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DFT-Modulated Filterbank Transceivers for Multipath
Fading Channels

See-May Phoong, Senior Member, IEEE, Yubing Chang, and Chun-Yang Chen

Abstract—The orthogonal frequency division multiplexing
(OFDM) transceiver has enjoyed great success in many wideband
communication systems. It has low complexity and robustness
against multipath channels. It is also well-known that the OFDM
transceiver has poor frequency characteristics. To get transceivers
with better frequency characteristics, filterbank transceivers with
overlapping-block transmission are often considered. However
these transceivers in general suffer from severe intersymbol
interference (ISI) and high complexity. Moreover costly channel
dependent post processing techniques are often needed at the
receiving end to mitigate ISI. In this paper, we design discrete
Fourier transform (DFT) modulated filterbank transceivers for
multipath fading channels. The DFT modulated filterbanks are
known to have the advantages of low design and implementation
cost. Although the proposed transceiver belongs to the class of
overlapping-block transmission, the only channel dependent part
is a set of one-tap equalizers at the receiver, like the OFDM system.
We show that for a fixed set of transmitting or receiving filters, the
design problem of maximizing signal-to-interference ratio (SIR)
can be formulated into an eigenvector problem. Experiments are
carried out for transmission over random multipath channels,
and the results show that satisfactory SIR performance can be
obtained.

Index Terms—Filterbank, multicarrier, multitone, transceiver,
transmultiplexer.

1. INTRODUCTION

HE orthogonal frequency division multiplexing (OFDM)

technique has enjoyed great success and popularity in both
wireless and wired transmissions [1]. It has been adopted in
standards for various applications such as the asymmetric dig-
ital subscriber line (ADSL), very high bit rate digital subscriber
line (VDSL), wireless local area networks (LANs), digital audio
and video broadcasting, etc. Two of the attractive features of
OFDM systems are low complexity and the ability to combat
intersymbol interference (ISI). By adding a cyclic prefix of an
appropriate length, frequency selective multipath channels are
converted into a set of frequency nonselective subchannels using
discrete Fourier transform (DFT) and inverse discrete Fourier
transform (IDFT) matrices. The system requires only simple
one-tap frequency domain equalizers at the receiver. However
because the rectangular window is used as the pulse shaping
filter in OFDM systems, the transmitting and receiving filters
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suffer from very poor frequency responses. The stopband atten-
uation is only 13 dB, and it decays at a rate of 1/f only. In
many applications, it is often desired to have filters with better
frequency responses. For many wireless communication sys-
tems, it is desirable to have a transmitter with good frequency
responses so that the transmitter output will have small out-of-
band energy. For many wired wideband communication sys-
tems, there is often narrowband radio frequency interference,
and we will need better receiving filters to combat narrowband
noise.

Many solutions have been proposed to improve the frequency
characteristics of the OFDM transmitter or receiver. In [2]-[6],
windowing or filtering methods have been introduced to reduce
the out-of-band energy of OFDM transmitter outputs. Nonrect-
angular continuous-time pulse shaping filters have been pro-
posed to improve the spectral roll-off of the transmitted signals,
e.g. [2] and [3]. Discrete-time windows have been considered
in [4]-[6]. In [7] and [8], windowing techniques are applied to
increase the stopband attenuation of the receiving filters. How-
ever these windowing techniques often increase the number of
redundant samples needed for removing ISI or amplify the re-
ceiver output noise power.

In addition to the windowing technique, filterbank techniques
have also been proposed to design transceivers with better trans-
mitting and receiving filters. The connection of filterbank and
transceiver is first recognized by Vetterli in [9]. It is shown that
by interchanging the analysis and synthesis banks, one can ob-
tain a transmultiplexer or a transceiver. Moreover, for AWGN
channels, the transceiver is zero-forcing if the corresponding fil-
terbank has perfect reconstruction (PR). In [10], the authors pro-
pose the so called discrete wavelet multitone (DWMT) system,
in which PR filterbank is used as the transceiver. The transmit-
ting and receiving filters have excellent frequency separation
property inherited from good filterbank designs. For frequency
selective channels, there is intra-band as well as cross-band in-
terference in these filterbank transceivers [9], [10]. Unlike the
OFDM system, there is no simple equalization technique for
DWMT systems.

One drawback of filterbank transceivers is their high com-
plexity. To implement an M-band filterbank transceiver, we
need to implement M transmitting filters and M receiving
filters. To reduce the complexity, DFT or cosine modulated
filterbanks are often employed [11]-[15]. Modulated filterbank
transceivers achieving ISI-free transmission over AWGN chan-
nels have been considered in [11]-[14]. For multipath channels,
these transceivers are no longer ISI-free. Comparisons and
performance evaluations of these modulated filterbank trans-
ceivers have been conducted in [11], [12]. The results show that
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though the filterbank has near PR property, the ISI introduced
by the channel can seriously degrade the system performance.
To reduce the amount of ISI, intra- and cross-band equalization
are performed on the receiver outputs in [10] and [13]. In
[15], the problem of complicated equalization is overcome by
introducing cyclic prefix to the filterbank transceiver. However,
frequency responses of some of the transmitting and receiving
filters are seriously affected by the insertion of cyclic prefix.

There have been attempts to design ISI-free filterbank trans-
ceivers for frequency selective channels [16]-[20]. However,
these design methods assume that the exact channel impulse
responses are known. Moreover, except for [17], the min-
imum-mean-square-error (mmse) solutions are studied, and the
resulting transmitting and receiving filters do not have good
frequency responses. In [17], the authors propose a method
for designing ISI-free filterbank transceivers using paraunitary
or unimodular matrices. However, the optimization involves a
highly nonlinear objective function. As we have mentioned ear-
lier, one of the most attractive features of OFDM systems is the
ability to attain ISI-free property for unknown multipath chan-
nels. Most of the previously proposed filterbank transceivers
do not enjoy this feature. Therefore, it is of tremendous interest
in studying filterbank transceivers with such a property. A non
DFT-based transceiver with such a property, called A Mutually
Orthogonal Usercode Receiver (AMOUR) transceiver, has
been introduced in [21]. By judiciously selecting the zeros of
the transmitting filters and employing a corresponding Vander-
monde receiving filters, the authors show how the AMOUR
transceiver can achieve ISI-free for unknown channels. The
AMOUR transceiver belongs to the class of block transmission
schemes; its transmitting filters and receiving filters cannot be
longer than the upsampling and downsampling ratio. Moreover
there is no simple method to design AMOUR transceivers with
good frequency responses.

In this paper, we design filterbank transceivers for multipath
fading channels. We mainly focus on DFT modulated filterbank
transceivers. The DFT modulated filterbanks are known to
have the advantages of low design and implementation cost.
Although the proposed transceiver belongs to the class of
overlapping-block transmission, the only channel dependent
part is a set of one-tap equalizers at the receiver, like the OFDM
system. For a set of good receiving filters, the transmitting
prototype filter can be optimized so that SIR is maximized.
Conversely, we can also design the receiving prototype filter
to maximize SIR given transmitting filters. We show that such
an optimization problem can be formulated as a Rayleigh-Ritz
ratio, whose solution is well known [22]. Moreover, we will
prove that for the multipath channels, given that the transmitting
(or receiving) filters are DFT modulated filters, the assumption
of DFT modulated receiving (or correspondingly transmitting)
filters is no loss of generality. Simulation results show that
DFT modulated filterbank transceivers with satisfactory SIR
value can be obtained.

The paper is organized as follows. In Section II, we will de-
rive the ISI-free conditions for DFT modulated filterbank trans-
ceivers and show that these conditions can be formulated using
a matrix representation. The optimization of the transceivers
is studied in Section III. We will derive the SIR expressions

and show that they can be rewritten as a Rayleigh-Ritz ratio.
The problem of designing the SIR optimized filterbank trans-
ceiver without frequency constraint is studied in Section IV In
Section V, simulation results are given to demonstrate the use-
fulness of the proposed transceivers. Conclusions are given in
Section VI.

Notations:

1) Boldfaced lower case and upper case letters are used to
denote vectors and matrices, respectively. The notations
AT A* and At denote, respectively, the transpose, com-
plex conjugate, and transpose-conjugate of the matrix A.

2) For any positive integer M and any integer m, the nota-
tion ((m)) ps represents m modulo M, which is a number
between 0 and M — 1.

3) The M by M DFT matrix is denoted by W. The klth
entry of W is [W]y; = W*, where W = ¢ 7/M),

4) The unit impulse sequence is denoted by §(n). It is equal
to 1 when n = 0 and O otherwise.

II. ISI-FREE DFT MODULATED FILTERBANK TRANSCEIVERS

Fig. 1 shows a filterbank transceiver. The number of subbands
is M and the downsampling and upsampling ratio is N. We
assume that N > M so that ISI-free solution is possible. The
number N — M represents the number of redundant samples
added to combat intra-band and cross-band ISI. The filters F;(2)
and H;(z) are respectively the transmitting and receiving filters.
In this paper, we consider only fininte impulse response (FIR)
filters with

Fi() = Fi(0) + (D)= 4o+ fi(ng)e™
Hi(z) =hi(0)+ hi(1)z+ ...+ hi(np)z""

where (ny + 1) and (nj + 1) are, respectively, the length of
the transmitting and receiving filters. The values of n; and nj,
can be larger than N. So our study also includes the case of
overlapping block transmission. The purpose of adding 2% at
the receiver will be explained later. For notational simplicity,
we have used the noncausal expression for the receiving filters.
Causal filters can be easily obtained by adding enough delays.
We say that the filterbank transceiver is ISI-free! if in the ab-
sence of noise v(n),

i’L(TL) = GL:LL(’I”L) for 0 S 1 S M-1

for some constants G;. In this case, a zero-forcing solution can
be obtained by cascading a simple one-tap equalizer of 1/G; at
each subband.

The complexity of a general filterbank transceiver as shown
in Fig. 1 is very high. At the transmitter and receiver, we need to
implement M filters of orders n; and n s, respectively. In many
applications, such a high cost might not be justified. To reduce
the complexity, we consider DFT modulated filters in this paper:
Fi(z) = Fo(2W") and H;(z) = Hy(2W?)
where W = e 75 (1)

IThe most general ISI expression should be #;(n) = G;z;(n — n;). For
notational simplicity, we take n; = 0 in this paper. This is of course a slight
loss of generality.
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Xg(n) DAC || channel §(\o(n)
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Fig. 1.

for 1 < ¢ < M — 1. Note that even though the decimation ratio
is N, the filters are shifted by integer multiples of 27 /M. The
implementational cost of the DFT modulated filterbank trans-
ceiver is very low. At the transmitter (or receiver), we only need
to implement a prototype filter of order n s (or correspondingly
order ny) and an M by M DFT matrix that can be implemented
efficiently using fast Fourier transform. In addition to low im-
plementational cost, the DFT modulated filterbank transceiver
has low design cost. We need only to design one prototype filter
at the transmitter and the receiver. Moreover in some cases,
there is no loss of generality in using DFT modulated filters (see
Theorem 1).

In many applications, it is often desired to have transmitting
filters or receiving filters with good frequency responses. For
many wireless communication systems, we would like to have
transmitting filters with better frequency responses so that the
transmitter outputs will have smaller out-of-band energy. In this
case, Fy(z) is designed to be a good lowpass filter and F;(z)
will be good bandpass filters. On the other hand, for many wired
communication systems, better receiving filters are often needed
to combat narrowband radio frequency interference (RFI) noise.
In this case, Ho(z) is designed to be a good lowpass filters,
and H;(z) will be good bandpass filters. Depending on appli-
cations, our design problem is either 1) given a good lowpass
transmitting prototype filter Fy(z), design the receiving proto-
type filter Hy(z) to achieve the ISI-free property or SIR maxi-
mization, or 2) given a good lowpass receiving prototype filter
Hy(z), design the transmitting prototype filter F(z) to achieve
the ISI-free property or SIR maximization. As we will see later,
interchanging the transmitting filters F;(z) with the receiving
filters will not affect the ISI-free property of the transceiver.
Problem 1 can be easily formulated into Problem 2, and vice
versa, by interchanging the roles of transmitting and receiving
filters. In this paper, we will consider Problem 2 only. Hence, in
this section and in Section III, Hy(z) is a predetermined good
lowpass filter.

In this paper, the transmission channel is assumed to be
slowly varying and that it can be modeled as an FIR linear time
invariant (LTI) channel C(z) and an additive noise v(n), as
shown in Fig. 1. Let L be the maximum possible order of the
channel C(z). Then, C(z) can be expressed as

L
C(z) = Z c(n)z™".
n=0

Unlike the OFDM and other block transmission systems, the
order of the channel L can be larger than the number of redun-
dant samples (N — M). Fig. 2 shows the transfer function from

Filterbank transceiver.

the ¢th input to the jth output. It is known [23] that the system
in Fig. 2 is LTI with transfer function

[Fi(z)C(z)Hj (z)zlo]
L

Tij(z) = IN
c(l) [Fi(2)H;(2)2" "]

(@)

IN

where the notation [e]; x denotes N-fold downsampling. We
express the term [F;(2)H;(2)2" 7Y x as

[Fi(z)Hj(z)Zlo_l] IN
_ { @i 1(0) + 3, o ia(n)2z ™", i =j
L, Biga(n)zm, ]
for0 < 4,5 < M —1and 0 <[ < L. It can be verified that
the sequences «; ;(n) and 3; j ;(n) have approximately | (nf +

np, +1)/N | nonzero coefficients, where |z | denotes the largest
integer that is smaller than x. For convenience, we define

Bi,ii(n) 2 0, 4

Because the transmitting filters and receiving filters are DFT
modulated versions of the respective prototype filters Fy(z) and
Hy(z), it turns out that c; ;(n) and f3; j ;(n) also satisfy a similar
relation. The result is stated in the following lemma. A proof is
given in Appendix A.

Lemma 1: For DFT modulated filterbank transceivers with
filters defined in (1), the sequences c; ;(n) and j; ; ;(n) defined
in (3) satisty

a;1(n) = Wﬁi(lO*HN)ao,l(n)
Biga(n) =W oM g0 (i iy, a(n)

where ((j — @)) s represents (j — 4) modulo M.
To have the ISI-free property, the transfer functions T;;(z)
should satisfy

3)

for all 4,1, n.

Gi7
0,

j=i
otherwise.

Tij(z) = {

If H;(z) and F;(z) are such that the transceiver is ISI-free for
any channel ¢(n) of order L, then we see from (2) that F;(z)
and H;(z) should satisfy

@] = {

for all 0 <[ < L. In other words, «; (n) = 6(n)a;(0) and
Biju(n) =0 for all 4,7,],n. Whenever we have «; (n) # 0
forn # 0or f3; j1(n) # 0, then a; ;(n) and §; ;1 (n) contribute
respectively to the intra-band ISI and the cross-band ISI.
Note that the ISI-free condition in (5) is also satisfied by

067‘,,1(0)-,
0

j=i

[Fi (Z)H] otherwise

)

7
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v(n)

i

Fig. 2. Transfer function from the zth input to the jth output.

the AMOUR transceiver [21]. In the AMOUR transceiver, the
ISI-free property is achieved by judiciously selecting the zeros
of the transmitting filters and employed a corresponding set
of Vandermonde receiving filters.
Using Lemma 1, one can verify that the ISI-free condition
can be further simplified as
agi(n) = agi(0)6(n), Boji(n)=0 6)
for all 7, 1. When the filterbank transceiver achieves the ISI-free
condition in (6), any frequency selective channel ¢(n) with order
< Lis converted into a set of M parallel frequency nonselective
subchannels. The gain of the sth subchannel is given by

L
= Z C (XL l W_llo Z (lo l Wll ) (7)
=0

Even though the conditions in (6) only say that the input se-
quence zo(n) of the Oth band will not cause any interference
to other subbands, this condition alone is enough to guarantee
the ISI-free property of the transceiver when the filters are DFT
modulated filters.

Matrix Form of the ISI Condition: Given a fixed receiving
prototype filter ho(n), the parameters aq(n) and [y ji(n)
can be written as a linear combination of the impulse response
fo(n). Therefore, we can write

@g,0(n) T fo(0)

@o,1(n) _A() foz(l) ®
o, (). folny)

Bo,j0(n) 7 fo(0)

ﬂo’j’f(n) —B,(n) fof” ©
Bo.j.o(m) folny)

where the (L + 1) by (ns + 1) matrices A(n) and B;(n) are
given in Appendix B. Define the vectors

fo(0) 0,0(0)
A | fo(1) A | @0,1(0)

fo = . a =
fO(;lf) ao,1.(0)

Then, the ISI-free conditions in (6) can be written as
A(?’L)fg = a&(n), Bj(n)fo =0.

One can write the above conditions as a single matrix equation:

-]

When the desired parameters & are known, one can use the least
square method to solve the above linear equations and obtain

fors = (T10) " @l m (10)
Note that this least square solution is different from the conven-
tional MMSE solution. In the above design, we do not consider
channel noise, and hence, fy 15 is independent of the channel
¢(n) and noise. In many applications, it is desired to have trans-
ceivers that maximize SIR. The optimal g ;(0) that maximizes
SIR is not known yet. In Section III, we will show that the design
of fy that maximizes SIR can be formulated as an eigenproblem
that has a well-known solution.

On the Choice of g,1(0): The relation between a;(0) and
the subchannel gain G; is given in (7). If ¢(n) are known, let
Loz = arg max |c(1)]. One intuitive choice of v (0) is

17 l = Lz
g (0) = {0, otherwise.

In many applications, ¢(n) might not be available. Then one can
select g 1(0) = 1 for all /. Using (7), we have

L .
=Wy Wity = W e ()
=0

where C(e/27/M) are the M-point DFT coefficients of ¢(n).
The subchannel gains are the same as those in the OFDM
system, exc ]‘pt for a unit- magmtude constant. Note that in
this case, ) ,_ G2 = ZZ=0| c(7)|?; the channel energy is
preserved by the transceiver.

Filterbank Transceivers for Unknown MIMO Channels: The
ISI-free filterbank transceivers presented above remain ISI-free
when the channel is a MIMO LTI system. To see this, consider
Fig. 3, where C(z) is an M by M transfer matrix of order L.
Let the ijth element of C(z) be C;;(z) = Zﬁ:o cij(n)z=m.
Then, the transfer function from the :th input to the jth output
becomes

(1)

Tij(z) =

—§ C“ i

If the filters F;(z) and H;(z) satisfy (5), then it is clear that
T;;(#) continues to satisfy the ISI-free condition in (5) for any
MIMO channels of order L.

Remark: Although we consider only DFT modulated trans-
mitting and receiving filters, the derivation for the case of more
general transmitting and receiving filters is very similar.

[Fi(z)Cij(z)H~ z zlo]lN

Hy(z)z lo_l]iN'

III. SIR OPTIMIZED TRANSCEIVERS

In this section, we will consider the case when Hy(z) is some
predetermined good lowpass filter so that the receiving filters
have good frequency responses. We will design the transmit-
ting prototype filter Fy(z) so that the signal-to-interference ratio
(SIR) is maximized. We first design transceivers that optimize
the SIR when the exact channel impulse responses are known.
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Fig. 3. Filterbank transceiver for MIMO channel.

Then transceivers optimized for unknown multipath channels
will be considered. In the following derivations, we assume that
the input signals z;;(n) are uncorrelated, zero-mean, wide sense
stationary, and white random processes with the same variance
&.. In other words

E{zi(n)xi(m)} = £,6(i — j)8(n —

This mild assumption can be satisfied by properly interleaving
the input data.

A. SIR Optimized Transceivers for Known Channels

In this subsection, we assume that the exact channel impulse
responses ¢(n) are known. Recall the definitions of «; ;(n) and
Bi,j,1(n) in (3). Using these definitions, the output of the jth
subband can be expressed as

)] zj(n)

Z a;1(0)e(l

L

+ ) cll) [aji(n) — a;ji(0)6(n)] * z;(n)
1L
+ Zc )Bi ja(n) * x;(n)
=0 =0
where “x” denotes convolution, and we have used the defini-

tion of ﬁmyl(n) = 0 in (4). We see that the three terms on the
right hand side of the above expression are respectively the de-
sired signal, the intra-band ISI and the cross-band ISI. Under the
assumption of uncorrelated input signals, the signal power and
interference power at the jth subband are, respectively, given by
2

Pyig( Z a;i( (12)
2
stz(.]) = gz Z Z aj,l(n)c(l)
n,n#0 [ =0
2
+ Z Z Bija(n (13)

Note that both the signal power and interference power depend
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the subscript ¢ means that this is the SIR for a fixed transmis-
sion channel ¢(n). If ¢(n) is known, we can design F;(z) to
maximize SIR.. In what follows, we will show that SIR. can be
formulated as a Rayleigh-Ritz ratio [22]. Using the results from
Lemma 1, we can write the numerator of SIR,. as

M-1| L A VA 2
Z Zozj,l(O)c(l) Z ZW] ag,1(0)e(l)
j=0 |1=0 j=0 |1=0

= WL41D.al?

where ||v|| denotes the 2-norm of the vector v. The matrix
W41 isan M by (L + 1) matrix, which consists of the first
(L 4+ 1) column vectors of the M by M DFT matrix W, and
the diagonal matrix D. = diag[c(0) ¢(1) ... ¢(L)]. Using (8),
we have

> aj(0)e(l)

=0

2
—! (AT(O)DIWTL +1WL+1DCA(0)) f,

M-1

>

J=0

A A+

=f; Qofo.
Similarly one can express the first and second terms of the de-
nominator of SIR., respectively, as

Y Do

jsm,n#0 | 1=0

> Al

n,n#0

L
> Bijaln)e(l)

=0

=1 )DIW}, Wi 1DA(n) | fo,

2

>

i,J,m

y Z Bi(n)DIW]! W, 1D.B;(n) | fo

where we have used the fact that Bo(n) = 0, which is a direct
consequence of the definition 3y o ;(n) = 0. Define the matrix

Q=Y Al

n,n#0

DTWL+1WL+1D A(n)

+1> Z Bl (n)DIW] W, 1D.B;(n)

Then, SIR. can be rewritten as

fJ Qofo

£l Qufy

Note that both Qg and Q; are semidefinte matrices. Thus, the
best fy that maximizes the SIR. is given by

SIR. =

on the channel impulse response ¢(n). Using (12) and (13), we £5 Qofo 1Qofo
) fo,0pt = arg max .
can write SIR as (14), shown at the bottom of the page, where fo TQlfo
M1 2
Yo @ja(0)e(l)
SIR,. = 5 (14)

Zj,n,n;éo ZILZO OljJ(n)c(l)’ + ZL]n

g1 (n)e(l)
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Except for some special cases the matrix Q; is invertible. De-
composing Q1 as Q; = Q1 Q1 for some positive definite matrix
Q1 and letting f, = Qlf(), the above optimization problem can
be rewritten as

£1Q,7QuQr 1f0

fO,Opt %Tfo

= (51_1 arg max
fo
Using Rayleigh-Ritz theorem [22] we immediately get the op-
timal solution as fy op¢ = Q1 fg .opt> Where fy Jopt 1 is the elgen-
vector corresponding to the largest eigenvalue of Q; TQOQ1 .

B. SIR Optimized Transceivers for Multipath Fading Channels

In many applications, the exact channel impulse responses
might not be available, and we may have only the statistics of the
transmission channels. Consider multipath fading channels with
(L +1) taps ¢(l) for 0 < I < L. Assume that the coefficients
¢(l) are complex random variables that satisfy

E{c()} =0, E{c()c*(l-k)} = o28(k)

for 0 < [ < L. In other words, the coefficients are zero mean
and uncorrelated. We consider the average signal power and the
average ISI power. At the output of the jth band, the average
powers of signal and interference term are, respectively, defined
as

15)

Pslg( ) E {Pszg(J)}
Prai(f) = B AAPrui ()}

where F. means that the expectation is taken with respect to
¢(n). Using (12) and (13) and the results in Lemma 1, these
average powers can, respectively, be expressed as

Pagli) = £ zm
:E Z|aol

|Uz

(O)” of

pisi(j):g:r Z Z|Ol]l | ‘71

n,n#0 =0

+ZZ|[3”1

i,n 1=0

= 3 o

n,n#0 =0

L
+ 35 oty a(m)]

"ot
in 1=0

> 3 oo

n,n#0 =0

+ZZ|/BO

i,n =0

|‘71

|‘71

|Uz

|Uz

where we have used the fact that Ef”al[o]((] )t
vai 61[0]1 for all j to simplify the expression for P;.;(j). It is
interesting to note that these average powers are independent
of 7; all the subbands have the same average signal and inter-
ference powers. The average SIR is therefore given by

L 2
21— |0,1(0)] i
L 2 L 2 5"

Zn,n¢021=0|a07l(n)| 012+Z'i,n Z[=0|ﬂo,i,l(n)| 012

-~ (16)
Our goal is to design fy so that SIR is maximized. We can for-
mulate SIR as a Rayleigh—Ritz ratio. Using an approach similar
to the earlier derivation, one can Ve@ that we can express the
3 summations in the expression of SIR, respectively, as

Zlaoz
L
ZZ@M Woi =£f| Y. Af(n)D,A(n) | fy

SIR=

)P o? =fIAT(0)D,A(0)f

,n#0 n,n#0
L M—-1
3 oo |al—ff(zzBf >>fo
i,n 1=0 n

where the diagonal matrix D, = diag[o3 o? ... o%]. From

the above expressions, one can form the Rayleigh-Ritz ratio
and solve for the optimal f; that maximizes SIR. As our goal
is to find FB transceiver that minimizes ISI for multipath fading
channels, we do not consider channel noise in the optimization.
Thus the resulting solution is different from the conventional
MMSE solution because it is independent of the exact channel
impulse response and the noise.

iid Channels?: When the taps of channel response ¢(n) are
independent and identically distributed (iid) random variables,
the average SIR can be obtained from SIR by setting o7 = 1 for
all l

Eitola0 (0
S o Dico [201(m) P+ ;o iz 1Bo.i(n) fm
Note that in this case, the average SIR becomes channel inde-
pendent; the optimal transceiver is also channel independent.

On the Choice of ly: Note that the matrices A (n) and B;(n)
depend on the choice of the integer [y. In the optimization
process, one has to search for the best /y to maximize the
objective function. Because the upsampling and downsampling
ratio is IV, there is no need to search for a range that is larger
than N. In our simulations, we find that the best [ falls within
the range of —N/2 < [y — (ny — n3)/2 < N/2.

In the above optimizations, it is assumed that the transmitting
filters are DFT modulated filters and hence we need only to
design one prototype filter fo(n). This is in general a loss of
generality. However for multipath fading channels that satisfy
(15), we can show that there is no loss of generality in using
DFT modulated transmitting filters if the receiving filters are
DFT modulated filters. This result is stated more precisely in
the following theorem.

SIR;iq =

2This is often the channel model that we used in designing transceiver when
no channel information is available.
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Theorem 1: Suppose that the channel impulse re-
sponses c(n) satisfy (15). If the receiving filters are DFT
modulated filters, then the optimal transmitting filters
{Fo(2),F1(2),...,Fp—1(2)} that maximize the average
SIR satisfy F;(z) = M\;Fo(zW?) for some unit magnitude
constant \;.

Proof: When the transmitting filters are not DFT modu-
lated versions of a prototype filter, the sequences «; ;(n) and
Bi,j,1(n) do not satisfy the relations described in Lemma 1 and
hence the SIR;iq in (17) is no longer valid. In this case, the av-
erage SIR depends on «; ;(n) and 3; j ;(n). One can verify that
it is given by

2
il (0)] of

SR = A —
Zi,l,n,n;ﬁ[} |l a(n)|” of + Zi,jJ,n 1Bi 1 (n)|” o

Let us rewrite the average SIR as

po+p1+...+pm-1
No+n+...+n0v—1

SIR =

where the non-negative quantities p; and 7); are, respectively,
defined by

(1>

pi

> eia(0) o7

l

7 i) of + > 1B ja(n))* of-

l,n,n#0

(1>

Ui
Jln

From the definitions of «; ;(n) and f; ;;(n) in (3), we can im-
mediately see that p; and n; depend only on the ¢th transmitting
filter F;(z), and F;(z) affects only p; and ;. Define3

_ > laia(0) of

T Yol o+ 3, 1B ()] 0(1218)
Then, the problem of finding the set {Fy(z), Fi(z),...,
Fyr-1(2)} to maximize SIR is equivalent to finding each
individual transmitting filter /(%) to maximize ;. Suppose
that Fy(z) maximizes 7o. Let 7o mqr be the corresponding
maximum SIR value and let &g (n) and fgji(n) be the
corresponding sequences. Then we would like to show that
Fi(2) = M\ Fo(2W*) for any unit magnitude constant A, opti-
mizes ;. Note that when F}(z) is a frequency shifted version
of Fy(z), from Lemma 1, we know that the corresponding
sequences oy, ;(n) and [y ;1 (n) will have the same magnitude
as &g, (n) and [~307((j_i))M71(n) respectively. From the expres-
sion of -y, we can conclude that when Fj(z) = )\kFQ(ZWk),
Y& = %Yo,max- Now, suppose that Fj(z) = MFo(zWF)
is not an optimal solution; there exists an F(z) such that
the corresponding «; is larger than 7 ... Then, by let-
ting Fy(z) = Fr(2W~F) and using a similar procedure,
one can show that we will get 7y = -y, which is larger
than g, maa, Which is a contradiction! Hence, the choice of
Fi(2) = M Fo(2W*) is optimal. QED

A Py
Yi = — =

3Note that v, can be viewed as SIR of the transceiver when only x;(n) is
sent, i.e. ;(n) = 0 forall j # i.
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IV. SIR OPTIMIZED TRANSCEIVERS WITHOUT FREQUENCY
RESPONSE CONSTRAINTS

In previous sections, it is assumed that the receiving proto-
type ho(n) is predetermined as a good lowpass filter so that the
receiving filters will have good frequency responses. There may
be applications for which neither the transmitting filters nor the
receiving filters need to have good frequency responses. In this
case, our goal is to design both hg(n) and fo(n) so that SIR
is maximized. However the problem of simultaneous optimiza-
tion of ho(n) and fo(n) is highly nonlinear. We adopt the it-
erative approach proposed in [19] to solve the problem. Given
ho(n), we know how to design fo(n) using results in Section IIL.
Given fy(n), one can in fact use a similar procedure to design
ho(n). The reason is as follows. Observe from (2) that we can
interchange the filters H;(z) and F;(z) without affecting the
ISI-free property of the transceiver. Hence by replacing fo(n)
with hg(n) and using the same techniques described in Sec-
tions II and III, we can obtain expressions of SIR, SIR and
SIR;;q in terms of hg(n). Therefore, given fo(n), the optimal
ho(n) can be solved in a similar procedure.

The iterative procedure similar to that in [19] for designing
fo(n) and hg(n) is as follows. The filter hgo)(n) is initialized
as a good lowpass filter or any simple filter. For > 1, do the
following.

a) Given h((]i_l)(n), optimize féi)(n) so that STR or SIR is

maximized depending on how much channel information
is available. .

b) Given £$"(n), optimize h$’(n) so that SIR or SIR is
maximized depending on how much channel information
is available.

c) If 7 is equal to the maximum number of iterations, or
SIR is higher than the desired value or the difference be-
tween £$"(n), " (n) and those of the previous iteration
is smaller than some fixed value, stop. Else, ¢« = 7 + 1,
and go to a).

Note that the resulting SIR is a nondecreasing function of the
number of iterations. However, it is not guaranteed to converge
to the global maximum.

V. SIMULATION RESULTS

In this section, we provide six examples to demonstrate our
results. In the first four examples, we consider the case when the
receiver filters have good frequency responses. The receiving
prototype filter is a unit norm lowpass filter designed using the
eigenfilter method [24]. The coefficients ho(n) are designed to
minimize

/lHo(ejw)|2dw.

It is found in the experiments that by choosing wy as a number
slightly larger than 27 /M, we will get satisfactory results. In
the fifth example, we consider the case when there is no fre-
quency response constraint on ho(n), and we design ho(n) and
fo(n) using the proposed iterative procedure. The transmission
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Fig. 5. SIR versus transmitting filter order.

channels ¢(n) are multipath fading channels with (L + 1)
taps. The coefficients ¢(n) are independent circular complex
Gaussian random variables with variances o2. We have used
10000 random channels in the experiments. Given ho(n) and
fo(n), the SIR values in our plots (except Example 6) are the
average value over these 10000 channels, as shown in the
equation at the bottom of the page. In Example 6, only 200
randomly chosen channels are employed in the simulation due
to the complexity limitation.

Example 1: In this example, L = 4, N = 20 and M = 16.
The multipath channel is iid. So o7 1/5 are the same for
all 7. The order, stopband edge, and stopband attenuation of
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transmitter prototype filter are respectively ny 40, ws
0.137 and 61 dB. The plot of the magnitude responses of the
first five receiving filters are shown in Fig. 4. First, we con-
sider (i) DFT modulated transmitting filters maximizing SIR,
(ii) general (non-DFT modulated) transmitting filters, F,(z) =
S fr(n)z™™, maximizing SIR, and (iii) DFT modulated
transmitting filters designed by the least square method in (10).
For the least square method, for 0 < 7 < M — 1, we choose
a;1(0) = 6(1) [choosing «;;(0) as the DFT coefficients as in
(11) gives a worse performance]. We plot SIR;;q versus n ¢ and
the results are shown in Fig. 5. From the figure, we see that
the maximized SIR method always outperforms the least square
method. The SIR performance of general transmitting filters is
identical to that of DFT modulated transmitting filters. Hence,
by choosing DFT modulated filters we do not lose any perfor-
mance as explained in Theorem 1. When n ¢ increases, SIR in-
creases. Moreover for moderate filter orders of ny, e.g., 20, 40
and 60, we are able to obtain SIR values of 14.5, 17, and 19.5
dB respectively. Fig. 6 shows the performance of SIR optimized
transceiver versus ws, the stopband edge of the receiving proto-
type filter ho(n). The filters order nj, = ny = 40. We see from
the figure that the SIR value varies with w,, but it is not very
sensitive to the choice of wy. The optimal ws = 0.1427.

Example 2: We set M = 16, N = 20 and n;, = 40. The
stopband edge for Hy(2) isws = 0.137. The multipath channels
are iid channels with (L + 1) taps. We plot the SIR performance
of the transceivers versus L + 1. The SIR curves are shown in
Fig. 7. From the figure, we see that the SIR performance de-
grades gradually with respect to L. Even when L is larger than
the number of redundant samples N — M = 4, we can have
a moderate SIR performance. Note that when the channel is a
frequency nonselective channel, i.e., when the number of taps
is L + 1 = 1, the transceiver is not ISI-free. This is because the
DFT modulated filterbanks of the form in (1) cannot achieve PR
with FIR prototype filters [23].

Example 3: In this example, we design transceiver with
M = 64 and N = 80. The receiving prototype filter Hy(z) has
np = 160, ws = 0.0337 and a stopband attenuation of more
than 61 dB. The random channels are iid channels with (L + 1)
taps. The SIR curves for L = 4, 8, 16 are shown in Fig. 8. We
can still have a moderate SIR value when M is 64.

Example 4: Wetake M = 16, N = 20 and L = 4. The vari-
ances of ¢(n) are 02 = (32/31)27". We consider transceivers
that optimize i) SIR.. in (14), ii) SIR in (16), and iii) STRj;q in
(17), respectively. In Case i), we design an optimal transceiver
for each of the 10000 random channels, whereas in Cases ii)
and iii), we design only one optimal transceiver. In Case ii), we
assume that the variance o2 is known and it is incorporated in
the design. In Case iii), the transceiver is designed for iid chan-
nels although the actual variance is 02 = (32/31)27". The cost

10 000
Zch#l Zj

St o 0)e(l)|

SIR =
10 000
Zch#l

<.

Sl ame)| +3.,,

S fhale(t] |
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Fig.7. SIR optimized 16-band transceivers designed for iid channels with L +
1 taps.

of designing optimal transceivers for known channels is signif-
icantly higher than those in Cases ii) and iii). The results are
shown in Fig. 9. As we might expect, if the exact channel im-
pulse responses are known, the transceiver will have the best
SIR performance. Comparing Cases i) and ii), the improvement
is not significant. If we compare Cases ii) and iii), we can ob-
tain a moderate gain. Hence, incorporating the variance in the
design can significantly increase the SIR performance without
much increase in design cost.

Example 5: In this example,* we compare the bit rate perfor-
mance of the proposed transceivers. The system parameters are
the same as those in Example 3. A total of 200 sets of iid chan-
nels are employed in the simulations. We consider two cases
where the channel noise is a complex AWGN with variance Ny

4We would like to thank T.-H. Luo, a graduate student in the Graduate In-

stitute of Communications Engineering at the National Taiwan University, for
generating this example.
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with and without narrowband interference (NBI). The narrow-
band noise is modeled as \/N,; sin(0.27n). We consider the
transmission rate under a fixed probability of symbol error of
1077. We plot B (number of bits per block) versus SNR (which
is given by F /Ny, where E; is the symbol energy). The quan-
tity BB is given by [25]

63
SNR
B=Y" {logQ <1 + 98’“>J

k=0

where |z | denotes the largest integer that is smaller that , and
SNRj is the SNR at the output of the kth subchannel. The re-
sults are given in Fig. 10. From the figure, we see that when there
is no NBI, the conventional OFDM system performs better that
the proposed DFT transceiver. The difference increases when
SNR increases. In the absence of NBI, the output error due to
AWGN is the same for both systems. The conventional OFDM
system is ISI-free whereas the proposed DFT transceiver suffers
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Fig. 11. Performance of SIR optimized transceivers designed using the

iterative approach.

from residue ISI. At high SNR, the performance of the proposed
transceiver is limited by the ISI effect. On the other hand, the
presence of NBI has little effect on the performance of the pro-
posed transceiver whereas the performance of the conventional
OFDM system degrades significantly when there is NBI.

Example 6: 1In this example, M = 16, N = 20, L = 4,
and n;, = 40. The transmitting prototype filter is initialized
as the lowpass filter Hy(z) in Example 1. The channels are iid
channels. Using the iterative procedure described in Section IV,
we design both Fy(z) and Hy(z) to optimize the average SIR.
The results are shown in Fig. 11 for ny = 20, 30, and 40. Note
that SIR values can be as high as 50 dB. For the case of ny = 20,
the transmitter reduces to a block transmission scheme, and it is
found that the solution converges to the conventional OFDM
scheme.

VI. CONCLUSIONS

In this paper, we consider DFT modulated filterbank trans-
ceivers. Given a fixed receiving (or transmitting) prototype
filter, we have shown that the problem of finding the best
transmitting (or correspondingly receiving) prototype filter that
maximizes the SIR can be formulated as a Rayleigh—Ritz ratio.
The optimal prototype filter can be obtained as the eigenvector
corresponding to the largest eigenvalue of an associated pos-
itive definite matrix. For multipath fading channels, we show
that there is no loss of generality in assuming that the optimal
transmitting filters are DFT modulated version of a prototype
filter. Simulations of transmission over random multipath chan-
nels have been carried out and the results have demonstrated
the usefulness of the proposed transceiver.

APPENDIX A
PROOF OF LEMMA 1

We will prove the relation for ; ; ;(n). The proof for a; ;(n)
is very similar. Substituting (1) into the expression for j3; ; ;(n)
in (3), for ¢ # j, we gets

Z Biji(n)z™" = [E‘(Z)Hj(z)zlo—l] i~

[Fo(zW*) Ho (2 W) 2l ]
=W =i o=D [Fy(2:W*)Hy
X zWiWi—i)(zWi)“)"}

IN

IN

(
_ py—illo=D) [Fo(zW*)H (j—sy),,
X (ZWi)(ZWi)lO_l} IN

_ W—i(lo—l) Z ﬂo,((j—i))M,l(n)(ZWNi)_n-

From the above expression, we immediately get the relation for

Biji(n).

APPENDIX B
EXPRESSIONS FOR A (n) AND B;(n)

For convenience, we define h;(n) = 0 whenever n ¢ [0, n].
From the definitions of g ;(n) and Gy ;i(n), one can verify
that the matrices A(n) and B;(n) are, respectively, given by
the equation shown at the top of the next page, where h;(m) =
Wj m ho (m) .
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