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Abstract— It is well know that the performance of the min-
imum variance distortionless response (MVDR) beamformer
is very sensitive to steering vector mismatch because of the
signal cancellation. Such mismatches can occur as a result of
direction-of arrival (DOA) errors, local scattering, near-far spa-
tial signature mismatch, waveform distortion, source spreading,
imperfectly calibrated arrays and distorted antenna shape.

In this paper, an adaptive beamformer which is robust against
the DOA mismatch is proposed. This method imposes two
quadratic constraints such that the magnitude responses of two
steering vectors exceed unity. Then a diagonal loading method
is used to force the magnitude responses within a range of the
arrival angles to exceed unity. The diagonal loading factor can
be computed systematically by a proposed algorithm. Numerical
examples show that this method has a significantly better SINR
performance compared to previously published methods (includ-
ing the MVDR), and a complexity comparable to the standard
MVDR beamformer. 1

I. INTRODUCTION

Beamforming has long been used in many areas, such as
radar, sonar, seismology, medical imaging, speech processing
and wireless communications. Introduction to beamforming
can be found in [18]–[20] and the references therein. A data-
dependent beamformer was proposed by Capon in [1]. By
exploiting the second order statistics of the array output,
the method constrains the response of the signal of interest
(SOI) to be unity and minimizes the total variance of the
beamformer output. This method is called minimum variance
distortionless response (MVDR) beamformer in the literature.
The MVDR beamformer has very good resolution, and the
SINR (signal-to-interference-plus-noise ratio) performance is
much better than traditional data-independent beamformers.
However, the steering vector of the SOI can be imprecise.
When the mismatched steering vector is used in the MVDR
beamformer, the response of the SOI is no longer constrained
to be unity and thus is attenuated by the MVDR beamformer
while minimizing the total variance of the beamformer output
[2]. This phenomenon is called signal cancellation or self-
nulling. It will dramatically degrade the output SINR. Many
approaches, including [3]–[17] and the references therein, have
been proposed for improving the robustness of the MVDR
beamformer. A good introduction to this topic can be found
in [5].

Recently, some approaches based on an uncertainty set of
steering vectors have been proposed [4]–[9]. Instead of impos-
ing a linear constraint, these approaches minimize the output
variances subject to the constraint that the magnitude responses
of a set of steering vectors exceed unity. If the mismatched
steering vector is still in this set, its magnitude response will
exceed unity and will not be attenuated. In this paper, we focus
on the steering mismatch caused by direction-of-arrival (DOA)
mismatch. Inspired by these uncertainty based methods, we
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consider a simplified uncertainty set which contains only the
steering vectors with a desired uncertainty range of DOA. To
find a suboptimal solution for this problem, the constraint is
first loosened to two non-convex quadratic constraints such
that the magnitude responses of two steering vectors exceed
unity. Then a diagonal loading method is used to force the
magnitude responses at the arrival angles between these two
steering vectors to exceed unity. Therefore this method can
always force the gains at a desired range of angles to exceed
a constant level while suppressing the interferences and noise.
A closed form solution to the proposed minimization problem
is introduced, and the diagonal loading factor can be computed
systematically by a proposed algorithm. Numerical examples
show that this method has an excellent SINR performance and
a complexity comparable to the standard MVDR beamformer
(which has poor performance).

The rest of the paper is organized as follows. The analysis
of steering vector mismatch and some previous work are
reviewed in Section II. In Section III, we develop the theory
and the algorithm of our new robust beamformer. The
numerical examples are presented in Section IV. Section V
gives the conclusions.

Notations. Bold faced lower case letters such as y represent
vectors, and bold faced upper case letters such as Ry denote
matrices. The element in row n and column m of matrix Ry

is denoted by Ry,n,m. The notation y† denotes the conjugate
transpose of the vector y. The notation E[x] denotes the
expectation of the random variable x. The notation W (z)
denotes the z-transform of the elements in vector w.

II. THE STEERING VECTOR MISMATCH AND SOME
PREVIOUS WORK

Consider a uniform linear array (ULA) of N omnidirec-
tional sensors with interelement spacing d. The signal of
interest (SOI) is a narrowband plane wave impinging from
angle θ as shown in Fig. 1. The baseband array output y(t)
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Fig. 1. The N-element uniform linear array.

can be expressed as

y(t) = x(t)s(θ) + v(t),



where v(t) denotes the sum of the interferences and the noises,
x(t) is the signal of interest (SOI), and s(θ) represents the
baseband array response of the SOI. It is called steering vector
and can be expressed as

s(θ) �
(

1 ej 2π
λ d sin θ · · · ej(N−1) 2π

λ d sin θ
)T

, (1)

where λ is the operating wavelength. The output of the beam-
former can be expressed as w†y(t), where w is the complex
weighting vector. The output SINR (signal-to-interferences-
plus-noise ratio) of the beamformer is defined as

SINR � E|x(t)w†s(θ)|2
E|w†v(t)|2 =

σ2
x|w†s(θ)|2
w†Rvw

, (2)

where Rv � E[v(t)v†(t)], and σ2
x � E[|x(t)|2]. By exploit-

ing the second order statistics of the array output y(t), the
output SINR can be maximized by minimizing the total output
variance while constraining the SOI response to be unity. This
can be written as the following optimization problem:

min
w

w†Ryw

subject to s†(θ)w = 1,

where Ry � E[y(t)y†(t)]. The solution to this problem is
well-known and was first given by Capon in [1] as

wc =
Ry

−1s(θ)
s†(θ)Ry

−1s(θ)
. (3)

When there is a mismatch between the actual arrival angle θ
and the assumed arrival angle θm, this beamformer becomes

wm =
Ry

−1s(θm)
s†(θm)Ry

−1s(θm)
. (4)

It can be viewed as the solution to the minimization problem

min
w

w†Ryw

subject to s†(θm)w = 1. (5)

Because w†Ryw = w†Rvw+σ2
x|s†(θ)w|2, and s†(θ)w = 1

is no longer valid due to the mismatch, the SOI is interpreted
as an interference. The SOI magnitude response is thus sup-
pressed as a part of the objective function. When the SOI
is strong, the beamformer tends to place a zero around the
SOI arrival angle θ to minimize the total output variance. This
will almost destroy the SOI response. A small mismatch could
cause a severe degradation in the SINR.

Many approaches have been proposed for improving the
robustness of the standard MVDR beamformer during the past
three decades. In [10], the following modification of Ry is
performed before obtaining the MVDR beamformer by Eq.
(3):

Ry ← Ry + γIN.

This approach is called diagonal loading in the literature. It
increases the variance of the artificial white noise by γ in Ry.
This modification forces the beamformer to put more effort
on suppressing white noise rather than interferences. When
the SOI steering vector is mismatched, the SOI is attenuated
as one of the interferences. As the beamformer puts less effort
on suppressing the interferences, the SOI suppression problem
addressed above is reduced. However, when γ is too large,
the beamformer fails to suppress strong interferences because

it puts most effort to suppress the white noise. There is a
trade-off between reducing SOI suppression and suppressing
interferences. It is not clear how to choose a good diagonal
loading factor γ in the traditional diagonal loading methods.

In [4], the following optimization problem is considered:

min
w

w†Ryw

subject to |w†s| ≥ 1,∀ s ∈ E ,
where E is a sphere defined as

E = {s̄ + e | ‖e‖ ≤ 1}, (6)

where s̄ is the assumed steering vector. Instead of imposing
a linear constraint, this method constrains the magnitude
responses of a sphere set of steering vectors to exceed unity.
If the mismatched steering vector is in this uncertainty set, its
gain will exceed unity and will not be attenuated. Unlike the
method in [10], this method directly protects the SOI response
from being suppressed. In [5], [6], the uncertainty set in Eq.
(6) has been generalized to an ellipsoid. This method takes into
account any steering vector mismatch that keeps the vector in
the sphere in Eq. (6). If the primary mismatch is known to
be angle of arrival mismatch, then the set in Eq. (6) can be
replaced with a much smaller set, thereby resulting in better
performance. In this paper, we take such an approach.

III. NEW ROBUST BEAMFORMER

In this paper, we focus on the direction-of-arrival (DOA)
mismatch. When there is a DOA mismatch, the minimization
in Eq. (5) suppresses the magnitude response of the actual SOI.
To avoid this, we should force the magnitude responses at a
range of arrival angles to exceed unity while minimizing the
total output variance. This optimal robust beamformer problem
can be expressed as

wd = arg min
w

w†Ryw

subject to |s†(θ)w| ≥ 1 for θ1 ≤ θ ≤ θ2, (7)

where θ1 and θ2 are the lower and upper bounds of the
SOI arrival angle respectively, and s(θ) is the steering vector
defined in Eq. (1) with the arrival angle θ. The following
uncertainty set of steering vectors is considered:

{s =
(

1 ejω · · · ej(N−1)ω
)T ∣∣ ω1 ≤ ω ≤ ω2}, (8)

where ω1 � 2π sin θ1/λ, and ω2 � 2π sin θ2/λ. Unlike other
uncertainty set based approaches using ellipsoid, spherical, or
polyhedron sets, the uncertainty set we considered in Eq. (8)
is a curve. This constraint protects the signals in the range of
angles θ1 ≤ θ ≤ θ2 from being suppressed.

A. Two-point quadratic constraint

There is no standard tool for solving the optimal beam-
former wd in Eq. (7) because the constraint does not fit any
of the existing standard optimization tools. The constraint
|s†(θ)w|2 ≥ 1 for θ1 ≤ θ ≤ θ2 can be viewed as infinite
number of quadratic constraints. Other uncertainty steering
vector based methods solve this problem by adding more
constraints so that the problem fits some standard optimization
tools such as SOCP. Our approach does this in an opposite
way. We start looking for the solution by loosening the
constraint. We first loosen the constraint by choosing only
two constraints |s†(θ1)w|2 ≥ 1 and |s†(θ2)w|2 ≥ 1 from



the infinite constraints |s†(θ)w|2 ≥ 1 for θ1 ≤ θ ≤ θ2. The
corresponding optimization problem can be written as

w0 = arg min
w

w†Ryw

subject to |s†(θ1)w| ≥ 1, and |s†(θ2)w| ≥ 1. (9)

Because the constraint is loosened, the minimum to this
problem is a lower bound of the original problem in Eq. (7).
In order to obtain an analytic solution, we recast the problem
to the following equivalent form:

min
w,φ,ρ0≥1,ρ1≥1

w†Ryw

subject to S†w =
(

ρ0

ρ1e
jφ

)
,

where S = ( s(θ1) s(θ2) ) , and ρ0, ρ1 and φ are real
numbers.

To solve this problem, we first assume φ, ρ0 and ρ1 are
given and solve w. The solution w0 can be obtained by
Lagrange multiplier method and can be expressed as

w0 = Ry
−1S(S†Ry

−1S)−1

(
ρ0

ρ1e
jφ

)
. (10)

Given φ, ρ0 and ρ1, w0 can be found from the above equation.
The task now is to solve for φ, ρ0 and ρ1. Write

(S†Ry
−1S)−1 =

(
r0 r2e

jβ

r2e
−jβ r1

)
,

where r0, r1 and r2 are real nonnegative numbers. Substituting
w0 in Eq. (10) into the objective function, it becomes

w†
0Ryw0 =

(
ρ0 ρ1e

−jφ
)
(S†Ry

−1S)−1

(
ρ0

ρ1e
jφ

)

= r0ρ
2
0 + r1ρ

2
1 + 2Re{r2ρ0ρ1e

j(β+φ)}
≥ r0ρ

2
0 + r1ρ

2
1 − 2r2ρ0ρ1. (11)

To minimize the objective function, φ can be chosen as

φ = −β + π (12)

so that the last equality in Eq. (11) holds. Now φ and w0 are
obtained by Eq. (12) and Eq. (10), and the objective function
becomes Eq. (11). To further minimize the objective function,
ρ0 and ρ1 can be found by solving the following optimization
problem:

min
ρ0≥1, ρ1≥1

r0ρ
2
0 + r1ρ

2
1 − 2r2ρ0ρ1.

This can be solved by using the Karush-Kuhn-Tucker (KKT)
condition. The following solution can be obtained:

ρ0 =
{

1, r2/r0 ≤ 1
r2/r0, r2/r0 > 1 ,

ρ1 =
{

1, r2/r1 ≤ 1
r2/r1, r2/r1 > 1 . (13)

Summarizing Eq. (12), Eq. (13) and Eq. (10), the following
algorithm for solving the beamformer with the two-point
quadratic constraint in Eq. (9) is obtained.

Algorithm 1: Given θ1, θ2 and Ry, w0 can be computed
by the following steps:

1. S← ( s(θ1) s(θ2) ) .

2. V← (Ry)−1S.

3. R �
(

r0 r2e
jβ

r2e
−jβ r1

)
← (S†V)−1.

4. φ← −β + π.

ρ0 ←
{

1, r2/r0 ≤ 1
r2/r0, r2/r0 > 1 .

ρ1 ←
{

1, r2/r1 ≤ 1
r2/r1, r2/r1 > 1 .

5. w0 ← VR
(

ρ0

ρ1e
jφ

)
.

The matrix inversion in Step 2 contains most of the complexity
of the algorithm. Therefore the algorithm has the same order
of complexity as the MVDR beamformer. Because the con-
straint is loosened, the feasible set of the two-point quadratic
constraint problem in Eq. (9) is a superset of the feasible
set of the original problem in Eq. (7). The minimum found
in this problem is a lower bound of the minimum of the
original problem. If the solution w0 in the two-point quadratic
constraint problem in Eq. (9) happens to satisfy the original
constraint |s†(θ)w0|2 ≥ 1 for θ1 ≤ θ ≤ θ2, then w0 is also the
solution to the original problem in Eq. (7). Unfortunately, in
general the original constraint |s†(θ)w| ≥ 1 for θ1 ≤ θ ≤ θ2

is not guaranteed to be satisfied by the solution to Eq. (9).
This problem will be overcome by a method provided in the
next section.

B. Two-point quadratic constraint with diagonal loading
Substituting Eq. (8) into the constraint in Eq. (7), we can

rewrite the robust condition into |W (ejω)| ≥ 1 for ω1 ≤ ω ≤
ω2. If the robust condition is not satisfied, W (z) must have
a zero whose angle is between ω1 and ω2. If θ1 and θ2 are
close, the zero is also close to both of the quadratic-constraint
points. Thus, it attenuates the gain at these points. However,
the magnitude responses at these points are constrained to
exceed unity. To satisfy the constraints, the overall energy
of w must be adjusted to a certain high level. Therefore, if
the robust condition |s†(θ)w| ≥ 1 for θ1 ≤ θ ≤ θ2 is not
satisfied, the norm of the weighting vector ‖w‖ will become
very large. By using this fact, we can impose some penalty
on ‖w‖2 to avoid this situation from happening. This can be
done by the diagonal loading approach mentioned in Sec. II.
The corresponding optimization problem can be written as

wγ = arg min
w

w†Ryw + γ‖w‖2

subject to |s†(θ1)w| ≥ 1, and |s†(θ2)w| ≥ 1, (14)

where γ is the diagonal loading factor which represents the
amount of the penalty put on ‖w‖2. The solution wγ can be
found by performing the following modification on the output
covariance matrix:

Ry ← Ry + γIN

and then applying Algorithm 1. When γ → ∞, the solution
converges to

w∞ = arg min
w
‖w‖2

subject to |s†(θ1)w| ≥ 1, and |s†(θ2)w| ≥ 1. (15)



The following lemma gives the condition for which w∞
satisfies the constraint |s(θ)†w∞| ≥ 1 for all θ in θ1 ≤ θ ≤ θ2.

Lemma 1: |s†(θ)w∞| ≥ 1 for θ1 ≤ θ ≤ θ2 if and only if
| sin θ2 − sin θ1| ≤ λ/(dN).

Proof: According to Eq. (15), substituting Ry = IN and
applying Algorithm 1, one can obtain

w∞ =
1

N + |sincd(ω2−ω1
2 )| (s(θ1) + s(θ2)ej

(ω2−ω1)(N−1)
2 ),

where

ω1 � 2π

λ
d sin θ1, ω2 � 2π

λ
d sin θ2, and

sincd(ω) � sin(ωN)
sinω

.

By direct substitution, one can obtain

|s†(θ)w∞| =
∣∣∣∣ sincd(ω1−ω

2 ) + a · sincd(ω2−ω
2 )

N + |sincd(ω2−ω1
2 )|

∣∣∣∣ , (16)

where ω � 2π
λ d sin θ and

a =
{

1 , if sincd(ω2−ω1
2 ) > 0

−1 , otherwise.

By Eq. (16), it can be verified that

|s†(θ)w∞| ≥ 1 for ω1 ≤ ω ≤ ω2

if and only if

|ω2 − ω1| ≤ 2π

N

which can also be expressed as | sin θ2 − sin θ1| ≤ λ/(dN).

If the condition | sin θ1 − sin θ2| ≤ λ/(dN) is satisfied,
there exists a γ > 0 such that the condition |s†(θ)wγ | ≥ 1
for θ1 ≤ θ ≤ θ2 is satisfied. However, introducing the
diagonal loading changes the objective function w†Ryw to
w†(Ry + γIN )w. The modification of the objective function
affects the suppression of the interferences. To keep the
objective function correct, γ should be chosen as small as
possible while the condition |s†(θ)w| ≥ 1 for θ1 ≤ θ ≤ θ2

is satisfied. For finding such a γ, we propose the following
algorithm:

Algorithm 2: Given θ1, θ2, Ry, an initial value of γ, a
search step size α > 1 and a set of angles, ζi, i = 1, 2, · · · , n
which satisfies θ1 < ζi < θ2 for all i, wγ can be computed
by the following steps:

1. Ry ← Ry + γIN .

2. Compute wγ by Algorithm 1.

3. If |s†(ζi)wγ | ≥ 1 for all i = 1, 2, · · · , n
then stop.
else γ ← αγ, and go to 1.

This algorithm keeps increasing γ by multiplying α until
|s†(ζi)wγ | ≥ 1 for all i = 1, 2, · · · , n is satisfied. This is
an approximation for |s†(θ)wγ | ≥ 1 for θ1 ≤ θ ≤ θ2. In the
numerical results in next section, the number n can be very
small. The choice n = 3 works well in all of the examples.
Also, the SINR is not sensitive to the choice of α.

IV. NUMERICAL EXAMPLES

For the purpose of design examples, the same parameters
used in [6] are used in this section. An uniform linear array
(ULA) of N = 10 omnidirectional sensors spaced half-
wavelength apart (i.e. d = λ/2) is considered. There are three
signals impinging upon this array:

1) the signal of interest (SOI) x(t) with angle of arrival θ,
2) an interference signal xint1(t) with angle of arrival

θint1 = 30◦ and σ2
int1 = 104 (40dB above noise) and

3) another interference signal xint2(t) with angle of arrival
θint2 = 75◦ and σ2

int2 = 102 (20dB above noise).
The received noise variance σ2 = 1. The actual arrival angle
θ is 43◦ but the assumed arrival angle θm is 45◦.

Example 1: SINR versus diagonal loading factors γ.
In this example, the SNR is 10dB. The SINR defined in Eq.
(2) is compared for different diagonal loading factors γ. The
following methods are considered:

1) Algorithm 1 with θ1 = 42◦ and θ2 = 48◦.
2) General-rank method [9] with the parameter

ε = max
48◦≥θ≥42◦

‖s(θ)s†(θ)− s(45◦)s†(45◦)‖F ≈ 4.73.

3) Diagonal loading method [10].
4) Directional LCMV (linear constrained minimum vari-

ance) [13] with two linear constraints which forces the
responses of the signals from 42◦ and 48◦ to be unity.

5) Derivative LCMV [15] with two linear constraints which
forces the responses of the signals from 45◦ to be unity
and the derivative of the beampattern on 45◦ to be zero.

One can verify that the choice of θ1, θ2, d and N satisfies
| sin θ1 − sin θ2| ≤ λ/(dN). Therefore, by Lemma 1, there
exist a γ > 0 so that |s(θ)wγ | ≥ 1 for θ1 ≤ θ ≤ θ2. The
SINR of the MVDR beamformer without mismatch is also
plotted. This is an upper bound on the SINR. Fig. 2 shows
the result for SNR = 10dB. One can observe that there is
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Fig. 2. Example 1: SINR versus γ with SNR = 10dB.

a huge jump in the SINR of Algorithm 1 around γ = 3.
When this happens, the SINR of Algorithm 1 increases
significantly and becomes very close to the upper bound
provided by the MVDR beamformer without mismatch. This
jump happens when the robust condition |s(θ)wγ | ≥ 1 for
θ1 ≤ θ ≤ θ2 is satisfied. After the jump, the SINR decays



slowly as γ increases because of the over-suppression of
white noise. Observing Fig. 2, we can see why Algorithm
2 works. Algorithm 2 increases γ by repeatedly multiplying
α until wγ satisfies |w†

γs(ζi)| ≥ 1 for i = 1, 2, · · · , n. This
happens as γ crosses the jump in SINR. Also, the SINR is
not sensitive to the choice of α because the SINR decays
very slow after the jump. By Algorithm 2, we can find a
suitable γ with only a few iterations. For other approaches
involving diagonal loading, it is not clear how to find a good
diagonal loading factor γ.

Example 2: SINR versus SNR.
In this example, the SINR in Eq. (2) are compared for
different SNRs ranged from -20dB to 30dB. The following
methods are considered:

1) Algorithm 2 with θ1 = 42◦, θ2 = 48◦, ζ1 = 43.5◦,
ζ2 = 45◦, ζ3 = 46.5◦, initial γ = 1 and step size α = 2.

2) General-rank method. Same as in Example 1.
3) Extended diagonal loading method [4]–[6] with the

parameter

ε = max
48◦≥θ≥42◦

‖s(θ)− s(45◦)‖ ≈ 1.95.

4) Directional LCMV [13], [14] with two linear constraints
at the angles 42◦, 48◦.

5) Directional LCMV with three linear constraints at the
angles 42◦, 45◦ and 48◦.

6) Derivative LCMV with two linear constraints [15]. Same
as in Example 1.

7) Derivative LCMV with three linear constraints which
force the responses of the signals from 45◦ to be
unity and both the first and second derivatives of the
beampattern on 45◦ to be zero.

8) The standard MVDR beamformer in Eq. (4).
Again, the SINR of the MVDR beamformer without mis-

match is also plotted. It provides the upper bound on the
SINR of these robust beamformers. The results are shown
in Fig. 3. The SINR of the standard MVDR beamformer
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Fig. 3. Example 2: SINR versus SNR with γ = 10.

is seriously degraded with only 2◦ of mismatch. When the
SNR increases, the MVDR beamformer tends to suppress the
strong SOI to minimize the total output variance. Therefore,
in the high SNR region, the SINR decreases when SNR
increases.The performances of the uncertainty based methods
are better than the LCMV methods. This is because the linear

equality constraints are too strong compared to the quadratic
inequality constraints. Among the uncertainty based methods,
Algorithm 2 has the best SINR performance because it has
an uncertainty set which focuses on the DOA mismatch only.
The SINR is very close to the upper bound provided by the
MVDR beamformer without mismatch.

V. CONCLUSIONS

In this paper, a new beamformer wich is robust against DOA
mismatch is introduced. This robust beamformer quadratically
constrains the magnitude responses of two steering vectors and
then uses a diagonal loading method to force the magnitude
response in a range of arrival angles to exceed unity. Therefore
this method can always force the gains in a desired range of
angles to exceed a constant level. The analytic solution to the
quadratic constraint minimization problem has been proposed
in Algorithm 1, and the diagonal loading factor γ can be de-
termined by a simple iteration method proposed in Algorithm
2. The complexity required in Algorithm 1 is approximately
about the same as in the MVDR beamformer. The overall
complexity depends on the number of iterations in Algorithm
2 which depends on the SNR. In our numerical examples,
when SNR < 10dB, the number of iterations is less than three.
The numerical examples also show that our approach has a
significantly better SINR performance compared to previously
published methods.
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