq. (3) and the
Parks-McClellan algorithm is used to design the coefficients
{bn}. The second example is the pulse generated by the IIR
based method in Eq. (5) and a standard IIR filter is used to
obtained the coefficients {bn} and {an}. The third example
is the pulse generated by the IIR based method in Eq. (5)
with the design procedure we described in Section III. We
first use a standard elliptic IIR filter to fit the transition band
of the mask and then use a minimax FIR filter to compensate

the nonflat passband caused by the Gaussian monocycle pulse
and the transfer function |Heq(f)|2 Sm(f).

The parameters are listed in the following:

1) In order to compare the three cases under fixed cost, the
number of multiplications in Fig. 2. is fixed to be 17.

2) The duration T in Eq. (5) is chosen to be 73ps. In this
case, the sampling rate is 1/73ps =13.7 GHz, so the
frequency response in the range 0 GHz ≤ f ≤ 6.85
GHz can be specified. Because the signals are real, the
magnitude response in the range 6.85 GHz ≤ f ≤ 13.7
GHz is symmetric to that in the range 0 GHz ≤ f ≤
6.85 GHz.

3) The parameter τg in the Gaussian monocycle pulse is
chosen to be 50ps. This choice makes the magnitude
response of the Gaussian monocycle pulse have its peak
value around 6.85 GHz.

4) In the following example, we assume Heq(f) = 1
and Sm(f) = 1, as in [4]. These assumptions can be
removed with appropriate modification of the design
procedure.

Fig. 3 shows a comparison of the results obtained using these
three methods.

A. FIR case [4]. The pulse is generated by FIR based
method. The Parks-McClellan algorithm [6] is used to find
{bn} so that Eq. (4). is satisfied. This can be viewed as a
special case of the IIR scheme with a0 = 1 and an = 0 for
n �= 0. To fix the number of multiplications to 17, we choose
the order M = 32. The pulse power spectrum is shown in
Fig. 3A. The filling efficiency η = 74.96%.

B. Elliptic IIR filter. The pulse is generated by the
IIR based method in Eq. (5). The standard elliptic IIR filter
design is used to find {an} and {bn} so that∣∣∣∣∣
∑M

n=0 bne−i 2πn
T f∑N

n=0 ane−i 2πn
T f

∣∣∣∣∣ ≈
{

0, 0 GHz ≤ f ≤ 3.1 GHz
1, 3.1 GHz ≤ f ≤ 6.85 GHz.

Because the magnitude response is symmetric around 6.85
GHz, it also has passband in the range 6.85 GHz ≤ f ≤ 10.6
GHz. Therefore, the overall passband is 3.1 GHz ≤ f ≤ 10.6
GHz. We choose the orders M = N = 11. Because
of the symmetry of the numerator {bn}, the number of
multiplications in the numerator is 6. The total number of
multiplications is therefore 16. The pulse power spectrum is
shown in Fig. 3B. Because of the nonflatness of G(f), the
passband of the pulse is not flat. This seriously decreases the
filling efficiency. The filling efficiency η = 68.29% in this
case.

C. The new method of Section III. The pulse is
generated by the IIR based method in Eq. (5). The design
procedure described in Section III is applied. We first design
an elliptic IIR filter with order 7 and then design a minimax
FIR filter with order 11. Thus the overall orders are M = 18



and N = 7. Because of the symmetry of the numerator,
the number of multiplications in the numerator is 10. The
total number of multiplications is therefore 17. The pulse
power spectrum is shown in Fig. 3C. The filling efficiency
η = 78.92% in this case.

The mask-filling efficiencies are summarized in Table
I. At the receiver, the frequency component outside
3.1 GHz ≤ f ≤ 10.6 GHz is often filtered. Therefore the
other way to compute the efficiency in Eq. (1) is using
Fmin = 3.1 GHz and Fmax = 10.6 GHz. That results a
different value of efficiency. They are also listed in Table
I. The power spectra corresponding to Fmin = 0 GHz and
Fmax = 13 GHz are shown in Fig. 3. Experiments show that
the new method has a consistently higher filling efficiency
than the FIR based method.
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Fig. 3. Results of FIR and IIR approximations to the FCC power mask. (A)
FIR based method. (B) IIR elliptic method. (C) The new method of Section
3.

A B C
Fmin = 0 GHz
Fmax = 13 GHz 74.96% 68.29% 78.92%

Fmin = 3.1 GHz
Fmax = 10.6 GHz 88.06% 80.62% 92.61%

TABLE I

MASK-FILLING EFFICIENCY FOR THE THREE DESIGN METHODS.

Transient Response. In UWB transmission, shorter pulse
duration results in better transmission rates. Therefore,
one must consider the pulse duration when designing the
transmitting pulse [5]. By definition, IIR filters have infinite
impulse response. That means the pulses generated from
Examples B and C have infinite duration. However, the
experiments show that the impulse responses of these IIR
filters decay very fast. The transient is thus negligible. Fig.
4 shows the impulse responses of the shapers for the three
methods. The impulse response of the FIR shaper has a
duration of 2.4ns. The impulse response of the new method
has more than 98% of its energy within this duration. The
rest of the energy (less than 2%) can be viewed as transient
and is small enough to be neglected. Fig. 5 shows the pulse
p(t) for the three cases.
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V. IMPLEMENTATION DETAILS

In this section, we further discuss the implementation of
the IIR shaper. The number of multiplications of the N th
order elliptic IIR filter can be further reduced to N by
using the allpass decomposition [7] along with the lattice
implementation of the allpass filters if N is odd. For example,
Example C in Section IV has a 7th order elliptic filter and an
11th order minimax FIR filter. The number of multiplications
of the elliptic filter can be reduced to 7. Therefore the overall
number of multiplications can be reduced to 7+6=13. Further-
more, using this implementation, the magnitude response in
the passband has low sensitivity to quantization of the filter
coefficients.

By the allpass decomposition theorem described in [7]
Section 3.6, for any N th order elliptic filter H(z), there exists
n0th order allpass filter A0(z) and n1th order allpass filter
A1(z) such that

H(z) =
A0(z) + A1(z)

2

and n0 + n1 = N . Furthermore, if N is odd, the coefficients
of A0(z) and A1(z) are real. By this decomposition, we can
implement an elliptic filter with two allpass filters. Moreover,
the allpass filters can be implemented by the lattice structure
([7] Section 3.4.3). The number of multiplications for imple-
menting an nth order real allpass filter is n if we use the

one-multiplier lattice structure. Therefore, the total number
of multiplications to implement an N th order elliptic filter
is n0 + n1 = N , for odd N . In Table I, the complexity was
17 multipliers in each of the three cases. For the method C,
however, this reduces to 13 multipliers if we use the allpass
decomposition method.

The IIR direct form in Fig. 2 is known to be very sensitive
to coefficient quantization. In [7] Section 9.7, it is shown that
when the magnitude response equals one, the derivatives of
the magnitude response with respect to multiplier coefficients
are zeros for the lattice structure implementation. This means
the magnitude response in the passband is less sensitive to
the changes in multiplier coefficients. This is very attractive
because the flatness of the passband has a great influence on
the efficiency η. Thus, this implementation not only saves
complexity but also has a low sensitivity to quantization.

VI. CONCLUDING REMARKS

In this paper, an IIR based method for generating the UWB
pulse was introduced. An IIR elliptic filter and a minimax FIR
filter are combined to get sharp transition bands and flexibility
to adjust the passband response. Simulations show that the new
method has a better filling efficiency for a fixed complexity,
and the transient caused by the IIR shaper is negligible.
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