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Abstract— MIMO channels and wireless communica-
tions systems have generated a great deal of renewed
interest in linear system theory. This paper presents two
results. The first is a simple proof based on first principles,
of the known fact that the McMillan degree of a causal
M ×M MIMO system is at least as large as the degree of
its determinant. The second is a new result which shows
that the degree of the M × M system z−1G(z) is equal
to the degree of G(z) plus M if and only if the causal
system G(z) has an anticausal inverse.1

I. INTRODUCTION

MIMO channels and wireless communications systems
have generated a great deal of renewed interest in linear
system theory [1], [3], [4]. Even though MIMO system
theory is a very well-established field [2], certain specific
questions that come up in the context of communications
require revisiting the fundamentals in order to generate new
results.

In this paper we consider two basic questions for discrete
time MIMO LTI systems. The first question, addressed in Sec.
II, is on the relation between the McMillan degree or simply
the degree of a system [2], [5], defined to be the minimum
number of delays required in its implementation, and the
degree of the determinant. The second question, addressed
in Sec. III, is on the degree of a composite system formed
by cascading an LTI system with a simple delay element.

II. SYSTEM DEGREE AND DETERMINANT DEGREE

Consider an M × M causal system

H(z) = h(0) + h(1)z−1 + h(2)z−2 + . . . ,

possibly IIR. For such a system it is well-known that

deg [det H(z)] ≤ deg H(z). (1)

This is usually proved by invoking fairly deep results such
as, for example, the Smith-McMillan decomposition [2], [5].
In this section we give an elementary proof based on first
principles. We divide the discussion into two cases.
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II.1. Case when zeroth coefficient is zero

First consider the special case where

H(z) = h(1)z−1 + h(2)z−2 + . . . ,

that is, a system with constant term h(0) = 0. Let
(A,B,C,D) be a minimal realization of H(z). Since
h(0) = 0, we have D = 0 so that

H(z) = C(zI − A)−1B. (2)

Denoting the degree of H(z) as N , the matrix A has size
N × N . We have three possible situations.

1) Case 1. M = N. In this case B and C are N × N
matrices, and we have

det H(z) =
[det C] [det B]

det (zI − A)
=

[det C] [det B]

a0 + a1z + . . . + aNzN

where a0 + a1z + . . . + aNzN is the characteristic
polynomial of A. This shows that the determinant
of H(z) has degree equal to the degree N of the
system H(z), unless B or C is singular (in which
case det H(z) = 0, and deg [det H(z)] = 0). This
proves (1) for M = N.

2) Case 2. M > N. In this case the M × N matrix C
has rank less than M. The determinant of the M ×M
matrix in Eq. (2) is therefore zero for all z, and Eq.
(1) is trivially satisfied.

3) Case 3. M < N. In this case let us define the N ×N
system

F(z) =
[
H(z) 0

0 z−1IN−M

]
(3)

This system continues to be a causal system with
constant coefficient f(0) = 0. Since it is a square
matrix, it falls under Case 1, so it follows that

deg [det F(z)] ≤ deg F(z) (4)

From the definition (3) it is clear that

deg [det F(z)] = deg [det H(z)] + N − M, (5)

assuming [det H(z)] �= 0 (if this assumption is not
true then Eq. (1) holds trivially). It also follows from
Eq. (3) that

deg [F(z)] = deg [H(z)] + N − M (6)
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because z−1IN−M represents an independent system
with N−M inputs and outputs with a transfer function
z−1 between the kth input and kth output. By using
Eq. (5) and (6) in Eq. (4), the desired result (1) follows
immediately.

II.2 Case when zeroth coefficient is nonzero

Consider the M × M system

H(z) = h(1)z−1 + h(2)z−2 + . . .

= z−1
(
h(1) + z−1h(2) + . . .

)
︸ ︷︷ ︸

call this G(z)

Here G(z) =
∑∞

n=0
g(n)z−n is a causal system with

g(0) = h(1) possibly nonzero. Since

H(z) = z−1G(z), (7)

it follows that

det H(z) = z−M [det G(z)]. (8)

Thus
deg [det H(z)] = M + deg [det G(z)] (9)

unless [det G(z)] is identically zero for all z (in which case
Eq. (1) is trivially true anyway). From Eq. (7) we also see
that

deg H(z) = deg [z−1G(z)] ≤ M + deg G(z) (10)

because we can always build H(z) from G(z) by cascading
one delay to each output terminal. Thus we have

M + deg [det G(z)] = deg [det H(z)] (from (9))

≤ deg H(z) (proved, Sec. II.1)

≤ M + deg G(z) (from (10))

which shows that

deg [det G(z)] ≤ deg G(z) (11)

Since G(z) has unrestricted g(0), the inequality (11) has
therefore been established for arbitrary causal M × M sys-
tems.

III. SYSTEM CASCADED WITH DELAYS

Let G(z) represent an M ×M casual system with degree
N. Define

H(z) = z−1G(z)

We can certainly implement H(z) as a cascade of G(z) with
M delays, thus requiring a total of N + M delays (Fig. 1).
But is this the minimum number of delays? Surprisingly, the
answer depends entirely on whether G(z) has an anticausal
inverse or not, as we shall show (Theorem 1).

G(z)

z−1

z−1

z−1

H(z)

Figure 1. A cascade of G(z) with z−1I.

It is obvious from Fig. 1 that

deg H(z) ≤ N + M.

To show that equality may not always hold, consider the
example

G(z) =
[

z−1 z−1

z−1 z−1

]
Even though there are many delays in this expression, this
can be rewritten as

G(z) = z−1
[

1
1

]
[ 1 1 ]

so that the system can be implemented with one delay as
shown in Fig. 2(a). So the degree is unity (N = 1). The
cascaded system

H(z) = z−1G(z) =
[

z−1 0
0 z−1

]
G(z)

can certainly be implemented by adding two delays to
represent the diagonal matrix (Fig. 2(b)) so that there are
N + M = 3 delays. But it is clear that we can rearrange the
system as

H(z) = z−1G(z) = z−2
[

1
1

]
[ 1 1 ]

which only requires two delays (Fig. 2(c)). So the degree is
2 < N + M in this case.

(a) (b) (c)

z −1 z −1z −1

z −1

z −2

Figure 2. (a) Example of a system G(z) with degree one,
(b) the cascaded system H(z) = z−1G(z) with two extra
delays, and (c) structure for H(z) with mimimum number of
delays.

To make progress towards Theorem 1, let (A1,B1,C1,D1)
represent a minimal realization of G(z). A structure for H(z)
containing N + M delays is shown in Fig. 3. Here the state
vector x1(n) has size N , and x2(n) has size M so that the
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state vector of the entire system:

x(n) =

(
N x1(n)
.... .........
M x2(n)

)

has size N + M . The implementation in Fig. 3 is minimal if
and only if it is reachable and observable [2], [5]. To check
this, let us first write the state space equations and identify
the (A,B,C,D) matrices of the cascade. We have

x1(n + 1) = A1x1(n) + B1u(n)

x2(n + 1) = C1x1(n) + D1u(n)

y(n) = x2(n)

which can be rearranged into the form

[
x1(n + 1)
x2(n + 1)

]
︸ ︷︷ ︸

x(n+1)

=
[
A1 0
C1 0

]
︸ ︷︷ ︸

A

[
x1(n)
x2(n)

]
︸ ︷︷ ︸

x(n)

+
[
B1

D1

]
︸ ︷︷ ︸

B

u(n)

y(n) = [0 I ]︸ ︷︷ ︸
C

[
x1(n)
x2(n)

]
︸ ︷︷ ︸

x(n)

u(n) y(n)

x (n+1)1 x (n)1 x  (n)2x  (n+1)2
z    I−1 z    I−1

N delays M delays

G(z)

C1

D1

A 1

B1

Figure 3. Details of the state space description of a cascade
of G(z) with z−1I.

This shows that the matrices (A,B,C,D) in the state space
description of Fig. 3 are

A =
[
A1 0
C1 0

]
, B =

[
B1

D1

]
, C = [0 I ] , D = 0

(12)

III.1. Observability

We first examine the observability of the structure in Fig. 3.
Recall from PBH test [2, 5] that (C,A) is not observable if
and only if there exists a nonzero column-vector v such that

Av = λv, and Cv = 0 (13)

for some scalar λ. Using the form of A and C in Eq. (12)
this can be rewritten as[

A1 0
C1 0

] [
v1

v2

]
= λ

[
v1

v2

]
, [0 I ]

[
v1

v2

]
= 0.

This can only be satisfied if v2 = 0 (see second equation
above). Thus (C,A) is not observable if and only if there
exists a nonzero column-vector v1 such that

A1v1 = λv1, and C1v1 = 0

But this violates observability of (C1,A1), thereby con-
tradicting minimality of (A1,B1,C1,D1). Thus (C,A) is
necessarily observable.

This result is also clear by inspection of the structure. Thus,
from measurements of y(n), the state vector x2(n) is trivially
identified. Since x2(n + 1) is the output of the first system,
its identifiability means that x1(n) can be identified as well
if the first system is observable.

III.2. Reachability

Reachability of (A,B) is more tricky. Recall from PBH test
that this is not reachable if and only if there exists a nonzero
column-vector v such that

v†A = λv†, and v†B = 0, (14)

for some scalar λ. Eq. (14) can be rewritten as

[v†
1 v†

2 ]
[
A1 0
C1 0

]
= λ [v†

1 v†
2 ] , (15)

and
[v†

1 v†
2 ]

[
B1

D1

]
= 0 (16)

From the first equation we get

v†
1A1 + v†

2C1 = λv†
1, 0 = λv†

2 (17)

The second equation above is possible only if either v2 = 0
or λ = 0. If v2 = 0, then from Eq. (15), (16) we get

v†
1A1 = λv†

1, v†
1B1 = 0 (18)

This violates the reachability of (A1,B1) which contradicts
the assumption that (A1,B1,C1,D1) represent a minimal
relization. Thus, the second equation of (17) can only be
satisfied with λ = 0 in which case Eq. (15) yields

[v†
1 v†

2 ]
[
A1

C1

]
= 0

Combining this with (16) we conclude that (A,B) is not
reachable if and only if

[v†
1 v†

2 ]
[
A1 B1

C1 D1

]
= 0

where the vector [v†
1 v†

2 ] is nonzero. Equivalently (A,B)
is not reachable if and only if[

A1 B1

C1 D1

]
(19)

is singular. Now, it has been shown in [6] that the above
matrix is singular if and only if G(z) does not have an
anticausal inverse. Thus, even when (A1,B1) is reachable,
the pair (A,B) is unreachable when G(z) does not have a
anticausal inverse. Summarizing these discussions on reach-
ability and observability we arrive at the following:
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Theorem 1. Cascading with delays. Let G(z) be an M ×
M system with a minimial realization (A1,B1,C1,D1).
Consider the new system H(z) = z−1G(z) which can
be implemented by adding M delays as in Fig. 3. This
implementation is minimal if and only if G(z) has an
anticausal inverse, or equivalently, if and only if the matrix
(19) is nonsingular. Thus

deg [z−1G(z)] = M + deg [G(z)]

if and only if G(z) has an anticausal inverse. ♦

Example 1: Paraunitary systems

If G(z) is a M ×M causal paraunitary system [5], then its
inverse

G−1(z) = [G∗]T (1/z∗)

is anticausal. For example, the causal paraunitary system

G(z) =
1

2

[
1 + z−1 1 − z−1

1 − z−1 1 + z−1

]
has the anticausal inverse

G−1(z) =
1

2

[
1 + z 1 − z
1 − z 1 + z

]
Thus, for paraunitary G(z), the degree of z−1G(z) is exactly
N + M, where N is the degree of G(z).

Example 2: System with no Anticausal Inverse

Return to the example G(z) shown in Fig. 2(a). The state
space matrices for G(z) are

A1 = 0, B1 = [ 1 1 ] , C1 =
[

1
1

]
, D1 =

[
0 0
0 0

]
so that [

A1 B1

C1 D1

]
=

[
0 1 1
1 0 0
1 0 0

]

This matrix is singular because the last two columns are
identical. So it has no anticausal inverse. The the conditions
of the theorem are violated, and the degree of z−1G(z) is
less than N + M = 1 + 2 = 3. Indeed the degree is only
two, as seen from Fig. 2(c).

Example 3: Unimodular systems

Next consider
G(z) =

[
1 0

z−1 1

]
This is a degree one unimodular matrix, and its inverse is the
causal system

G−1(z) =
[

1 0
−z−1 1

]
Since the unique inverse is causal, there is no anticausal
inverse and we conclude that the degree of z−1G(z) is
necessarily less that N + M = 3.

(a) (b)

z −1

z −1

(c)

z −1

u  (n)1

u  (n)2

x(n+1) y  (n)1

y  (n)2

z −1

z −1

z −1

Figure 4. (a) Example of a unimodular system G(z) with
degree one, (b) the cascaded system H(z) = z−1G(z) with
two extra delays, and (c) structure for H(z) with mimimum
delays.

A minimal implementation of G(z) is shown in Fig. 4(a).
Note that

H(z) = z−1G(z) =
[

z−1 0
z−2 z−1

]
,

and its “obvious” implementation shown in Fig. 4(b) has
three delays. This is indeed not minimal because there is an
implementation with two delays (Fig. 4(c)). For completeness
let us also check out the state space matrices. The state space
description of the implementation of G(z) in Fig. 4(a) is

A1 = 0, B1 = [ 1 0 ] , C1 =
[

0
1

]
, D1 =

[
1 0
0 1

]
so that [

A1 B1

C1 D1

]
=

[
0 1 0
0 1 0
1 0 1

]

This matrix is singular (the first and last columns are iden-
tical), consistent with the fact that G(z) has no anticausal
inverse.

IV. CONCLUDING REMARKS

The result revisited in Sec. II is central to the many
factorization theorems for paraunitary filter banks proved in
[5]. An interesting problem would be to extend the results
of Sec. II for the case of noncausal systems which require
both delay and advance operators in general. It will also be
interesting to see how the results of Sec. III can be extended
to the case of P×M systems with P �= M, and to cascades of
the form Λ(z)G(z) where Λ(z) is a diagonal matrix whose
diagonal elements are possibly unequal delays.
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