
EE 150 - Applications of Convex Optimization in Signal Processing and Communications
Dr. Andre Tkacenko, JPL
Third Term 2011-2012

Homework Set #2
Due on Thursday, April 19 in class.

1. (10 points) (Existence of Moore-Penrose pseudoinverse:) Recall that if A ∈ Cm×n is some
matrix, then a matrix A# ∈ Cn×m that satisfies the four following conditions is said to be a
Moore-Penrose pseudoinverse of A.

1) AA#A = A.

2) A#AA# = A#.

3)
(
AA#

)†
= AA#.

4)
(
A#A

)†
= A#A.

Suppose that A has rank ρ and has the following singular value decomposition (SVD):

A =
[

U1 U2

]︸ ︷︷ ︸
U

[
Σ1 0ρ×(n−ρ)

0(m−ρ)×ρ 0(m−ρ)×(n−ρ)

]
︸ ︷︷ ︸

Σ

[
V†1

V†2

]
︸ ︷︷ ︸

V†

= U1Σ1V
†
1 ,

where U1 ∈ Cm×ρ, U2 ∈ Cm×(m−ρ), U ∈ Cm×m is unitary, Σ1 = diag(σ1, . . . , σρ) is a ρ× ρ
diagonal matrix of singular values of A (where σk > 0 for all 1 ≤ k ≤ ρ), Σ ∈ Rm×n+ ,

V1 ∈ Cn×ρ, V2 ∈ Cn×(n−ρ), and V ∈ Cn×n is unitary. Show that the matrix B defined as

B ,
[

V1 V2

]︸ ︷︷ ︸
V

[
Σ−11 0ρ×(m−ρ)

0(n−ρ)×ρ 0(n−ρ)×(m−ρ)

]
︸ ︷︷ ︸

Σ#

[
U†1

U†2

]
︸ ︷︷ ︸

U†

= V1Σ
−1
1 U†1 ,

satisfies the four conditions above and is thus a pseudoinverse.

2. (10 points) (Uniqueness of Moore-Penrose pseudoinverse:) Let A be some m× n matrix
and suppose that B and C are any two n×m matrices that satisfy the four conditions
mentioned in the previous problem defining a Moore-Penrose pseudoinverse. Show that we
always have B = C.

3. (10 points) (Maximum likelihood estimate of the covariance matrix of a Gaussian
distribution:) Suppose that we have obtained a sample of n independent, identically
distributed (i.i.d.) observations, denoted x1, . . . ,xn, where xk ∈ Rm×1, drawn from a
Gaussian distribution with known mean µ ∈ Rm×1 but unknown covariance Σ ∈ Sm++. This
distribution, parameterized by Σ and denoted here by f(x|Σ), is given by

f(x|Σ) =
1

(2π)
m
2 (det (Σ))

1
2

e−
1
2
(x−µ)T Σ−1(x−µ) .

Under the i.i.d. assumption, the log-likelihood function for the covariance matrix Σ, denoted
as L(Σ), is given by

L(Σ) =

n∑
k=1

log (f(xk|Σ)) .



The choice of Σ which maximizes L(Σ) is the maximum likelihood (ML) estimate of Σ and
will be denoted ΣML.

(a) Calculate ∇L(Σ) assuming Σ is symmetric.

(b) Solve the equation ∇L(Σ) = 0 to find the ML estimate of Σ. Show that we have

ΣML =
1

n

n∑
k=1

(xk − µ) (xk − µ)T .

Hint: The following identities may be useful here:

d

dX
log (det(X)) = X−1 ,

d

dX
tr
(
AX−1B

)
= −X−1BAX−1 ,

d

dXs
f =

(
d

dXu
f

)
+

(
d

dXu
f

)T
− diag

(
d

dXu
f

)
.

For the first two identities, X denotes an unstructured square matrix. For the third identity,
Xs denotes the symmetric version of some unstructured matrix Xu.

4. (10 points) (Complex differential of the pseudoinverse:) In this problem, we generalize the
result that

d
(
Z−1

)
= −Z−1 (dZ) Z−1

for complex invertible square matrices to the rectangular case for the pseudoinverse.
Specifically, suppose Z is some m× n complex matrix. Show that

d
(
Z#
)

= −Z# (dZ) Z# + Z#
(
Z#
)† (

dZ†
)(

Im − ZZ#
)

+
(
In − Z#Z

)(
dZ†

)(
Z#
)†

Z# .

Hint: Use the product rule for complex differentials, namely that

d(Z0Z1) = (dZ0) Z1 + Z0 (dZ1) ,

along with the conjugate transpose rule d
(
Z†
)

= (dZ)† and the defining properties of the
pseudoinverse given in the first problem.

*5. (30 points) (Least-squares minimization and minimum norm property of the pseudoinverse:)
In this problem, we consider a slight generalization to the traditional least-squares problem

minimize ξ2 , ||Ax− b||22 .

Suppose that A ∈ Cm×n is a modeling matrix which we would like to fit to a data matrix of
observations B ∈ Cm×p by using a linear model of the form AX, where X ∈ Cn×p is a
fitting matrix. To measure the quality of the fit, we will consider the Frobenius norm of the
error or residual (AX−B). In other words, to gauge the quality of the fit, we will consider
the objective ξ given by

ξ , ||AX−B||F .

A matrix X? ∈ Cn×p which minimizes ξ will be called a least-squares solution (as it will
simultaneously minimize ξ2 as well).



(a) Show that X? , A#B is a least-squares solution by using the trick of completing the
square. In addition, show that the optimal objective value ξ? is given by

ξ? =
∣∣∣∣∣∣(Im −AA#

)
B
∣∣∣∣∣∣
F
.

(b) Suppose now that we are able to get a perfect fit, i.e., that there is at least one solution
to the linear system of equations AX = B. Evidently X? = A#B is one such solution.
Show that any other solution X to AX = B satisfies

||X||F ≥ ||X
?||F ,

with equality if and only if X = X?. In other words, X? is the solution to AX = B
with the smallest Frobenius norm.

Reading assignments:

1. Look over parts of The Matrix Cookbook as needed and continue reading the cvx Users’
Guide.

Reminders:

Late homework policy for EE 150: Late homeworks will not be accepted. There will be no
exceptions to this other than institute established emergency reasons, in which case a signed
letter is required from an authorized official.

NCT Problems: Remember that problems with an asterisk, such as *7 are no collaboration type
(NCT) problems.

Texts: The abbreviation CO-BV corresponds to the textbook “Convex Optimization” by Stephen
Boyd and Lieven Vandenberghe. In addition, CO-AE refers to the Additional Exercises for
Convex Optimization, also by Boyd and Vandenberghe. Finally, CVX corresponds to the cvx

Users’ Guide by Michael Grant and Stephen Boyd.

http://orion.uwaterloo.ca/~hwolkowi/matrixcookbook.pdf
http://web.cvxr.com/cvx/cvx_usrguide.pdf
http://web.cvxr.com/cvx/cvx_usrguide.pdf
http://www.stanford.edu/~boyd/cvxbook/bv_cvxbook.pdf
http://www.stanford.edu/~boyd/cvxbook/bv_cvxbook_extra_exercises.pdf
http://www.stanford.edu/~boyd/cvxbook/bv_cvxbook_extra_exercises.pdf
http://web.cvxr.com/cvx/cvx_usrguide.pdf
http://web.cvxr.com/cvx/cvx_usrguide.pdf

