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Abstract—The concept of MIMO (multiple-input multiple-
output) radars has drawn considerable attention recently. Unlike
the traditional SIMO (single-input multiple-output) radar which
emits coherent waveforms to form a focused beam, the MIMO
radar can transmit orthogonal (or incoherent) waveforms. These
waveforms can be used to increase the system spatial resolution.
The waveforms also affect the range and Doppler resolution.
In traditional (SIMO) radars, the ambiguity function of the
transmitted pulse characterizes the compromise between range
and Doppler resolutions. It is a major tool for studying and
analyzing radar signals. Recently, the idea of ambiguity function
has been extended to the case of MIMO radar. In this paper, some
mathematical properties of the MIMO radar ambiguity function
are first derived. These properties provide some insights into the
MIMO radar waveform design. Then a new algorithm for de-
signing the orthogonal frequency-hopping waveforms is proposed.
This algorithm reduces the sidelobes in the corresponding MIMO
radar ambiguity function and makes the energy of the ambiguity
function spread evenly in the range and angular dimensions.
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Index Terms—MIMO Radar, Ambiguity Function, Wave-
form design, Linear Frequency Modulation (LFM), Frequency-
Hopping Codes, Simulated Annealing.

I. INTRODUCTION

In the traditional SIMO (single-input multiple-output) radar,
the system can only transmit scaled versions of a single
waveform. The MIMO (multiple-input multiple-output) radar
system allows transmitting orthogonal (or incoherent) wave-
forms in each of the transmitting antennas [1], [2]. These
waveforms can be extracted by a set of matched filters in
the receiver. Each of the extracted components contains the
information of an individual transmitting path. There are two
different kinds of approaches for using this information. First,
the spatial diversity can be increased. In this scenario, the
transmitting antenna elements are widely separated such that
each views a different aspect of the target. Consequently the
target radar cross sections (RCS) are independent random
variables for different transmitting paths. Therefore, each
of the components extracted by the matched filters in the
receiver contains independent information about the target.
Since we can obtain multiple independent measurements about
the target, a better detection performance can be obtained
[3]–[5]. Second, a better spatial resolution can be obtained.
In this scenario, the transmitting antennas are colocated such
that the RCS observed by each transmitting path are identical.
The components extracted by the matched filters in each
receiving antennas contain the information of a transmitting
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path from one of the transmitting antenna elements to one of
the receiving antenna elements. By using the information about
all of the transmitting paths, a better spatial resolution can be
obtained. It has been shown that this kind of radar system
has many advantages such as excellent interference rejection
capability [9], [10], improved parameter identifiability [8], and
enhanced flexibility for transmit beampattern design [11], [12].
Some of the recent work on the colocated MIMO radar has
been reviewed in [7]. In this paper, we focus on the colocated
MIMO radar.

Recently, several papers have been published on the topic
of MIMO radar waveform design [11]–[15]. In [11], the
covariance matrix of the transmitted waveforms has been
designed to form a focused beam such that the power can
be transmitted to a desired range of angles. In [12], the
authors have also focused on the design of the covariance
matrix to control the spatial power. However in [12], the cross-
correlation between the transmitted signals at a number of
given target locations is minimized. In [13]–[16], unlike [11],
[12], the entire waveforms have been considered instead of
just the covariance matrix. Consequently these design methods
involve not only the spatial domain but also the range domain.
These methods assume some prior knowledge of the impulse
response of the target and use this knowledge to choose the
waveforms which optimize the mutual information between
the received signals and the impulse response of the target.
The waveform design which uses prior knowledge about the
target has been done in the traditional SIMO radar system
as well [17]. In this paper, we consider a different aspect of
the waveform design problem. We design the waveforms to
optimize the MIMO radar ambiguity function [6]. Unlike the
above methods, we do not assume the prior knowledge about
the target.

The waveform design problem based on optimization of the
ambiguity function in the traditional SIMO radar has been well
studied. Several waveform design methods have been proposed
to meet different resolution requirements. These methods can
be found in [25] and the references therein. In the traditional
SIMO radar system, the radar receiver uses a matched filter to
extract the target signal from thermal noise. Consequently, the
resolution of the radar system is determined by the response to
a point target in the matched filter output. Such a response can
be characterized by a function called the ambiguity function
[25]. Recently, San Antonio, et al. [6] have extended the radar
ambiguity function to the MIMO radar case. It turns out that
the radar waveforms affect not only the range and Doppler
resolution but also the angular resolution. It is well-known that
the radar ambiguity function satisfies some properties such
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as constant energy and symmetry with respect to the origin
[25]. These properties are very handy tools for designing and
analyzing the radar waveforms. In this paper, we derive the
corresponding properties for the MIMO radar case.

The major contributions in this paper are two-fold: (1) to
derive new mathematical properties of the MIMO ambiguity
function, and (2) to design a set of frequency-hopping pulses
to optimize the MIMO ambiguity function. The MIMO radar
ambiguity function characterizes the resolutions of the radar
system. By choosing different waveforms, we obtain a dif-
ferent MIMO ambiguity function. Therefore the MIMO radar
waveform design problem is to choose a set of waveforms
which provides a desirable MIMO ambiguity function. Di-
rectly optimizing the waveforms requires techniques such as
calculus of variation. In general this can be very hard to solve.
Instead of directly designing the waveforms, we can impose
some structures on the waveforms and design the parameters
of the waveforms.

As an example of this idea, the pulse waveforms generated
by frequency-hopping codes are considered in this paper.
Frequency-hopping signals are good candidates for the radar
waveforms because they are easily generated and have constant
modulus. In the traditional SIMO radar, Costas codes [20],
[21] have been introduced to reduce the sidelobe in the
radar ambiguity function. The frequency-hopping waveforms
proposed in [19] have been applied in a MIMO HF OTH radar
system [18]. The frequency-hopping waveforms proposed in
[19] are originally designed for multi-user radar system. The
peaks in the cross correlation functions of the waveforms
are approximately minimized by the codes designed in [19].
However, in the multi-user scenario, each user operates its
own radar system. This is different from the MIMO radar
system where the receiving antennas can cooperate to resolve
the target parameters. In this paper, we design the frequency-
hopping waveforms to optimize the MIMO ambiguity function
which directly relates to the MIMO radar system resolution.

The rest of the paper is organized as follows. In Section II,
the MIMO radar ambiguity function will be briefly reviewed.
Section III derives the properties of the MIMO radar ambiguity
function. In Section IV, we derive the MIMO radar ambiguity
function when the pulse trains are transmitted. In Section V,
we define the frequency-hopping pulse waveforms in MIMO
radar and derive the corresponding MIMO ambiguity function.
In Section VI, we formulate the frequency-hopping code
optimization problem and show how to solve it. In Section
VII, we test the proposed method and compare its ambiguity
function with the LFM (linear frequency modulation) wave-
forms. Finally, Section VIII concludes the paper. The results
in this paper are for uniform linear arrays but they can easily
be generalized.

II. REVIEW OF MIMO RADAR AMBIGUITY FUNCTION

In a SIMO radar system, the radar ambiguity function is
defined as [25]

|χ(τ, ν)| �
∣∣∣∣
∫ ∞

−∞
u(t)u∗(t + τ)ej2πνtdt

∣∣∣∣ , (1)

where u(t) is the radar waveform. This two-dimensional
function indicates the matched filter output in the receiver
when a delay mismatch τ and a Doppler mismatch ν occur.
The value |χ(0, 0)| represents the matched filter output without
any mismatch. Therefore, the sharper the function |χ(τ, ν)|
around (0, 0), the better the Doppler and range resolution.
Fig. 1 shows two examples of the ambiguity function. These
two ambiguity functions show different Doppler and range
trade-offs. One can see that the LFM pulse has a better range
resolution along the cut where Doppler frequency is zero.

Fig. 1. Examples of ambiguity functions: (a) Rectangular pulse, and (b)
Linear frequency modulation (LFM) pulse with time-bandwidth product 10,
where T is the pulse duration.

The idea of radar ambiguity functions has been extended to
the MIMO radar by San Antonio et al. [6]. In this section, we
will briefly review the definition of MIMO radar ambiguity
functions. We will focus only on the ULA (uniform linear
array) case as shown in Fig. 2. The derivation of the MIMO
ambiguity function for arbitrary array can be found in [6]. We
assume the transmitter and the receiver are parallel and colo-
cated ULAs. The spacing between the transmitting elements
is dT and the spacing between the receiving elements is dR.
The function ui(t) indicates the radar waveform emitted by
the ith transmitter.

Consider a target at (τ, ν, f) where τ is the delay corre-
sponding to the target range, ν is the Doppler frequency of
the target, and f is the normalized spatial frequency of the
target defined as

f � 2π
dR

λ
sin θ,

where θ is the angle of the target and λ is the wavelength. The
demodulated target response in the nth antenna is proportional
to

yτ,ν,f
n (t) ≈

M−1∑
m=0

um(t− τ)ej2πνtej2πf(γm+n),

for n = 0, 1, · · · , N − 1, where N is the number of receiving
antennas, um(t) is the radar waveform emitted by the mth
antenna, γ � dT /dR and M is the number of transmitting
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Fig. 2. MIMO radar scheme: (a) Transmitter, and (b) Receiver.

antennas. If the receiver tries to capture this target signal with
a matched filter with the assumed parameters (τ ′, ν′, f ′) then
the matched filter output becomes

N−1∑
n=0

∫ ∞

−∞
yτ,ν,f

n (t) · (yτ ′,ν′,f ′
n )∗(t)dt

=

(
N−1∑
n=0

ej2π(f−f ′)n

)
·

(
M−1∑
m=0

M−1∑
m′=0

∫ ∞

−∞
um(t− τ)u∗

m′(t− τ ′)

ej2π(ν−ν′)tdt · ej2π(fm−f ′m′)γ
)

The first part in the right hand side of the equation represents
the spatial processing in the receiver, and it is not affected by
the waveforms {um(t)}. The second part in the right hand side
of the equation indicates how the waveforms {um(t)} affect
the spatial, Doppler, and range resolutions of the radar system.
Therefore, we define the MIMO radar ambiguity function
as

χ(τ, ν, f, f ′) �
M−1∑
m=0

M−1∑
m′=0

χm,m′(τ, ν)ej2π(fm−f ′m′)γ , (2)

where

χm,m′(τ, ν) �
∫ ∞

−∞
um(t)u∗

m′(t + τ)ej2πνtdt. (3)

Note that the MIMO radar ambiguity function can not be
expressed as a function of the difference of the spatial frequen-
cies, namely f−f ′. Therefore, we need both the target spatial
frequency f and the assumed spatial frequency f ′ to represent
the spatial mismatch. We call the function χm,m′(τ, ν) the
cross ambiguity function because it is similar to the SIMO
ambiguity function defined in (1) except it involves two wave-
forms um(t) and um′(t). Fixing τ and ν in (2), one can view
the ambiguity function as a scaled two-dimensional Fourier
transform of the cross ambiguity function χm,m′(τ, ν) on the
parameters m and m′. The value |χ(0, 0, f, f)| represents the
matched filter output without mismatch. Therefore, the sharper
the function |χ(τ, ν, f, f ′)| around the line {(0, 0, f, f)}, the
better the radar system resolution.

III. PROPERTIES OF THE MIMO RADAR AMBIGUITY

FUNCTION FOR ULA

We now derive some new properties of the MIMO radar
ambiguity function defined in (2). The properties are similar
to some of the properties of the SIMO ambiguity functions
(e.g., see [25]). We normalize the energy of the transmitted
waveform to unity. That is,∫ ∞

−∞
|um(t)|2dt = 1,∀m (4)

The following property characterizes the ambiguity function
when there exists no mismatch.

Property 1. If
∫∞
−∞ um(t)u∗

m′(t)dt = δm,m′ , then

χ(0, 0, f, f) = M,∀f. (5)

Proof: We have

χm,m′(0, 0) =
∫ ∞

−∞
um(t)u∗

m′(t)dt = δm,m′ .

Substituting the above equation into (2), we obtain

χ(0, 0, f, f) =
M−1∑
m=0

M−1∑
m′=0

δm,m′ej2πγ(fm−fm′)

=
M−1∑
m=0

ej0 = M. �

This property says that if the waveforms are orthogonal, the
ambiguity function is a constant along the line {(0, 0, f, f)}
which is independent of the waveforms {um(t)}. This means
the matched filter output is always a constant independent of
the waveforms, when there exists no mismatch.

The following property characterizes the integration of the
MIMO radar ambiguity function along the line {0, 0, f, f}
even when the waveforms are not orthogonal.

Property 2.

χ(0, 0, f, f) ≥ 0, (6)

and if γ is an integer, then∫ 1

0

χ(0, 0, f, f)df = M. (7)
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Proof: By using the definitions in (2) and (3), we have

χ(0, 0, f, f) =
∫ ∞

−∞

∣∣∣∣∣
M−1∑
m=0

um(t)ej2πfmγ

∣∣∣∣∣
2

dt ≥ 0

By using the definitions in (2) and (3) and changing variables,
we obtain∫ 1

0

χ(0, 0, f, f)df

=
∫ 1

0

M−1∑
m=0

M−1∑
m′=0

χm,m′(0, 0)ej2πfγ(m−m′)df

=
M−1∑
m=0

M−1∑
m′=0

χm,m′(0, 0)δm,m′ = M �

This property says that when γ is an integer, the integration
of the MIMO radar ambiguity function along the line
{0, 0, f, f} is a constant, no matter how waveforms are
chosen. The following property characterizes the energy of
the cross ambiguity function.

Property 3.∫ ∞

−∞

∫ ∞

−∞
|χm,m′(τ, ν)|2dτdν = 1. (8)

Proof: We have∫ ∞

−∞

∫ ∞

−∞
|χm,m′(τ, ν)|2dτdν

=
∫ ∞

−∞

∫ ∞

−∞

∣∣∣∣
∫ ∞

−∞
um(t)u∗

m′(t + τ)ej2πνtdt

∣∣∣∣
2

dνdτ

=
∫ ∞

−∞

∫ ∞

−∞
|um(t)u∗

m′(t + τ)|2 dtdτ,

where we have used Parseval’s theorem [26] to obtain the last
equality. By changing variables, we obtain

∫ ∞

−∞

∫ ∞

−∞
|um(t)u∗

m′(t + τ)|2 dtdτ =∫ ∞

−∞
|um(t)|2dt

∫ ∞

−∞
|um′(t)|2dt = 1 �

This property states that the energy of the cross ambiguity
function is a constant, independent of the waveforms um(t)
and um′(t). In the special case of m = m′, this property
reduces to the well-known result that the SIMO radar
ambiguity function defined in (1) has constant energy [25].
The following property characterizes the energy of the MIMO
radar ambiguity function.

Property 4. If γ is an integer, then∫ 1

0

∫ 1

0

∫ ∞

−∞

∫ ∞

−∞
|χ(τ, ν, f, f ′)|2dτdνdfdf ′ = M2. (9)

Proof: By using the definition of MIMO radar ambiguity
function in (2) and performing appropriate change of variables,

we have ∫ 1

0

∫ 1

0

∫ ∞

−∞

∫ ∞

−∞
|χ(τ, ν, f, f ′)|2dτdνdfdf ′

=
1
γ2

∫ ∞

−∞

∫ ∞

−∞

∫ γ

0

∫ γ

0∣∣∣∣∣
M−1∑
m=0

M−1∑
m′=0

χm,m′(τ, ν)ej2π(fm−f ′m′)

∣∣∣∣∣
2

dfdf ′dτdν

(10)

Using Parserval’s theorem and applying Property 3, the above
integral reduces to∫ ∞

−∞

∫ ∞

−∞

M−1∑
m=0

M−1∑
m′=0

|χm,m′(τ, ν)|2dτdν =
M−1∑
m′=0

M−1∑
m′=0

1 = M2

�
This property states that when γ is an integer, the energy

of the MIMO radar ambiguity function is a constant which is
independent of the waveforms {um(t)}. For example, whether
we choose γ = 1 or γ = N , the energy of the MIMO radar
ambiguity function is the same. Recall that Property 2 states
that the integration of MIMO radar ambiguity function along
the line {(0, 0, f, f} is also a constant. This implies that in
order to make the ambiguity function sharp around {0, 0, f, f},
we have to spread the energy of the ambiguity function evenly
on the available time and bandwidth.

For the case that γ is not an integer, we can not directly
apply Parserval’s theorem. In this case, the energy of the
ambiguity function actually depends on the waveforms
{um(t)}. However, the following property characterizes the
range of the energy of the MIMO radar ambiguity function.

Property 5.

�γ�2
γ2

M2 ≤
∫ 1

0

∫ 1

0

∫ ∞

−∞

∫ ∞

−∞
|χ(τ, ν, f, f ′)|2dτdνdfdf ′

≤ �γ	
2

γ2
M2 (11)

where �γ� is the largest integer ≤ γ, and �γ	 is the smallest
integer ≥ γ.

Proof: Using (10), we have∫ 1

0

∫ 1

0

∫ ∞

−∞

∫ ∞

−∞
|χ(τ, ν, f, f ′)|2dτdνdfdf ′

≤ 1
γ2

∫ ∞

−∞

∫ ∞

−∞

∫ �γ�

0

∫ �γ�

0∣∣∣∣∣
M−1∑
m=0

M−1∑
m′=0

χm,m′(τ, ν)ej2π(fm−f ′m′)

∣∣∣∣∣
2

dfdf ′dτdν

(12)

Using Parserval’s theorem and applying Property 3, the above
value equals

�γ	2
γ2

∫ ∞

−∞

∫ ∞

−∞

M−1∑
m=0

M−1∑
m′=0

|χm,m′(τ, ν)|2dτdν =
�γ	2
γ2

M2

The lower bound can be obtained similarly. �
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For the case that γ is not integer, the energy of the MIMO
radar ambiguity function can actually be affected by the
waveforms {um(t)}. However, the above property implies
that when γ is large, the amount by which the energy can
be affected by the waveforms is small. Note that the bound
provided by this property is loose when γ is small. This
is because in (12), we have quantized γ in the integration
interval in order to apply the Parserval’s theorem. However,
in order to form a large virtual array and keep the interference
rejection ability on the receiver side, the spacings between
the transmitting antennas are usually larger than those of the
receiving antennas. So γ is usually large. Using similar lines
of argument as in 12, we can show that when γ is not an
integer, Property 2 can be replaced with the following property.

Property 6.

M
�γ�
γ
≤
∫ 1

0

χ(0, 0, f, f)df ≤M
�γ	
γ

. (13)

The following property characterizes the symmetry of the
cross ambiguity function.

Property 7.

χm,m′(−τ,−ν) = χ∗
m′,m(τ, ν)e−j2πντ (14)

Proof: By the definition of the cross ambiguity function (3)
and changing variables, we have

χm,m′(−τ,−ν) =
∫ ∞

−∞
um(t)u∗

m′(t− τ)e−j2πνtdt

=
∫ ∞

−∞
um(t + τ)u∗

m′(t)e−j2πν(t+τ)dt

= χ∗
m′,m(τ, ν)e−j2πντ �

Using the above property, we can obtain the following
property of the MIMO radar ambiguity function.

Property 8.

χ(−τ,−ν, f, f ′) = χ∗(τ, ν, f ′, f)e−j2πντ (15)

Proof: Using the definition of the MIMO radar ambiguity
function (2) and Property 7, we have

χ(−τ,−ν, f, f ′)

=
M−1∑
m=0

M−1∑
m′=0

χm,m′(−τ,−ν)ej2πγ(fm−f ′m′)

=
M−1∑
m=0

M−1∑
m′=0

χ∗
m′,m(τ, ν)e−j2πντej2πγ(fm−f ′m′)

=

(
M−1∑
m=0

M−1∑
m′=0

χm′,m(τ, ν)ej2πγ(f ′m′−fm)

)∗

e−j2πντ

= χ∗(τ, ν, f ′, f)e−j2πντ �

This property implies that when we design the waveform,
we only need to focus on the region {(τ, ν, f, f ′)|τ ≥ 0} or
the region {(τ, ν, f, f ′)|f ≥ f ′} of the MIMO radar ambiguity
function. For example, given two spatial frequencies f and f ′

it is sufficient to study only χ(τ, ν, f, f ′) because the function
χ(τ, ν, f ′, f) can be deduced from the symmetry property.
The following property characterizes the cross ambiguity
function of the linear frequency modulation (LFM) signal.

Property 9. Define

uLFM
m (t) � um(t)ejπkt2 .

If χm,m′(τ, ν) =
∫∞
−∞ um(t)u∗

m′(t + τ)ej2πνtdt then

χLFM
m,m′ (τ, ν) �

∫ ∞

−∞
uLFM

m (t)(uLFM
m′ (t + τ))∗ej2πνtdt

= χm,m′(τ, ν − kτ)e−jπkτ2
(16)

Proof: From direct calculation, we have

χLFM
m,m′ (τ, ν) =

∫ ∞

−∞
um(t)u∗

m′(t + τ) ·

ejπk(−2tτ−τ2)ej2πνtdt

= χm,m′(τ, ν − kτ)e−jπkτ2 �

This property says that linear frequency modulation shears
off the cross ambiguity function. We use this property to
obtain the following result for the MIMO radar ambiguity
function.

Property 10.
If χ(τ, ν, f, f ′) =

∑M−1
m=0

∑M−1
m′=0 χm,m′(τ, ν)ej2πγ(fm−f ′m′)

then

χLFM (τ, ν, f, f ′) �
M−1∑
m=0

M−1∑
m′=0

χLFM
m,m′ (τ, ν)ej2πγ(fm−f ′m′)

= χ(τ, ν − kτ, f, f ′)e−jπkτ2
(17)

We omit the proof because this property can be easily
obtained by just applying Property 9. This property states
that adding LFM modulations shears off the MIMO radar
ambiguity function. This shearing can improve the range
resolution because it compresses the ambiguity function along
the direction (τ, 0, f, f) [25]. Fig. 3 illustrates contours of
constants χ(τ, ν, f, f ′) and χ(τ, ν−kτ, f, f ′) with some fixed
f and f ′. One can observe that the delay resolution has been

k

, k ,f,f’

, ,f,f’

Fig. 3. Illustration of the LFM shearing.

improved after the LFM shearing.
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To summarize, Properties 1 to 6 characterize the signal
component and the energy of the ambiguity function. They
imply that if we attempt to squeeze the ambiguity function to
the line {0, 0, f, f}, the signal component cannot go arbitrarily
high. Also if we attempt to eliminate some unwanted peaks in
the ambiguity function, the energy will reappear somewhere
else. Property 8 suggests that it is sufficient to study only
half of the ambiguity function (τ ≥ 0). Properties 9 and
10 imply that the LFM modulation shears the ambiguity
function. Therefore it improves the resolution along the range
dimension.

IV. PULSE MIMO RADAR AMBIGUITY FUNCTION

In this paper, we consider the waveform design problem for
the pulse waveforms generated by frequency-hopping codes.
In this section, we derive the MIMO radar ambiguity function
for the case when the waveform um(t) consists of the shifted
versions of a shorter waveform φm(t). In this case, the pulse
design problem becomes choosing the waveform φm(t) to
obtain a good MIMO ambiguity function χ(τ, ν, f, f ′). There-
fore, it is important to study the relation between the MIMO
ambiguity function and the pulse φm(t). Since modulation
and scalar multiplication will not change the shape of the
ambiguity function, for convenience, we write the transmitted
signals as

um(t) =
L−1∑
l=0

φm(t− Tl) (18)

Fig. 4 illustrates the transmitted pulse waveform. Note that

T

…
t

m(t TL 2)

0 T2 TL 2 TL 1T1 T3

t

Fig. 4. Illustration of the pulse waveform.

the duration of φm(t), namely Tφ, is small enough such that
Tφ 
 minl,l′(|Tl − Tl′ |). To obtain the relation between
φm(t) and the MIMO ambiguity function χ(τ, ν, f, f ′), we
first derive the cross ambiguity function. Using (3) and (18)
and changing variables, the cross ambiguity function can be
expressed as

χm,m′(τ, ν) =
L−1∑
l′=0

L−1∑
l=0

∫ ∞

−∞
φm(t)φ∗

m′(t + Tl − Tl′ + τ)ej2πν(t+Tl)dt

=
L−1∑
l′=0

L−1∑
l=0

χφ
m,m′(τ + Tl − Tl′ , ν)ej2πνTl , (19)

where χφ
m,m′(τ, ν) is defined as the cross ambiguity function

of the pulses φm(t) and φm′(t), that is,

χφ
m,m′(τ, ν) =

∫ Tφ

0

φm(t)φ∗
m′(t + τ)ej2πνtdt.

We assume that the Doppler frequency ν and the support of
pulse Tφ are both small enough such that Tφν ≈ 0. This
means the Doppler frequency envelope remains approximately
constant within the pulse. Such an assumption is usually made
in pulse Doppler processing [27]. So the above the equation
becomes

χφ
m,m′(τ, ν) ≈

∫ Tφ

0

φm(t)φ∗
m′(t + τ)dt � rφ

m,m′(τ), (20)

where rφ
m,m′(τ) is the cross correlation between φm(t) and

φm′(t). Thus, the cross ambiguity function reduces to the cross
correlation function and it is no longer a function of Doppler
frequency ν. Substituting the above result into (19), we obtain

χm,m′(τ, ν) ≈
L−1∑
l′=0

L−1∑
l=0

rφ
m,m′(τ + Tl − Tl′)ej2πνTl (21)

For values of the delay τ satisfying |τ | < minl,l′(|Tl−Tl′ |)−
Tφ, the shifted correlation function satisfies

rφ
m,m′(τ + Tl − Tl′) =∫ Tφ

0

φm(τ)φ∗
m′(t + τ + Tl − Tl′)dt = 0,

when l �= l′. For |τ | ≥ minl,l′(|Tl − Tl′ |) − Tφ, the
response in the ambiguity function is created by the second
trip echoes. This ambiguity is called range folding. In this
paper, we assume the pulse repetition frequency (PRF) is
low enough so that no reflections occur at these second trip
ranges. We will focus on the ambiguity function only when
|τ | < minl,l′(|Tl − Tl′ |)− Tφ. In this case, we have

χm,m′(τ, ν) ≈ rφ
m,m′(τ)

L−1∑
l=0

ej2πνTl .

Notice that the Doppler processing is separable from the
correlation function. This is because of the assumption that
the duration of the pulses Tφ and the Doppler frequency ν are
small enough so that νTφ ≈ 0. This implies that the choice of
the waveforms {φm(t)} does not affect the Doppler resolution.
Using the definition of MIMO ambiguity function (2), we have

χ(τ, ν, f, f ′) =
M−1∑
m=0

M−1∑
m′=0

rφ
m,m′(τ)ej2π(fm−f ′m′)γ ·

L−1∑
l=0

ej2πνTl ,

for |τ | < minl,l′(|Tl − Tl′ |)− Tφ.
The preceding analysis clearly shows how the problem of

waveform design should be approached. The MIMO ambiguity
function depends on the cross correlation functions rφ

m,m′(τ).
Also, the pulses {φm(t)} only affect the range and spatial res-
olution. They do not affect the Doppler resolution. Therefore,
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to obtain a sharp ambiguity function, we should design the
pulses {φm(t)} such that the function

Ω(τ, f, f ′) �
M−1∑
m=0

M−1∑
m′=0

rφ
m,m′(τ)ej2π(fm−f ′m′)γ (22)

is sharp around the line {(τ, f, f ′)
∣∣τ = 0, f = f ′}. For M =

1, the signal design problem reduces to the special case of
the SIMO radar. In this case, equation (22) reduces to the
autocorrelation function

Ω(τ, f, f ′) = rφ
0,0(τ).

Thus in the SIMO radar case, the signal design problem is
to generate a pulse with a sharp autocorrelation. The linear
frequency modulation (LFM) signal is an example which has
a sharp autocorrelation [25]. Besides its sharp autocorrelation
function, the LFM pulse can be conveniently generated and
it has constant modulus. These reasons make the LFM signal
a very good candidate in a pulse repetition radar system. For
the MIMO radar case which satisfies M > 1, we need to
consider not only the autocorrelation functions but also the
cross correlation functions between pulses such that Ω(τ, f, f ′)
can be sharp.

V. FREQUENCY-HOPPING PULSES

Instead of directly designing the pulses, we can impose
some structures on the pulses and design the parameters of the
pulses. As an example of this idea, we now consider the pulse
generated by frequency-hopping codes. In this section, we
derive the MIMO radar ambiguity function of the frequency-
hopping pulses. These pulses have the advantage of constant
modulus. The frequency-hopping pulses can be expressed as

φm(t) =
Q−1∑
q=0

ej2πcm,qΔfts(t− qΔt), (23)

where

s(t) �
{

1, t ∈ [0,Δt)
0, otherwise,

cm,q ∈ {0, 1, · · · ,K − 1} is the frequency-hopping code, and
Q is the length of the code. The duration of the pulse is Tφ =
QΔt, and the bandwidth of the pulses is approximately

BWφ ≈ (K − 1)Δf +
1

Δt
.

In this paper, we are interested in the design of orthogonal
waveforms. To maintain orthogonality, the code {cm,q} could
be constrained to satisfy

cm,q �= cm′,q , for m �= m′,∀q (24)

ΔtΔf = 1.

Now instead of directly designing the pulses φm(t), the signal
design problem becomes designing the code cm,q for m =
0, 1, · · · ,M − 1 and q = 0, 1, · · · , Q − 1. Recall that our
goal is to design the transmitted signals such that the function
Ω(τ, f, f ′) in (22) is sharp (as explained in Sec. V). So, we
are interested in the expression for the function Ω(τ, f, f ′) in
terms of {cm,q}. To compute the function Ω(τ, f, f ′), we first

compute the cross correlation function rφ
m,m(τ). By using (23)

and (20), this can be expressed as

rφ
m,m′(τ) = (25)

Q−1∑
q=0

Q−1∑
q′=0

χrect(τ − (q′ − q)Δt, (cm,q − cm′,q′)Δf
)

·ej2πΔf(cm,q−cm′,q′ )qΔtej2πΔfcm′,p′τ ,

where χrect(τ, ν) is the SIMO ambiguity function of the
rectangular pulse s(t), given by

χrect(τ, ν) �
∫ Δt

0

s(t)s(t + τ)ej2πνdt (26)

=
{

Δt−|τ |
Δt sinc (ν(Δt− |τ |)) ejπν(τ+Δt), if |τ | < Δt

0, otherwise.

Substituting (25) into (22), we obtain

Ω(τ, f, f ′) =
M−1∑

m,m′=0

Q−1∑
q,q′=0

χrect(τ − (q′ − q)Δt, (cm,q − cm′,q′)Δf
)

·ej2πΔf(cm,q−cm′,q′ )qΔtej2πΔfcm′,q′τej2π(fm−f ′m′).

Define τ = kΔt + η, where |η| < Δt. By using the fact that
χrect(τ, ν) = 0 when |τ | > Δt, the above equation can be
further simplified as

Ω(kΔt + η, f, f ′) = (27)
M−1∑

m,m′=0

Q−1∑
q=0

χrect(η, (cm,q − cm′,q+k)Δf
)

·ej2πΔfcm′,q+k(kΔt+η)ej2πΔf(cm,q−cm′,q+k)qΔt

·ej2π(fm−f ′m′)γ .

The next step is to choose the frequency-hopping code {cm,q}
such that the function Ω(τ, f, f ′) is sharp around {0, f, f}. We
will discuss this in the following section.

VI. OPTIMIZATION OF THE FREQUENCY-HOPPING CODES

In this section, we introduce an algorithm to search for
frequency-hopping codes which generate good MIMO ambi-
guity functions. By using (22) and the orthogonality of the
waveforms, we have

Ω(0, f, f) =
M−1∑

m,m′=0

δm,m′ej2πfγ(m−m′) = M.

So, we know that the function Ω(τ, f, f) is a constant along
the line {0, f, f}, no matter what codes are chosen. To obtain
good system resolutions, we need to eliminate the peaks in
|Ω(τ, f, f ′)| which are not on the line {0, f, f}. This can be
done by imposing a cost function which puts penalties on these
peak values. This forces the energy of the function Ω(τ, f, f ′)
to be evenly spread in the delay and angular dimensions. As
an example of this, we minimize the p-norm of the function
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Ω(τ, f, f ′). The corresponding optimization problem can be
expressed as

minC fp(C) (28)

subject to C ∈ {0, 1, · · · ,K − 1}MQ

cm,q �= cm′,q , for m �= m′,

where

fp(C) �
∫ ∞

−∞

∫ 1

0

∫ 1

0

|Ω(τ, f, f ′)|pdfdf ′dτ, (29)

and cm,q denotes the (m, q) entry of the matrix C. Note that
a greater p imposes more penalty on the higher peaks. The
feasible set of this problem is a discrete set. It is known that
the simulated annealing algorithm is very suitable for solving
this kind of problems [23]. The simulated annealing algorithm
runs a Markov chain Monte Carlo (MCMC) sampling on the
discrete feasible set [24]. The transition probability of the
Markov chain can be chosen so that the equilibrium of the
Markov chain is

πT (C) =
1

ZT
exp(

−fp(C)
T

), where

ZT =
∑
C

exp(
−fp(C)

T
). (30)

Here T is a parameter called temperature. By running the
MCMC and gradually decreasing the temperature T , the
generated sample C will have a high probability to have a
small cost function output [23]. In our case, the transition
probability from state C to C′ is chosen as

p(C,C′) =⎧⎪⎨
⎪⎩

1
d min(1, exp( fp(C)−fp(C′)

T )), if C′ ∼ C
1− 1

d

∑
C′′∼C min(1, exp( fp(C)−fp(C′′)

T )), if C′ = C
0, otherwise,

where C′ ∼ C denotes that C′ and C differ in exactly one
element, and d denotes

∣∣{C′∣∣C′ ∼ C}∣∣. It can be shown
that the chosen transition probabilities result in the desire
equilibrium in (30) [24]. The corresponding MCMC sampling
can be implemented as the following algorithm.

Algorithm 1: Given number of waveforms M , length of
the code Q, number of frequencies K, initial temperature
T , and a temperature decreasing ratio α ∈ (0, 1), the code
C ∈ {0, 1, · · · ,K − 1}MQ can be computed by the following
steps:

1. Randomly draw C from {0, 1, · · · ,K − 1}MQ

such that cmq �= cm′q for m �= m.

2. Randomly draw m from {0, 1, · · · ,M − 1}
and q from {0, 1, · · · , Q− 1}.

3. Randomly draw k from {0, 1, · · · ,K − 1} \ cmq.

4. C′ ← C, c′mq ← K.

5. Randomly draw U from [0, 1].

6. If U < exp
(

fp(C)− fp(C′)
T

)
, C← C′.

7. If the cost fp(C) is small enough, stop.

else T ← αT and go to Step 2.

VII. DESIGN EXAMPLES

In this section, we present a design example using the pro-
posed method. In this example, we consider a uniform linear
transmitting array. The number of transmitted waveforms M
equals 4. The length of the frequency-hopping code Q equals
10. The number of frequencies K equals 15. Without loss of
generality, we normalize the pulse duration Tφ to be unity. By
using (24), we obtain that the time-bandwidth product(

(K − 1)Δf +
1

Δt

)
QΔt = 150.

Note that this implies the maximum number of orthogonal
waveform obtainable is BT = 150 [22]. So, our choice of
M = 4 orthogonal waveforms is well under the theoretical
limit. The cost function in (29) can be approximated by a
Riemann sum. By applying the symmetry given by Property 8,
we can integrate only the part that has τ ≥ 0. Fig. 5 shows the
real parts and the spectrograms of the waveforms generated by
the proposed algorithm. For comparison Fig. 6 shows the real
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Fig. 5. (a) Real parts and (b) spectrograms of the waveforms obtained by
the proposed method.

parts and the spectrograms of orthogonal LFM waveforms. In
this example, these LFM waveforms have the form

φm(t) = exp(j2πfm,0t + jπkt2),

where k = 100, f0,0 = 0, f1,0 = � 503 �, f2,0 = � 1003 �, and
f3,0 = 50. By choosing different initial frequencies, these
LFM waveforms can be made orthogonal. These parameters
are chosen so that these LFM waveforms occupy the same
time duration and bandwidth as the waveforms generated by
the proposed method. Fig. 7 shows a result of comparing the
functions |Ω(τ, f, f ′)|. We take samples from the function
|Ω(τ, f, f ′)| and plot their empirical cumulative distribution
function (ECDF). In other words, this figure shows the percent-
age of samples of |Ω(τ, f, f ′)| less than various magnitude.
We have normalized the highest peak to 0 dB. The results of
the proposed method, randomly generated frequency-hopping
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m,m′ (τ) of the waveforms generated by the proposed method.
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Fig. 6. (a) Real parts and (b) spectrograms of the orthogonal LFM waveforms.

codes, and the LFM waveforms are compared in the figure.
One can see that the proposed frequency-hopping signals yield
fewest undesired peaks among all the waveforms. The video
which shows the entire function |Ω(τ, f, f ′)| (a plot in (f, f ′)
plane as a function of time τ ) can be viewed from [28].
Fig. 8 shows the cross correlation functions rφ

m,m′(τ) of the
waveforms generated by the proposed algorithm. Fig. 9 shows
the cross correlation functions rφ

m,m′(τ) of the LFM wave-
forms. One can observe that for the proposed waveforms, the
correlation functions rφ

m,m′(τ) equal to unity when m = m′

and τ = 0. Except at these points, the correlation functions
are small everywhere. However, for the LFM waveforms, the
correlation functions have several extraneous peaks which also
form peaks in the ambiguity function.

VIII. CONCLUSIONS

In this paper, we have derived several properties of the
MIMO radar ambiguity function and the cross ambiguity
function. These results are derived for the ULA case. To
summarize, Property 1, 2 and 6 characterize the MIMO radar
ambiguity function along the line {(0, 0, f, f)}. Properties
3, 4 and 5 characterize the energy of the cross ambiguity
function and the MIMO radar ambiguity function. These
properties imply that we can only spread the energy of the
MIMO radar ambiguity function evenly on the available time
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Fig. 9. Cross correlation functions rφ
m,m′ (τ) of the LFM waveforms.
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and bandwidth because the energy is confined. Properties 7
and 8 show the symmetry of the cross ambiguity function
and the MIMO radar ambiguity function. These properties

imply that when we design the waveform, we only need
to focus on the region {(τ, ν, f, f ′)|τ ≥ 0} of the MIMO
radar ambiguity function. Property 9 and 10 show the shear-
off effect of the LFM waveform. This shearing improves
the range resolution. We have also introduced a waveform
design method for MIMO radars. This method is applicable
to the case where the transmitted waveforms are orthogonal
and consist of multiple shifted narrow pulses. The proposed
method applies the simulated annealing algorithm to search for
the frequency-hopping codes which minimize the p-norm of
the ambiguity function. The numerical examples show that the
waveforms generated by this method provide better angular
and range resolutions than the LFM waveforms which have
often been used in the traditional SIMO radar systems. In this
paper, we have presented the results only for the case of linear
arrays. Nevertheless it is possible to further generalize these
results for multi-dimensional arrays.
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