EE 150 - Applications of Convex Optimization in Signal Processing and Communications Dr. Andre Tkacenko, JPL
 Third Term 2011-2012

Homework Set \#1

Due on Thursday, April 12 in class.

1. (10 points) Send a brief message with your name in full to the course e-mail address (ee150.acospc@gmail.com) in order to get on the mailing list.
2. (10 points) (Young's inequality for products, Hölder's inequality, and Minkowski's inequality:) The goal of this problem is to prove several useful inequalities for the ℓ_{p}-norm. Each of the inequalities referenced above can be proved using the one previously mentioned (except, of course, for the first one).
(a) (Young's inequality for products:) Suppose $p, q>0$ are such that $\frac{1}{p}+\frac{1}{q}=1$. If $a, b \geq 0$, prove that

$$
a b \leq \frac{a^{p}}{p}+\frac{b^{q}}{q},
$$

with equality if and only if $a^{p}=b^{q}$.
Hint: Use the fact that the exponential function is convex, which implies that for $0<\theta<1$, we have $e^{\theta x+(1-\theta) y} \leq \theta e^{x}+(1-\theta) e^{y}$, with equality if and only if $x=y$.
(b) (Hölder's inequality:) Let $\mathbf{x}, \mathbf{y} \in \mathbb{C}^{n}$ with $x_{k}=[\mathbf{x}]_{k}$ and $y_{k}=[\mathbf{y}]_{k}$ for $1 \leq k \leq n$. Show that

$$
\sum_{k=1}^{n}\left|x_{k} y_{k}\right| \leq\|\mathbf{x}\|_{p}\|\mathbf{y}\|_{q}
$$

with equality if and only if $\frac{\left|x_{k}\right|^{p}}{\|\mathbf{x}\|_{p}^{p}}=\frac{\left|y_{k}\right|^{q}}{\|\mathbf{y}\|_{q}^{q}}$ for all $1 \leq k \leq n$.
(c) (Minkowski's inequality:) Suppose that \mathbf{x} and \mathbf{y} are as in part (b). Prove that

$$
\|\mathbf{x}+\mathbf{y}\|_{p} \leq\|\mathbf{x}\|_{p}+\|\mathbf{y}\|_{p},
$$

with equality if and only if $x_{k}=\lambda_{k} y_{k}$ or $y_{k}=\lambda_{k} x_{k}$ for some $\lambda_{k} \geq 0$ for all $1 \leq k \leq n$ for $p=1$ and $\mathbf{x}=\lambda \mathbf{y}$ or $\mathbf{y}=\lambda \mathbf{x}$ for some $\lambda \geq 0$ for $p>1$. This is the triangle inequality for the ℓ_{p}-norm.

Hint: First show that $|c+d| \leq|c|+|d|$ for $c, d \in \mathbb{C}$ with equality if and only if $c=K d$ or $d=K c$ for some $K \geq 0$ (this is the triangle inequality for complex scalars). Then apply Hölder's inequality (twice) and trace back all of the conditions required for equality.
3. (10 points) (Dual of the ℓ_{p}-norm:) If $\|\cdot\|$ is a norm on \mathbb{C}^{n}, recall that, for the standard inner product, the dual norm $\|\cdot\|_{\circledast}$ is defined as follows:

$$
\|\mathbf{z}\|_{\circledast}=\sup \left\{\operatorname{Re}\left[\mathbf{z}^{\dagger} \mathbf{x}\right]:\|\mathbf{x}\| \leq 1\right\} .
$$

Suppose that $p, q>0$ and satisfy $\frac{1}{p}+\frac{1}{q}=1$. Prove that the dual of the ℓ_{p}-norm $\|\cdot\|_{p}$ is the ℓ_{q}-norm $\|\cdot\|_{q}$.

Hint: Use the equivalent formulation of the dual norm given by

$$
\|\mathbf{z}\|_{\circledast}=\sup \left\{\left|\mathbf{z}^{\dagger} \mathbf{x}\right|:\|\mathbf{x}\|=1\right\}
$$

along with Hölder's inequality from the previous problem to show that $\left|\mathbf{z}^{\dagger} \mathbf{x}\right| \leq\|\mathbf{z}\|_{q}$. Then find a clever choice of \mathbf{x} to achieve equality.
4. (10 points) (Block matrix inversion and the matrix inversion lemma:) Let $\mathbf{A}, \mathbf{B}, \mathbf{C}$, and \mathbf{D} are matrices of dimensions $m \times m, m \times n, n \times m$, and $n \times n$, respectively. Suppose that \mathbf{A} and \mathbf{D} are invertible. This problem deals with the $(m+n) \times(m+n)$ block matrix \mathbf{M} given by

$$
\mathbf{M}=\left[\begin{array}{ll}
\mathbf{A} & \mathbf{B} \\
\mathbf{C} & \mathbf{D}
\end{array}\right]
$$

(a) Show the following two identities:

$$
\begin{aligned}
& {\left[\begin{array}{cc}
\mathbf{I}_{m} & \mathbf{0}_{m \times n} \\
-\mathbf{C A}^{-1} & \mathbf{I}_{n}
\end{array}\right]\left[\begin{array}{ll}
\mathbf{A} & \mathbf{B} \\
\mathbf{C} & \mathbf{D}
\end{array}\right]\left[\begin{array}{cc}
\mathbf{I}_{m} & -\mathbf{A}^{-1} \mathbf{B} \\
\mathbf{0}_{n \times m} & \mathbf{I}_{n}
\end{array}\right]}
\end{aligned}=\left[\begin{array}{cc}
\mathbf{A} & \mathbf{0}_{m \times n} \\
\mathbf{0}_{n \times m} & \mathbf{D}-\mathbf{C A}^{-1} \mathbf{B}
\end{array}\right] .
$$

(b) Using part (a), show that

$$
\begin{aligned}
\mathbf{M} & =\left[\begin{array}{cc}
\mathbf{I}_{m} & \mathbf{0}_{m \times n} \\
\mathbf{C A}^{-1} & \mathbf{I}_{n}
\end{array}\right]\left[\begin{array}{cc}
\mathbf{A} & \mathbf{0}_{m \times n} \\
\mathbf{0}_{n \times m} & \mathbf{D}-\mathbf{C A}^{-1} \mathbf{B}
\end{array}\right]\left[\begin{array}{cc}
\mathbf{I}_{m} & \mathbf{A}^{-1} \mathbf{B} \\
\mathbf{0}_{n \times m} & \mathbf{I}_{n}
\end{array}\right] \\
& =\left[\begin{array}{cc}
\mathbf{I}_{m} & \mathbf{B D}^{-1} \\
\mathbf{0}_{n \times m} & \mathbf{I}_{n}
\end{array}\right]\left[\begin{array}{cc}
\mathbf{A}-\mathbf{B D}^{-1} \mathbf{C} & \mathbf{0}_{m \times n} \\
\mathbf{0}_{n \times m} & \mathbf{D}
\end{array}\right]\left[\begin{array}{cc}
\mathbf{I}_{m} & \mathbf{0}_{m \times n} \\
\mathbf{D}^{-1} \mathbf{C} & \mathbf{I}_{n}
\end{array}\right]
\end{aligned}
$$

From this result, show that we have

$$
\operatorname{det}(\mathbf{M})=\operatorname{det}(\mathbf{A}) \operatorname{det}\left(\mathbf{D}-\mathbf{C A}^{-1} \mathbf{B}\right)=\operatorname{det}\left(\mathbf{A}-\mathbf{B D}^{-1} \mathbf{C}\right) \operatorname{det}(\mathbf{D})
$$

Hint: For the first part, use the fact that

$$
\left[\begin{array}{cc}
\mathbf{I}_{m} & \mathbf{F} \\
\mathbf{0}_{n \times m} & \mathbf{I}_{n}
\end{array}\right]^{-1}=\left[\begin{array}{cc}
\mathbf{I}_{m} & -\mathbf{F} \\
\mathbf{0}_{n \times m} & \mathbf{I}_{n}
\end{array}\right] \text { and }\left[\begin{array}{cc}
\mathbf{I}_{m} & \mathbf{0}_{m \times n} \\
\mathbf{G} & \mathbf{I}_{n}
\end{array}\right]^{-1}=\left[\begin{array}{cc}
\mathbf{I}_{m} & \mathbf{0}_{m \times n} \\
-\mathbf{G} & \mathbf{I}_{n}
\end{array}\right]
$$

for any $m \times n$ matrix \mathbf{F} and $n \times m$ matrix \mathbf{G}. To help with the second part, use the fact that

$$
\operatorname{det}(\mathbf{P Q})=\operatorname{det}(\mathbf{P}) \operatorname{det}(\mathbf{Q}) \text { and } \operatorname{det}\left(\left[\begin{array}{cc}
\mathbf{R} & \mathbf{0}_{m \times n} \\
\mathbf{0}_{n \times m} & \mathbf{S}
\end{array}\right]\right)=\operatorname{det}(\mathbf{R}) \operatorname{det}(\mathbf{S})
$$

for any $k \times k$ matrices \mathbf{P} and \mathbf{Q}, as well as any $m \times m$ matrix \mathbf{R} and $n \times n$ matrix \mathbf{S}.
(c) From the result given in part (b), show the following:

$$
\begin{aligned}
\mathbf{M}^{-1} & =\left[\begin{array}{cc}
\mathbf{I}_{m} & -\mathbf{A}^{-1} \mathbf{B} \\
\mathbf{0}_{n \times m} & \mathbf{I}_{n}
\end{array}\right]\left[\begin{array}{cc}
\mathbf{A}^{-1} & \mathbf{0}_{m \times n} \\
\mathbf{0}_{n \times m} & \left(\mathbf{D}-\mathbf{C A}^{-1} \mathbf{B}\right)^{-1}
\end{array}\right]\left[\begin{array}{cc}
\mathbf{I}_{m} & \mathbf{0}_{m \times n} \\
-\mathbf{C A}^{-1} & \mathbf{I}_{n}
\end{array}\right] \\
& =\left[\begin{array}{cc}
\mathbf{I}_{m} & \mathbf{0}_{m \times n} \\
-\mathbf{D}^{-1} \mathbf{C} & \mathbf{I}_{n}
\end{array}\right]\left[\begin{array}{cc}
\left(\mathbf{A}-\mathbf{B D}^{-1} \mathbf{C}\right)^{-1} & \mathbf{0}_{m \times n} \\
\mathbf{0}_{n \times m} & \mathbf{D}^{-1}
\end{array}\right]\left[\begin{array}{cc}
\mathbf{I}_{m} & -\mathbf{B D}^{-1} \\
\mathbf{0}_{n \times m} & \mathbf{I}_{n}
\end{array}\right]
\end{aligned}
$$

Hint: Use the identities ($\mathbf{U V})^{-1}=\mathbf{V}^{-1} \mathbf{U}^{-1}$ and

$$
\left[\begin{array}{cc}
\mathbf{X} & \mathbf{0}_{m \times n} \\
\mathbf{0}_{n \times m} & \mathbf{Y}
\end{array}\right]^{-1}=\left[\begin{array}{cc}
\mathbf{X}^{-1} & \mathbf{0}_{m \times n} \\
\mathbf{0}_{n \times m} & \mathbf{Y}^{-1}
\end{array}\right]
$$

which hold for any $k \times k$ invertible matrices \mathbf{U} and \mathbf{V}, as well as any $m \times m$ invertible matrix \mathbf{X} and $n \times n$ invertible matrix \mathbf{Y}.
(d) Multiply out the expressions given in part (c) to show that

$$
\begin{aligned}
\mathbf{M}^{-1} & =\left[\begin{array}{cc}
\mathbf{A}^{-1}+\mathbf{A}^{-1} \mathbf{B}\left(\mathbf{D}-\mathbf{C A}^{-1} \mathbf{B}\right)^{-1} \mathbf{C A}^{-1} & -\mathbf{A}^{-1} \mathbf{B}\left(\mathbf{D}-\mathbf{C A}^{-1} \mathbf{B}\right)^{-1} \\
-\left(\mathbf{D}-\mathbf{C A}^{-1} \mathbf{B}\right)^{-1} \mathbf{C A}^{-1} & \left(\mathbf{D}-\mathbf{C A}^{-1} \mathbf{B}\right)^{-1}
\end{array}\right] \\
& =\left[\begin{array}{cc}
\left(\mathbf{A}-\mathbf{B D}^{-1} \mathbf{C}\right)^{-1} & -\left(\mathbf{A}-\mathbf{B D}^{-1} \mathbf{C}\right)^{-1} \mathbf{B D}^{-1} \\
-\mathbf{D}^{-1} \mathbf{C}\left(\mathbf{A}-\mathbf{B D}^{-1} \mathbf{C}\right)^{-1} & \mathbf{D}^{-1} \mathbf{C}\left(\mathbf{A}-\mathbf{B D}^{-1} \mathbf{C}\right)^{-1} \mathbf{B D}^{-1}+\mathbf{D}^{-1}
\end{array}\right]
\end{aligned}
$$

From this, finally show that

$$
\left(\mathbf{A}-\mathbf{B D}^{-1} \mathbf{C}\right)^{-1}=\mathbf{A}^{-1}+\mathbf{A}^{-1} \mathbf{B}\left(\mathbf{D}-\mathbf{C A}^{-1} \mathbf{B}\right)^{-1} \mathbf{C A}^{-1},
$$

which is a form of the matrix inversion lemma.
*5. (30 points) (Conditional Gaussian distributions and Schur complements:) Let $\mathbf{z} \in \mathbb{R}^{k}$ be a random vector with multivariate normal or Gaussian distribution with mean $\boldsymbol{\mu}_{\mathrm{z}} \in \mathbb{R}^{k}$ and covariance $\boldsymbol{\Sigma}_{\mathbf{z}} \in \mathbb{S}_{++}^{k}$. This means that the probability density function (pdf) of \mathbf{z}, denoted by $f_{\mathbf{z}}(\boldsymbol{z})$, is given by

$$
f_{\mathbf{z}}(\boldsymbol{z})=\frac{1}{(2 \pi)^{\frac{k}{2}}\left(\operatorname{det}\left(\boldsymbol{\Sigma}_{\mathbf{z}}\right)\right)^{\frac{1}{2}}} e^{-\frac{1}{2}\left(\boldsymbol{z}-\boldsymbol{\mu}_{\mathbf{z}}\right)^{T} \boldsymbol{\Sigma}_{\mathbf{z}}^{-1}\left(\boldsymbol{z}-\boldsymbol{\mu}_{\mathbf{z}}\right)} .
$$

For notational convenience, we will write $\mathbf{z} \sim \mathcal{N}\left(\boldsymbol{\mu}_{\mathbf{z}}, \boldsymbol{\Sigma}_{\mathbf{z}}\right)$. Suppose now that \mathbf{z} is decomposed as $\mathbf{z}=\left[\begin{array}{ll}\mathbf{x}^{T} & \mathbf{y}^{T}\end{array}\right]^{T}$, where $\mathbf{x} \in \mathbb{R}^{m}$ and $\mathbf{y} \in \mathbb{R}^{n}$ (evidently $k=m+n$). Furthermore, suppose that $\boldsymbol{\mu}_{\mathbf{z}}$ and $\boldsymbol{\Sigma}_{\mathbf{z}}$ are partitioned as follows:

$$
\mu_{\mathrm{z}}=\left[\begin{array}{l}
\mu_{\mathrm{x}} \\
\mu_{\mathrm{y}}
\end{array}\right], \quad \Sigma_{\mathrm{z}}=\left[\begin{array}{cc}
\Sigma_{\mathrm{x}} & \Sigma_{\mathrm{xy}} \\
\Sigma_{\mathrm{yx}} & \Sigma_{\mathrm{y}}
\end{array}\right] .
$$

Here, $\boldsymbol{\mu}_{\mathbf{x}} \in \mathbb{R}^{m}, \boldsymbol{\mu}_{\mathbf{y}} \in \mathbb{R}^{n}, \boldsymbol{\Sigma}_{\mathbf{x}} \in \mathbb{S}_{++}^{m}, \boldsymbol{\Sigma}_{\mathbf{y}} \in \mathbb{S}_{++}^{n}, \boldsymbol{\Sigma}_{\mathbf{x y}} \in \mathbb{R}^{m \times n}$, and $\boldsymbol{\Sigma}_{\mathbf{y x}}=\boldsymbol{\Sigma}_{\mathbf{x y}}^{T} \in \mathbb{R}^{n \times m}$. Now suppose that $\mathbf{v} \triangleq\left(\mathbf{x} \mid \mathbf{y}=\boldsymbol{y}_{0}\right)$, that is, $\mathbf{v} \in \mathbb{R}^{m}$ is the random variable formed from \mathbf{x} given that $\mathbf{y}=\boldsymbol{y}_{0}$ was observed.

Show that $\mathbf{v} \sim \mathcal{N}\left(\boldsymbol{\mu}_{\mathbf{v}}, \boldsymbol{\Sigma}_{\mathbf{v}}\right)$, where $\boldsymbol{\mu}_{\mathbf{v}}$ and $\boldsymbol{\Sigma}_{\mathbf{v}}$ are given by

$$
\mu_{\mathrm{v}}=\mu_{\mathrm{x}}+\boldsymbol{\Sigma}_{\mathrm{xy}} \Sigma_{\mathrm{y}}^{-1}\left(\boldsymbol{y}_{0}-\mu_{\mathrm{y}}\right), \Sigma_{\mathrm{v}}=\boldsymbol{\Sigma}_{\mathrm{x}}-\boldsymbol{\Sigma}_{\mathrm{xy}} \boldsymbol{\Sigma}_{\mathbf{y}}^{-1} \Sigma_{\mathbf{y x}}
$$

Notice that $\boldsymbol{\Sigma}_{\mathbf{v}}$ is the Schur complement of $\boldsymbol{\Sigma}_{\mathbf{y}}$ in $\boldsymbol{\Sigma}_{\mathbf{z}}$.
Hint: From our knowledge of conditional probability, the pdf of \mathbf{v}, denoted $f_{\mathbf{v}}(\boldsymbol{v})$, is given by

$$
f_{\mathbf{v}}(\boldsymbol{v})=\frac{f_{(\mathbf{x}, \mathbf{y})}\left(\boldsymbol{x}, \boldsymbol{y}_{0}\right)}{f_{\mathbf{y}}\left(\boldsymbol{y}_{0}\right)}=\frac{f_{\mathbf{z}}\left(\left[\begin{array}{ll}
\boldsymbol{v}^{T} & \boldsymbol{y}_{0}^{T}
\end{array}\right]^{T}\right)}{f_{\mathbf{y}}\left(\boldsymbol{y}_{0}\right)},
$$

where $f_{\mathbf{y}}\left(\boldsymbol{y}_{0}\right)$ is the pdf of \mathbf{y} evaluated at \boldsymbol{y}_{0}, which can be obtained using the multivariate Gaussian distribution expression above as it can be shown that $\mathbf{y} \sim \mathcal{N}\left(\boldsymbol{\mu}_{\mathbf{y}}, \boldsymbol{\Sigma}_{\mathbf{y}}\right)$. Also, be sure to use the results from the previous problem.

Reading assignments:

1. Look over parts of The Matrix Cookbook as needed and start reading the cvx Users' Guide.

Reminders:

Late homework policy for EE 150: Late homeworks will not be accepted. There will be no exceptions to this other than institute established emergency reasons, in which case a signed letter is required from an authorized official.

NCT Problems: Remember that problems with an asterisk, such as *7 are no collaboration type (NCT) problems.

Texts: The abbreviation CO-BV corresponds to the textbook "Convex Optimization" by Stephen Boyd and Lieven Vandenberghe. In addition, CO-AE refers to the Additional Exercises for Convex Optimization, also by Boyd and Vandenberghe. Finally, CVX corresponds to the cvx Users' Guide by Michael Grant and Stephen Boyd.

