EE 150 - Applications of Convex Optimization in Signal Processing and Communications Dr. Andre Tkacenko, JPL Third Term 2011-2012

Homework Set #1

Due on **Thursday, April 12** in class.

- 1. (10 points) Send a brief message with your name in full to the course e-mail address (ee150.acospc@gmail.com) in order to get on the mailing list.
- (10 points) (Young's inequality for products, Hölder's inequality, and Minkowski's inequality:) The goal of this problem is to prove several useful inequalities for the lp-norm. Each of the inequalities referenced above can be proved using the one previously mentioned (except, of course, for the first one).
 - (a) (Young's inequality for products:) Suppose p, q > 0 are such that $\frac{1}{p} + \frac{1}{q} = 1$. If $a, b \ge 0$, prove that

$$ab \le \frac{a^p}{p} + \frac{b^q}{q}$$
,

with equality if and only if $a^p = b^q$.

Hint: Use the fact that the exponential function is *convex*, which implies that for $0 < \theta < 1$, we have $e^{\theta x + (1-\theta)y} \le \theta e^x + (1-\theta)e^y$, with equality if and only if x = y.

(b) (*Hölder's inequality:*) Let $\mathbf{x}, \mathbf{y} \in \mathbb{C}^n$ with $x_k = [\mathbf{x}]_k$ and $y_k = [\mathbf{y}]_k$ for $1 \le k \le n$. Show that

$$\sum_{k=1}^{n} |x_k y_k| \le \left| \left| \mathbf{x} \right| \right|_p \left| \left| \mathbf{y} \right| \right|_q,$$

with equality if and only if $\frac{|x_k|^p}{||\mathbf{x}||_p^p} = \frac{|y_k|^q}{||\mathbf{y}||_q^q}$ for all $1 \le k \le n$.

(c) (*Minkowski's inequality:*) Suppose that \mathbf{x} and \mathbf{y} are as in part (b). Prove that

$$\left|\left|\mathbf{x} + \mathbf{y}\right|\right|_{p} \le \left|\left|\mathbf{x}\right|\right|_{p} + \left|\left|\mathbf{y}\right|\right|_{p},$$

with equality if and only if $x_k = \lambda_k y_k$ or $y_k = \lambda_k x_k$ for some $\lambda_k \ge 0$ for all $1 \le k \le n$ for p = 1 and $\mathbf{x} = \lambda \mathbf{y}$ or $\mathbf{y} = \lambda \mathbf{x}$ for some $\lambda \ge 0$ for p > 1. This is the *triangle inequality* for the ℓ_p -norm.

Hint: First show that $|c + d| \leq |c| + |d|$ for $c, d \in \mathbb{C}$ with equality if and only if c = Kd or d = Kc for some $K \geq 0$ (this is the triangle inequality for complex scalars). Then apply Hölder's inequality (twice) and trace back all of the conditions required for equality.

3. (10 points) (*Dual of the* ℓ_p -norm:) If $||\cdot||$ is a norm on \mathbb{C}^n , recall that, for the standard inner product, the dual norm $||\cdot||_{\circledast}$ is defined as follows:

$$||\mathbf{z}||_{\circledast} = \sup \left\{ \operatorname{Re}\left[\mathbf{z}^{\dagger}\mathbf{x}\right] : ||\mathbf{x}|| \leq 1 \right\}$$

Suppose that p, q > 0 and satisfy $\frac{1}{p} + \frac{1}{q} = 1$. Prove that the dual of the ℓ_p -norm $|| \cdot ||_p$ is the ℓ_q -norm $|| \cdot ||_q$.

Hint: Use the equivalent formulation of the dual norm given by

$$\left|\left|\mathbf{z}\right|\right|_{\circledast} = \sup\left\{\left|\mathbf{z}^{\dagger}\mathbf{x}\right|: \left|\left|\mathbf{x}\right|\right| = 1\right\},\$$

along with Hölder's inequality from the previous problem to show that $|\mathbf{z}^{\dagger}\mathbf{x}| \leq ||\mathbf{z}||_q$. Then find a clever choice of \mathbf{x} to achieve equality.

4. (10 points) (Block matrix inversion and the matrix inversion lemma:) Let A, B, C, and D are matrices of dimensions $m \times m$, $m \times n$, $n \times m$, and $n \times n$, respectively. Suppose that A and D are invertible. This problem deals with the $(m + n) \times (m + n)$ block matrix M given by

$$\mathbf{M} = \left[\begin{array}{cc} \mathbf{A} & \mathbf{B} \\ \mathbf{C} & \mathbf{D} \end{array} \right]$$

.

(a) Show the following two identities:

$$\begin{bmatrix} \mathbf{I}_m & \mathbf{0}_{m \times n} \\ -\mathbf{C}\mathbf{A}^{-1} & \mathbf{I}_n \end{bmatrix} \begin{bmatrix} \mathbf{A} & \mathbf{B} \\ \mathbf{C} & \mathbf{D} \end{bmatrix} \begin{bmatrix} \mathbf{I}_m & -\mathbf{A}^{-1}\mathbf{B} \\ \mathbf{0}_{n \times m} & \mathbf{I}_n \end{bmatrix} = \begin{bmatrix} \mathbf{A} & \mathbf{0}_{m \times n} \\ \mathbf{0}_{n \times m} & \mathbf{D} - \mathbf{C}\mathbf{A}^{-1}\mathbf{B} \end{bmatrix} \\ \begin{bmatrix} \mathbf{I}_m & -\mathbf{B}\mathbf{D}^{-1} \\ \mathbf{0}_{n \times m} & \mathbf{I}_n \end{bmatrix} \begin{bmatrix} \mathbf{A} & \mathbf{B} \\ \mathbf{C} & \mathbf{D} \end{bmatrix} \begin{bmatrix} \mathbf{I}_m & \mathbf{0}_{m \times n} \\ -\mathbf{D}^{-1}\mathbf{C} & \mathbf{I}_n \end{bmatrix} = \begin{bmatrix} \mathbf{A} - \mathbf{B}\mathbf{D}^{-1}\mathbf{C} & \mathbf{0}_{m \times n} \\ \mathbf{0}_{n \times m} & \mathbf{D} \end{bmatrix}$$

(b) Using part (a), show that

$$\begin{split} \mathbf{M} &= \begin{bmatrix} \mathbf{I}_m & \mathbf{0}_{m \times n} \\ \mathbf{C} \mathbf{A}^{-1} & \mathbf{I}_n \end{bmatrix} \begin{bmatrix} \mathbf{A} & \mathbf{0}_{m \times n} \\ \mathbf{0}_{n \times m} & \mathbf{D} - \mathbf{C} \mathbf{A}^{-1} \mathbf{B} \end{bmatrix} \begin{bmatrix} \mathbf{I}_m & \mathbf{A}^{-1} \mathbf{B} \\ \mathbf{0}_{n \times m} & \mathbf{I}_n \end{bmatrix} \\ &= \begin{bmatrix} \mathbf{I}_m & \mathbf{B} \mathbf{D}^{-1} \\ \mathbf{0}_{n \times m} & \mathbf{I}_n \end{bmatrix} \begin{bmatrix} \mathbf{A} - \mathbf{B} \mathbf{D}^{-1} \mathbf{C} & \mathbf{0}_{m \times n} \\ \mathbf{0}_{n \times m} & \mathbf{D} \end{bmatrix} \begin{bmatrix} \mathbf{I}_m & \mathbf{0}_{m \times n} \\ \mathbf{D}^{-1} \mathbf{C} & \mathbf{I}_n \end{bmatrix} \Big]$$

From this result, show that we have

$$det(\mathbf{M}) = det(\mathbf{A}) det(\mathbf{D} - \mathbf{C}\mathbf{A}^{-1}\mathbf{B}) = det(\mathbf{A} - \mathbf{B}\mathbf{D}^{-1}\mathbf{C}) det(\mathbf{D}) .$$

Hint: For the first part, use the fact that

$$\begin{bmatrix} \mathbf{I}_m & \mathbf{F} \\ \mathbf{0}_{n \times m} & \mathbf{I}_n \end{bmatrix}^{-1} = \begin{bmatrix} \mathbf{I}_m & -\mathbf{F} \\ \mathbf{0}_{n \times m} & \mathbf{I}_n \end{bmatrix} \text{ and } \begin{bmatrix} \mathbf{I}_m & \mathbf{0}_{m \times n} \\ \mathbf{G} & \mathbf{I}_n \end{bmatrix}^{-1} = \begin{bmatrix} \mathbf{I}_m & \mathbf{0}_{m \times n} \\ -\mathbf{G} & \mathbf{I}_n \end{bmatrix},$$

for any $m \times n$ matrix **F** and $n \times m$ matrix **G**. To help with the second part, use the fact that

$$\det(\mathbf{PQ}) = \det(\mathbf{P}) \det(\mathbf{Q}) \text{ and } \det\left(\begin{bmatrix} \mathbf{R} & \mathbf{0}_{m \times n} \\ \mathbf{0}_{n \times m} & \mathbf{S} \end{bmatrix}\right) = \det(\mathbf{R}) \det(\mathbf{S}) ,$$

for any $k \times k$ matrices **P** and **Q**, as well as any $m \times m$ matrix **R** and $n \times n$ matrix **S**.

(c) From the result given in part (b), show the following:

$$\begin{split} \mathbf{M}^{-1} &= \begin{bmatrix} \mathbf{I}_m & -\mathbf{A}^{-1}\mathbf{B} \\ \mathbf{0}_{n\times m} & \mathbf{I}_n \end{bmatrix} \begin{bmatrix} \mathbf{A}^{-1} & \mathbf{0}_{m\times n} \\ \mathbf{0}_{n\times m} & \left(\mathbf{D}-\mathbf{C}\mathbf{A}^{-1}\mathbf{B}\right)^{-1} \end{bmatrix} \begin{bmatrix} \mathbf{I}_m & \mathbf{0}_{m\times n} \\ -\mathbf{C}\mathbf{A}^{-1} & \mathbf{I}_n \end{bmatrix} \\ &= \begin{bmatrix} \mathbf{I}_m & \mathbf{0}_{m\times n} \\ -\mathbf{D}^{-1}\mathbf{C} & \mathbf{I}_n \end{bmatrix} \begin{bmatrix} \left(\mathbf{A}-\mathbf{B}\mathbf{D}^{-1}\mathbf{C}\right)^{-1} & \mathbf{0}_{m\times n} \\ \mathbf{0}_{n\times m} & \mathbf{D}^{-1} \end{bmatrix} \begin{bmatrix} \mathbf{I}_m & -\mathbf{B}\mathbf{D}^{-1} \\ \mathbf{0}_{n\times m} & \mathbf{I}_n \end{bmatrix} \end{split}$$

Hint: Use the identities $(\mathbf{U}\mathbf{V})^{-1} = \mathbf{V}^{-1}\mathbf{U}^{-1}$ and

$$\begin{bmatrix} \mathbf{X} & \mathbf{0}_{m \times n} \\ \mathbf{0}_{n \times m} & \mathbf{Y} \end{bmatrix}^{-1} = \begin{bmatrix} \mathbf{X}^{-1} & \mathbf{0}_{m \times n} \\ \mathbf{0}_{n \times m} & \mathbf{Y}^{-1} \end{bmatrix},$$

which hold for any $k \times k$ invertible matrices **U** and **V**, as well as any $m \times m$ invertible matrix **X** and $n \times n$ invertible matrix **Y**.

(d) Multiply out the expressions given in part (c) to show that

$$\begin{split} \mathbf{M}^{-1} &= \begin{bmatrix} \mathbf{A}^{-1} + \mathbf{A}^{-1} \mathbf{B} \left(\mathbf{D} - \mathbf{C} \mathbf{A}^{-1} \mathbf{B} \right)^{-1} \mathbf{C} \mathbf{A}^{-1} & -\mathbf{A}^{-1} \mathbf{B} \left(\mathbf{D} - \mathbf{C} \mathbf{A}^{-1} \mathbf{B} \right)^{-1} \\ &- \left(\mathbf{D} - \mathbf{C} \mathbf{A}^{-1} \mathbf{B} \right)^{-1} \mathbf{C} \mathbf{A}^{-1} & \left(\mathbf{D} - \mathbf{C} \mathbf{A}^{-1} \mathbf{B} \right)^{-1} \end{bmatrix} \\ &= \begin{bmatrix} \left(\mathbf{A} - \mathbf{B} \mathbf{D}^{-1} \mathbf{C} \right)^{-1} & - \left(\mathbf{A} - \mathbf{B} \mathbf{D}^{-1} \mathbf{C} \right)^{-1} \mathbf{B} \mathbf{D}^{-1} \\ &- \mathbf{D}^{-1} \mathbf{C} \left(\mathbf{A} - \mathbf{B} \mathbf{D}^{-1} \mathbf{C} \right)^{-1} & \mathbf{D}^{-1} \mathbf{C} \left(\mathbf{A} - \mathbf{B} \mathbf{D}^{-1} \mathbf{C} \right)^{-1} \mathbf{B} \mathbf{D}^{-1} + \mathbf{D}^{-1} \end{bmatrix} \end{split}$$

From this, finally show that

$$\left(\mathbf{A} - \mathbf{B}\mathbf{D}^{-1}\mathbf{C}\right)^{-1} = \mathbf{A}^{-1} + \mathbf{A}^{-1}\mathbf{B}\left(\mathbf{D} - \mathbf{C}\mathbf{A}^{-1}\mathbf{B}\right)^{-1}\mathbf{C}\mathbf{A}^{-1}$$

which is a form of the matrix inversion lemma.

*5. (30 points) (Conditional Gaussian distributions and Schur complements:) Let $\mathbf{z} \in \mathbb{R}^k$ be a random vector with multivariate normal or Gaussian distribution with mean $\boldsymbol{\mu}_{\mathbf{z}} \in \mathbb{R}^k$ and covariance $\boldsymbol{\Sigma}_{\mathbf{z}} \in \mathbb{S}_{++}^k$. This means that the probability density function (pdf) of \mathbf{z} , denoted by $f_{\mathbf{z}}(\mathbf{z})$, is given by

$$f_{\mathbf{z}}(\boldsymbol{z}) = \frac{1}{(2\pi)^{\frac{k}{2}} \left(\det\left(\boldsymbol{\Sigma}_{\mathbf{z}}\right) \right)^{\frac{1}{2}}} e^{-\frac{1}{2} (\boldsymbol{z} - \boldsymbol{\mu}_{\mathbf{z}})^T \boldsymbol{\Sigma}_{\mathbf{z}}^{-1} (\boldsymbol{z} - \boldsymbol{\mu}_{\mathbf{z}})}.$$

For notational convenience, we will write $\mathbf{z} \sim \mathcal{N}(\boldsymbol{\mu}_{\mathbf{z}}, \boldsymbol{\Sigma}_{\mathbf{z}})$. Suppose now that \mathbf{z} is decomposed as $\mathbf{z} = \begin{bmatrix} \mathbf{x}^T & \mathbf{y}^T \end{bmatrix}^T$, where $\mathbf{x} \in \mathbb{R}^m$ and $\mathbf{y} \in \mathbb{R}^n$ (evidently k = m + n). Furthermore, suppose that $\boldsymbol{\mu}_{\mathbf{z}}$ and $\boldsymbol{\Sigma}_{\mathbf{z}}$ are partitioned as follows:

$$oldsymbol{\mu}_{\mathbf{z}} = \left[egin{array}{c} oldsymbol{\mu}_{\mathbf{x}} \ oldsymbol{\mu}_{\mathbf{y}} \end{array}
ight], \; oldsymbol{\Sigma}_{\mathbf{z}} = \left[egin{array}{c} oldsymbol{\Sigma}_{\mathbf{x}} & oldsymbol{\Sigma}_{\mathbf{xy}} \ oldsymbol{\Sigma}_{\mathbf{yx}} & oldsymbol{\Sigma}_{\mathbf{y}} \end{array}
ight]$$

Here, $\boldsymbol{\mu}_{\mathbf{x}} \in \mathbb{R}^{m}$, $\boldsymbol{\mu}_{\mathbf{y}} \in \mathbb{R}^{n}$, $\boldsymbol{\Sigma}_{\mathbf{x}} \in \mathbb{S}_{++}^{m}$, $\boldsymbol{\Sigma}_{\mathbf{y}} \in \mathbb{S}_{++}^{n}$, $\boldsymbol{\Sigma}_{\mathbf{xy}} \in \mathbb{R}^{m \times n}$, and $\boldsymbol{\Sigma}_{\mathbf{yx}} = \boldsymbol{\Sigma}_{\mathbf{xy}}^{T} \in \mathbb{R}^{n \times m}$. Now suppose that $\mathbf{v} \triangleq (\mathbf{x} | \mathbf{y} = \boldsymbol{y}_{0})$, that is, $\mathbf{v} \in \mathbb{R}^{m}$ is the random variable formed from \mathbf{x} given that $\mathbf{y} = \boldsymbol{y}_{0}$ was observed.

Show that $\mathbf{v} \sim \mathcal{N}(\boldsymbol{\mu}_{\mathbf{v}}, \boldsymbol{\Sigma}_{\mathbf{v}})$, where $\boldsymbol{\mu}_{\mathbf{v}}$ and $\boldsymbol{\Sigma}_{\mathbf{v}}$ are given by

$$oldsymbol{\mu}_{\mathbf{v}} = oldsymbol{\mu}_{\mathbf{x}} + oldsymbol{\Sigma}_{\mathbf{x}\mathbf{y}} oldsymbol{\Sigma}_{\mathbf{y}}^{-1} oldsymbol{\left(}oldsymbol{y}_{0} - oldsymbol{\mu}_{\mathbf{y}}oldsymbol{
ight)} \ , \ oldsymbol{\Sigma}_{\mathbf{v}} = oldsymbol{\Sigma}_{\mathbf{x}} - oldsymbol{\Sigma}_{\mathbf{x}\mathbf{y}} oldsymbol{\Sigma}_{\mathbf{y}}^{-1} oldsymbol{\Sigma}_{\mathbf{y}\mathbf{x}} \, .$$

Notice that $\Sigma_{\mathbf{v}}$ is the *Schur complement* of $\Sigma_{\mathbf{y}}$ in $\Sigma_{\mathbf{z}}$.

Hint: From our knowledge of conditional probability, the pdf of \mathbf{v} , denoted $f_{\mathbf{v}}(\mathbf{v})$, is given by

$$f_{\mathbf{v}}(\boldsymbol{v}) = rac{f_{(\mathbf{x},\mathbf{y})}(\boldsymbol{x},\boldsymbol{y}_0)}{f_{\mathbf{y}}(\boldsymbol{y}_0)} = rac{f_{\mathbf{z}}\left(\left[\begin{array}{cc} \boldsymbol{v}^T & \boldsymbol{y}_0^T\end{array}
ight]^T
ight)}{f_{\mathbf{y}}(\boldsymbol{y}_0)},$$

where $f_{\mathbf{y}}(\mathbf{y}_0)$ is the pdf of \mathbf{y} evaluated at \mathbf{y}_0 , which can be obtained using the multivariate Gaussian distribution expression above as it can be shown that $\mathbf{y} \sim \mathcal{N}(\boldsymbol{\mu}_{\mathbf{y}}, \boldsymbol{\Sigma}_{\mathbf{y}})$. Also, be sure to use the results from the previous problem.

Reading assignments:

1. Look over parts of *The Matrix Cookbook* as needed and start reading the cvx Users' Guide.

Reminders:

Late homework policy for EE 150: Late homeworks will not be accepted. There will be no exceptions to this other than institute established emergency reasons, in which case a signed letter is required from an authorized official.

NCT Problems: Remember that problems with an asterisk, such as *7 are no collaboration type (NCT) problems.

Texts: The abbreviation CO-BV corresponds to the textbook "Convex Optimization" by Stephen Boyd and Lieven Vandenberghe. In addition, CO-AE refers to the Additional Exercises for Convex Optimization, also by Boyd and Vandenberghe. Finally, CVX corresponds to the cvx Users' Guide by Michael Grant and Stephen Boyd.