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Abstract—Compressed sensing is a technique for efficiently
sampling signals which are sparse in some transform domain.
Recently, the idea of compressed sensing has been used in the
radar system. When the number of targets on the range-Doppler
plane is small, the target scene can be reconstructed by employing
the compressed sensing techniques. In this paper, we extend this
idea to the MIMO radar. In the MIMO radar, the compressed
sensing technique can be used to reconstruct the target scene
when the signals are sparse in the range-Doppler-angle space.
To effectively reconstruct the target scene, it is required that
the correlation between the target responses be small. In this
paper, a waveform design method is introduced to reduce the
correlations between target responses. Because of the increased
dimensionality in MIMO radars as compared to phased array
radars, the impact of compressed sensing will be very significant
there. 1

I. INTRODUCTION AND SIGNAL MODEL

The idea of using compressed sensing in radar receiver was
introduced by Herman and Strohmer in [1]. It is demonstrated
in [1] that when the target scene is sparse in range-Doppler
plane, the compressed sensing can be very effective. In this
paper, we extend their work to the MIMO radar case. In
the MIMO radar case, the parameter space contains not only
delay and Doppler but also the angle. Because of the new
angle dimension introduced by the MIMO radar, the sparsity
of target scene is easier to obtain. The sparsity is essential
for the compressed sensing recovery. Therefore the impact of
compressed sensing in MIMO radar will be more significant.

Consider a MIMO radar consisting of a linear transmitting
antenna array with M elements and a linear receiving antenna
array with N elements. The transmitting antennas are located
in the positions λ

2 · (x0, x1, · · · , xM−1) and the receiving
antennas are located in λ

2 · (y0, y1, · · · , yN−1), where λ is
the wavelength. Fig. 1 illustrates such a system. The mth
transmitting antenna emits the signal um(t)ej2πfct, where fc

is the carrier frequency. The nth receiving antenna receives
the signal rn(t)ej2πfct. When there is only one point target
with Doppler frequency fD, delay τ , and angle θ, the received
signal can be expressed as

rn(t) ∝
M−1∑
m=0

um(t − τ)ej2πfDtejπ sin θ(xn+ym),

for n = 0, 1, · · · , N − 1. Our goal is to detect the target and
estimate its radar cross section (RCS) from the above received
waveforms.
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Fig. 1. Illustration of the MIMO radar transmitter and receiver.

II. COMPRESSED SENSING IN MIMO RADAR RECEIVER

In order to use the compressed sensing recovery techniques,
we need to sample the received signal rn(t). Define

rn = (rn(0), rn(Ts), · · · , rn((K − 1)Ts))
T

,

for n = 0, 1, · · · , N − 1, and

um = (um(0), um(Ts), · · · , um((L − 1)Ts))T ,

for m = 0, 1, · · · ,M−1, where Ts is the sampling period and
L and K are the numbers of samples in the transmitted wave-
form and received waveform respectively, where we choose
K ≥ 2L. The sampled received signal can be represented as

rn ∝
M−1∑
m=0

Cατ
DαD

ume
j

αθ
Nθ

(xm+yn)
,

for n = 0, 1, · · · , N − 1, where

Cατ
=

⎛
⎝ 0ατ×L

IL

0

⎞
⎠ ,

DαD
� diag{1, e

j2π
αD
ND , · · · , e

j2π
αD
ND

(L−1)},
ND is the resolution of the Doppler frequency, Nθ is the
resolution of the angle, ατ = 0, 1, · · · , L − 1 represents the
delay, αD = 0, 1, · · · , ND − 1 represents the Doppler shift,
and αθ = 0, 1, · · · , Nθ − 1 represents the angle. Define

r = (rT
0 , rT

1 , · · · , rT
N−1)

T ,

u = (uT
0 ,uT

1 , · · · ,uT
M−1)

T , and

(Aαθ
)n,m = ejαθ(xm+yn),



for n = 0, 1, · · · , N−1 and m = 0, 1, · · · ,M−1. The overall
input-output relation can be represented as

r ∝ Aαθ
⊗ Cατ

DαD︸ ︷︷ ︸
Hα

·u.

To simplify the notation, we further define

Hα = Aαθ
⊗ Cατ

DαD
,

where α � (αθ, ατ , αD). When there are multiple targets, the
received signal can be expressed as

r =

(∑
α

sαHα

)
· u,

where the scalar sα represents the radar cross section (RCS) of
the target in the αth range-Doppler-angle cell as shown in Fig.
2. The input-output relation is illustrated in Fig. 3. Defining
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Fig. 2. Illustration of range-Doppler-angle space.
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Fig. 3. Illustration of input-output relation.

bα = Hα · u, the input-output relation can be rewritten as

r =
∑
α

sαbα = Φs, (1)

where Φ is a matrix consisting of column vectors {bα} and
s is a KNDNθ × 1 vector consisting of elements {sα}. Our
goal is to detect the targets and to estimate their RCS. In other
words, we want to solve for the vector s in the above equation.
Solving for s in (1) can be viewed as an ordinary inverse
problem. Least square method is a well-known powerful tool
for solving this type of problems. However, if the target scene
s is known to be sparse (i.e.

∣∣{α ∣∣ sα �= 0}∣∣�KNDNθ),
then compressed sensing techniques will give a much bet-
ter performance than the least square method. Compressed
sensing reconstruction algorithms such as basis pursuit [2],
matching pursuit [3], and orthogonal matching pursuit [4] are

well-known for solving this type of problems. In [1], the com-
pressed sensing reconstruction algorithms have been applied
for reconstructing the target scene in a single-input single-
output radar system. In this paper we apply these methods in
the MIMO radar to reconstruct the sparse target scene vector s
in (1). The numerical example of the recovery results will be
shown in Sec. IV. It shows that the compressed sensing based
receiver has a better performance than the matched filter based
approaches.

III. WAVEFORM OPTIMIZATION

To obtain good reconstruction by the compressed sensing
techniques, it has been shown that the coherence of the matrix
Φ must be sufficiently small [5], where the coherence has been
defined as

μ(u) � max
α�=α′

| < bα,bα′ > |
= max

α�=α′
| < Hαu,Hα′u > |. (2)

Therefore, we can choose the transmitted waveforms u so that
the coherence μ(u) is reduced. Using the expression Hα =
Aαθ

⊗Cατ
DαD

and the property of Kronecker products, the
correlation can be simplified as

< bα,bα′ > = u†H†
α′Hαu

= u†
(
A†

α′
θ
Aαθ

⊗ D†
α′

D
C†

α′
τ
Cα′

τ
Dα′

D

)
u

= u†
(
A†

α′
θ
Aαθ

⊗ Zατ−α′
τ DαD−α′

D

)
u

� κ(α′
θ, αθ, ατ − α′

τ , αD − α′
D),

where

Z �

⎛
⎜⎜⎜⎜⎜⎜⎝

0 0 · · · 0
1 0 0 · · · 0

0 1 0
. . .

...
. . .

. . .
. . . 0

0 · · · 0 1 0

⎞
⎟⎟⎟⎟⎟⎟⎠ .

One can observe that the correlation function can be expressed
as a function of ατ −α′

τ and αD −α′
D. The coherence of the

matrix Φ can thus be rewritten as

μ(u) = max
(αθ,Δατ ,ΔαD) �=(α′

θ,0,0)
|κ(αθ, α

′
θ,Δατ ,ΔαD)|. (3)

By expressing the correlation in the form of (3) rather than
(2), one can reduce the number of parameters from six to
four. The reduction of the dimensions will greatly improve the
performance of the waveform optimization algorithm which
will be proposed later in this section.

Besides affecting the coherence of the matrix Φ, the choice
of the waveform u will also affect the beamforming. Therefore
we should also design the waveform such that it properly illu-
minate the angle of interest. The energy illuminating outside
the angle of interest can be expressed as

η(u) �
∑

αθ /∈A
κ(αθ, αθ, 0, 0), (4)

where A is the set consisting of angle of interest. By minimiz-
ing the above term, we can direct the energy to the angle of



interest. The flatness of the passband of the transmitted beam
can be evaluate by the following term:

ζ(u) �
∑

αθ∈A

∣∣∣∣∣κ(αθ, αθ, 0, 0) − 1
|A|

∑
αθ∈A

κ(αθ, αθ, 0, 0)

∣∣∣∣∣
2

.

(5)

One can minimize the above term to make the transmit beam
evenly illuminates the angle of interest.

In this paper, we consider phase hopping signals. The lth
element of the mth transmitted waveform can be expressed as

um(l) = ej 2π
Q cm,l ,

where cm,l ∈ {0, 1, 2, · · · , Q − 1} is the hopping code and
Q is the number of hopping frequencies. The phase hopping
signals are easy to generate and have the advantage of constant
modulus. Combining all the cost functions from (3), (4) and
(5), we define the following overall cost function:

f(C) = β · μ(u) + γ · η(u) + (1 − β − γ) · ζ(u),

where C is a M × L matrix consisting of elements {cm,l},
um(l) = ej 2π

Q cm,l , and β and γ are the scalars which we can
adjust to modify the cost function to emphasize the coherence,
stopband energy, or passband flatness. The corresponding
optimization problem can be expressed as

minC f(C) (6)

subject to C ∈ {0, 1, · · · , Q − 1}ML

The feasible set of this problem is a discrete set. It is known
that the simulated annealing algorithm [7] is a powerful tool
for searching a suboptimal solution for this type of problems.
In this paper, we use a simulated annealing algorithm to solve
for the optimal phase hopping codes.

The simulated annealing algorithm runs a Markov chain
Monte Carlo (MCMC) sampling on the discrete feasible set
[8]. The transition probability of the Markov chain can be
chosen so that the equilibrium of the Markov chain is

πT (C) =
1

ZT
exp(

−f(C)
T

), where

ZT =
∑
C

exp(
−f(C)

T
). (7)

Here T is a parameter called temperature. By running the
MCMC and gradually decreasing the temperature T , the
generated sample C will have a high probability to have
a small cost function output [7]. In our case, the transition
probability from state C to C′ is chosen as

p(C,C′) =⎧⎨
⎩

1
d min(1, exp( f(C)−f(C′)

T )), if C′ ∼ C
1 − 1

d

∑
C′′∼C min(1, exp( f(C)−f(C′′)

T )), if C′ = C
0, otherwise,

where C′ ∼ C denotes that C′ and C differ in exactly one
element, and d denotes

∣∣{C′∣∣C′ ∼ C}∣∣. It can be shown
that the chosen transition probabilities result in the desire
equilibrium in (7) [8]. The numerical results of this algorithm
are shown in the next section.

IV. NUMERICAL RESULTS

In this section, the following parameters are used:

1) the number of transmitting antennas M = 4 ,
2) the number of receiving antennas N = 10,
3) the transmitting antenna location xm = N ·m, for m =

0, 1, · · · ,M − 1,
4) the receiving antenna location yn = n, for n =

0, 1, · · · , N − 1,
5) the length of the transmitted waveform L = 31,
6) the number of hopping frequencies Q = 31,
7) the resolution of the angle Nθ = 40,
8) the resolution of the Doppler shift ND = 1,
9) and the desired beampattern is omnidirectional.

Fig. 4 shows the histogram of all the correlations
{|κ(αθ, α

′
θ,Δατ ,Δαθ)}. We compare the signal generated
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Fig. 4. Histogram of the correlations between the target responses: (a) Alltop
sequence [1] and (b) The proposed method.

by the proposed algorithm and the Alltop sequence used
in [1]. According to [1], the Alltop sequence has a nearly
optimal coherence in the phased array radar case. However,
in the MIMO radar case, one can see that the proposed
algorithm generates the waveform with smaller target response
correlation compared to the Alltop sequence.

Fig. 5 shows the example of the target scene reconstruction.
Fig. 5 (a) shows the original target scene and the corresponding
vector s. Fig 5 (b) shows the target scene reconstructed by
the compressed sensing recovering method. Here we use the
method of orthogonal matching pursuit [4]. Fig 5 (c) shows the
target scene reconstructed by the matched filtering. Fig 5 (d)
shows the target scene reconstructed by the matched filtering
and thresholding. In all three cases, the waveform obtained
by the proposed algorithm is transmitted and the noise in the
receiver is additive 0dB white noise. One can see that the
compressed sensing algorithm obtains a much better recovery
than the matched filtering based approaches.
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Fig. 5. Comparison of the reconstructed target scene: (a) Original target scene, (b) Target scene reconstructed by compressed sensing, (c) Target scene
reconstructed by matched filtering, and (d) Target scene reconstructed by matched filtering with thresholding

V. CONCLUSIONS

In this paper, we have extended the idea of using com-
pressed sensing recovery in radar to the MIMO radar case.
The corresponding waveform optimization method has also
been proposed. Numerical results show that the compressed
sensing method has a better performance than the matched
filter approach when the target scene is sparse.
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