EE 150 - Applications of Convex Optimization in Signal Processing and Communications Dr. Andre Tkacenko, JPL Third Term 2011-2012

Homework Set #2

Due on Thursday, April 19 in class.

- 1. (10 points) (Existence of Moore-Penrose pseudoinverse:) Recall that if $\mathbf{A} \in \mathbb{C}^{m \times n}$ is some matrix, then a matrix $\mathbf{A}^{\#} \in \mathbb{C}^{n \times m}$ that satisfies the four following conditions is said to be a Moore-Penrose pseudoinverse of \mathbf{A} .
 - 1) $AA^{\#}A = A$.
 - 2) $\mathbf{A}^{\#}\mathbf{A}\mathbf{A}^{\#} = \mathbf{A}^{\#}$
 - 3) $(\mathbf{A}\mathbf{A}^{\#})^{\dagger} = \mathbf{A}\mathbf{A}^{\#}.$
 - 4) $(\mathbf{A}^{\#}\mathbf{A})^{\dagger} = \mathbf{A}^{\#}\mathbf{A}$.

Suppose that **A** has rank ρ and has the following singular value decomposition (SVD):

$$\mathbf{A} = \underbrace{\left[egin{array}{ccc} \mathbf{U}_1 & \mathbf{U}_2 \end{array}
ight]}_{\mathbf{U}} \underbrace{\left[egin{array}{ccc} \mathbf{\Sigma}_1 & \mathbf{0}_{
ho imes(n-
ho)} \ \mathbf{0}_{(m-
ho) imes(n-
ho)} \end{array}
ight]}_{\mathbf{\Sigma}} \underbrace{\left[egin{array}{c} \mathbf{V}_1^\dagger \ \mathbf{V}_2^\dagger \end{array}
ight]}_{\mathbf{V}^\dagger} = \mathbf{U}_1\mathbf{\Sigma}_1\mathbf{V}_1^\dagger \,,$$

where $\mathbf{U}_1 \in \mathbb{C}^{m \times \rho}$, $\mathbf{U}_2 \in \mathbb{C}^{m \times (m-\rho)}$, $\mathbf{U} \in \mathbb{C}^{m \times m}$ is unitary, $\mathbf{\Sigma}_1 = \operatorname{diag}(\sigma_1, \dots, \sigma_{\rho})$ is a $\rho \times \rho$ diagonal matrix of singular values of \mathbf{A} (where $\sigma_k > 0$ for all $1 \leq k \leq \rho$), $\mathbf{\Sigma} \in \mathbb{R}_+^{m \times n}$, $\mathbf{V}_1 \in \mathbb{C}^{n \times \rho}$, $\mathbf{V}_2 \in \mathbb{C}^{n \times (n-\rho)}$, and $\mathbf{V} \in \mathbb{C}^{n \times n}$ is unitary. Show that the matrix \mathbf{B} defined as

$$\mathbf{B} riangleq \underbrace{\left[egin{array}{ccc} \mathbf{V}_1 & \mathbf{V}_2 \end{array}
ight]}_{\mathbf{V}} \underbrace{\left[egin{array}{ccc} \mathbf{\Sigma}_1^{-1} & \mathbf{0}_{
ho imes(m-
ho)} \\ \mathbf{0}_{(n-
ho) imes(m-
ho)} \end{array}
ight]}_{\mathbf{\Sigma}^{\#}} \underbrace{\left[egin{array}{ccc} \mathbf{U}_1^{\dagger} \\ \mathbf{U}_2^{\dagger} \end{array}
ight]}_{\mathbf{U}^{\dagger}} = \mathbf{V}_1 \mathbf{\Sigma}_1^{-1} \mathbf{U}_1^{\dagger} \,,$$

satisfies the four conditions above and is thus a pseudoinverse.

- **2.** (10 points) (*Uniqueness of Moore-Penrose pseudoinverse*:) Let **A** be some $m \times n$ matrix and suppose that **B** and **C** are any two $n \times m$ matrices that satisfy the four conditions mentioned in the previous problem defining a Moore-Penrose pseudoinverse. Show that we always have $\mathbf{B} = \mathbf{C}$.
- 3. (10 points) (Maximum likelihood estimate of the covariance matrix of a Gaussian distribution:) Suppose that we have obtained a sample of n independent, identically distributed (i.i.d.) observations, denoted x_1, \ldots, x_n , where $x_k \in \mathbb{R}^{m \times 1}$, drawn from a Gaussian distribution with known mean $\mu \in \mathbb{R}^{m \times 1}$ but unknown covariance $\Sigma \in \mathbb{S}^m_{++}$. This distribution, parameterized by Σ and denoted here by $f(x|\Sigma)$, is given by

$$f(\boldsymbol{x}|\boldsymbol{\Sigma}) = \frac{1}{(2\pi)^{\frac{m}{2}} \left(\det\left(\boldsymbol{\Sigma}\right)\right)^{\frac{1}{2}}} e^{-\frac{1}{2}(\boldsymbol{x}-\boldsymbol{\mu})^T \boldsymbol{\Sigma}^{-1}(\boldsymbol{x}-\boldsymbol{\mu})}.$$

Under the i.i.d. assumption, the log-likelihood function for the covariance matrix Σ , denoted as $\mathcal{L}(\Sigma)$, is given by

$$\mathcal{L}(\mathbf{\Sigma}) = \sum_{k=1}^{n} \log \left(f(\mathbf{x}_k | \mathbf{\Sigma}) \right) \,.$$

The choice of Σ which maximizes $\mathcal{L}(\Sigma)$ is the maximum likelihood (ML) estimate of Σ and will be denoted Σ_{ML} .

- (a) Calculate $\nabla \mathcal{L}(\Sigma)$ assuming Σ is symmetric.
- (b) Solve the equation $\nabla \mathcal{L}(\Sigma) = 0$ to find the ML estimate of Σ . Show that we have

$$oldsymbol{\Sigma}_{ ext{ML}} = rac{1}{n} \sum_{k=1}^n \left(oldsymbol{x}_k - oldsymbol{\mu}
ight) \left(oldsymbol{x}_k - oldsymbol{\mu}
ight)^T \, .$$

Hint: The following identities may be useful here:

$$\frac{d}{d\mathbf{X}}\log(\det(\mathbf{X})) = \mathbf{X}^{-1},$$

$$\frac{d}{d\mathbf{X}}\operatorname{tr}(\mathbf{A}\mathbf{X}^{-1}\mathbf{B}) = -\mathbf{X}^{-1}\mathbf{B}\mathbf{A}\mathbf{X}^{-1},$$

$$\frac{d}{d\mathbf{X}_{s}}f = \left(\frac{d}{d\mathbf{X}_{u}}f\right) + \left(\frac{d}{d\mathbf{X}_{u}}f\right)^{T} - \operatorname{diag}\left(\frac{d}{d\mathbf{X}_{u}}f\right).$$

For the first two identities, \mathbf{X} denotes an unstructured square matrix. For the third identity, \mathbf{X}_s denotes the symmetric version of some unstructured matrix \mathbf{X}_u .

4. (10 points) (Complex differential of the pseudoinverse:) In this problem, we generalize the result that

$$d(\mathbf{Z}^{-1}) = -\mathbf{Z}^{-1} (d\mathbf{Z}) \,\mathbf{Z}^{-1}$$

for complex invertible square matrices to the rectangular case for the pseudoinverse. Specifically, suppose **Z** is some $m \times n$ complex matrix. Show that

$$d\left(\mathbf{Z}^{\#}\right) = -\mathbf{Z}^{\#}\left(d\mathbf{Z}\right)\mathbf{Z}^{\#} + \mathbf{Z}^{\#}\left(\mathbf{Z}^{\#}\right)^{\dagger}\left(d\mathbf{Z}^{\dagger}\right)\left(\mathbf{I}_{m} - \mathbf{Z}\mathbf{Z}^{\#}\right) + \left(\mathbf{I}_{n} - \mathbf{Z}^{\#}\mathbf{Z}\right)\left(d\mathbf{Z}^{\dagger}\right)\left(\mathbf{Z}^{\#}\right)^{\dagger}\mathbf{Z}^{\#}.$$

Hint: Use the product rule for complex differentials, namely that

$$d(\mathbf{Z}_0\mathbf{Z}_1) = (d\mathbf{Z}_0)\,\mathbf{Z}_1 + \mathbf{Z}_0\,(d\mathbf{Z}_1) ,$$

along with the conjugate transpose rule $d(\mathbf{Z}^{\dagger}) = (d\mathbf{Z})^{\dagger}$ and the defining properties of the pseudoinverse given in the first problem.

*5. (30 points) (Least-squares minimization and minimum norm property of the pseudoinverse:)
In this problem, we consider a slight generalization to the traditional least-squares problem

minimize
$$\xi^2 \triangleq ||\mathbf{A}\mathbf{x} - \mathbf{b}||_2^2$$
.

Suppose that $\mathbf{A} \in \mathbb{C}^{m \times n}$ is a modeling matrix which we would like to fit to a data matrix of observations $\mathbf{B} \in \mathbb{C}^{m \times p}$ by using a linear model of the form $\mathbf{A}\mathbf{X}$, where $\mathbf{X} \in \mathbb{C}^{n \times p}$ is a fitting matrix. To measure the quality of the fit, we will consider the *Frobenius norm* of the error or residual $(\mathbf{A}\mathbf{X} - \mathbf{B})$. In other words, to gauge the quality of the fit, we will consider the objective ξ given by

$$\xi \triangleq ||\mathbf{A}\mathbf{X} - \mathbf{B}||_F$$
.

A matrix $\mathbf{X}^* \in \mathbb{C}^{n \times p}$ which minimizes ξ will be called a *least-squares* solution (as it will simultaneously minimize ξ^2 as well).

(a) Show that $\mathbf{X}^{\star} \triangleq \mathbf{A}^{\#}\mathbf{B}$ is a least-squares solution by using the trick of *completing the* square. In addition, show that the optimal objective value ξ^{\star} is given by

$$\xi^{\star} = \left| \left| \left(\mathbf{I}_m - \mathbf{A} \mathbf{A}^{\#} \right) \mathbf{B} \right| \right|_F.$$

(b) Suppose now that we are able to get a perfect fit, i.e., that there is at least one solution to the linear system of equations $\mathbf{A}\mathbf{X} = \mathbf{B}$. Evidently $\mathbf{X}^{\star} = \mathbf{A}^{\#}\mathbf{B}$ is one such solution. Show that any other solution \mathbf{X} to $\mathbf{A}\mathbf{X} = \mathbf{B}$ satisfies

$$||\mathbf{X}||_F \ge ||\mathbf{X}^{\star}||_F$$
,

with equality if and only if $\mathbf{X} = \mathbf{X}^*$. In other words, \mathbf{X}^* is the solution to $\mathbf{A}\mathbf{X} = \mathbf{B}$ with the smallest Frobenius norm.

Reading assignments:

1. Look over parts of *The Matrix Cookbook* as needed and continue reading the cvx Users' Guide.

Reminders:

Late homework policy for EE 150: Late homeworks will not be accepted. There will be no exceptions to this other than institute established emergency reasons, in which case a signed letter is required from an authorized official.

NCT Problems: Remember that problems with an asterisk, such as *7 are no collaboration type (NCT) problems.

Texts: The abbreviation CO-BV corresponds to the textbook "Convex Optimization" by Stephen Boyd and Lieven Vandenberghe. In addition, CO-AE refers to the Additional Exercises for Convex Optimization, also by Boyd and Vandenberghe. Finally, CVX corresponds to the cvx Users' Guide by Michael Grant and Stephen Boyd.