EE 150 - Applications of Convex Optimization in Signal Processing and Communications
Dr. Andre Tkacenko, JPL
Third Term 2011-2012

Homework Set #3

Due on Thursday, April 26 in class.

1. (10 points) (Adapted from CO-BV, Exercise 2.9) (Voronoi sets and polyhedral
decomposition:) Let xq,...,xx € R™ denote a set of (K + 1) real vectors. Consider the set
of points in R™ that are closer (in the Euclidean norm sense) to xg than the other vectors

from above. Specifically, consider the set

VExeR": |x—xol, <|lx =y, £=1,....,K}.

The set V is called the Voronoi region around x¢ with respect to xi,...,Xg.

(a)
(b)

()

Show that V is a polyhedron. Specifically, express V in the form V = {x: Ax < b}.
Conversely, given a polyhedron P with nonempty interior, show how to find a set of
points Xg, ..., Xx so that the polyhedron is the Voronoi region of xg with respect to
X1y XK.

Similar to the Voronoi region V defined above, we can also consider the following sets:
Vi={xeR":||x —xill, < ||x—x4|ly, L#Ek}, E=0,..., K.

The set Vi consists of points in R" for which the closest point in the set {xq,...,xx}
is xx. (Note that we have Vy =V here.)

The sets Vg, ..., Vi give a polyhedral decomposition of R". More precisely, the sets Vg
are polyhedra and we have

K
U Ve =R, int(Vy) Nint(Vy) = @ for k # (.
k=0

In other words, the polyhedra Vj taken together comprise the whole vector space R"
and are such that Vi and Vy intersect at most along a boundary for any k # ¢.
Suppose now that Py, ..., Py, are polyhedra such that

U Pe =R", int(Py) Nint(Py) = & for k # L.
k=1

Can this polyhedral decomposition of R™ be described as the Voronoi regions generated
by an appropriate set of points? If so, prove this statement and if not, show a
counterexample.

2. (10 points) (Adapted from CO-BV, Exercise 2.10) (Solution set of a quadratic inequality:)
Let C C R"™ be the solution set of the following quadratic inequality:

Cé{XERn:XTAXerTXﬁLCSO}.

Here, A € S”, b € R", and c € R.



(a) Show that C is convex if A > 0. Also, show via a counterexample that the converse is
false.

(b) Show that the intersection of C with the hyperplane H defined as
Hé{XER":ng—i—h:O} ,

where g € R"” with g # 0 and h € R, is convex if (A + /\ggT) > 0 for some \ € R.
Also, show via a counterexample that the converse is false.

3. (10 points) (Adapted from CO-BV, Exercise 2.15) (Some sets of probability distributions:)
Let X be a real-valued discrete random variable with Pr{X =a;} =p; for k =1,...,n,

where a1 < -+ < a,. Also, let p £ [ P11 o+ Dn }T denote the associated vector of
probabilities. Evidently p € R™ and also lies in the standard probability simplex

P2 {X eR":1Tx =1, x> 0}. Which of the following conditions are convex in p? More
specifically, for which of the following conditions is the set of p € P that satisfy the
condition convex?

(a) a < E[f(X)] < 3, where E[f(X)] is the expected value of f(X) given by
BIf (X)) = pefla) .
k=1

The function f: R — R is given here.
Pr{X > a} <p.
B[|XP’] < aB[|X]).

f) Var(X) < a, where Var(X) £ E[(X — E[X])Q} is the variance of X.
(g) Var(X) > a.
(h) @1(X) > a, where Q1(X) is the first quartile of X defined by

@) =int {5: Fx(3) > 1
and Fx(x) is the cumulative distribution function (cdf) of X given by
Fx(r) £ Pr{X < z}. In other words, the first quartile represents the smallest value of
X for which all values less than or equal to it account for at least 25% of the total
probability.
Hint: The illustration in Figure 1 shows how to calculate the quantile from the cdf.
From the example shown in this figure, it is clear that Q1(X) = a9 in this case.

(i) Q1(X) <a.

4. (10 points) (Adapted from CO-BV, Exercise 3.18) (Convezity/concavity of common
functions of matrices:) Suppose X € R"*". Show the following results.

(a) f(X)=tr(X"!) is convex on dom(f) = S% .
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Figure 1: Illustration showing how to compute the quantile Q1(X) from the cdf Fx(3). Here,
Ql(X ) = a9.

(b) f(X) = (det(X))Tll is concave on dom(f) = S% .

Hint: For both cases, determine the convexity /concavity of the matrix function under
consideration by considering the convexity/concavity of the scalar function

g(t) = f(Z +tV), where Z = 0 and V € S™. Then, with the use of an appropriate
eigenvalue decomposition, the results will follow.

*5. (30 points) (Adapted from CO-BV, Exercise 3.25) (Maximum probability distance between
distributions:) Let p,q € R™ represent two probability distributions on the set {1,...,n}
(so that p,q = 0 and 17p = 17q = 1). We define the mazimum probability distance
dwmp(P, q) between p and q as the maximum difference in probability assigned by p and q
over all possible events. In other words, we have

dnp(P, @) £ max {[Pp(C) — P4(C)[ : C S {1,...,n}} .
Here, Pp(C) is the probability of C under the distribution p, i.e., we have
Pp(C) 2 Zpk .
keC

Find a simple expression for dmp(p,q), involving ||p — ql|;, and show that dmp(p,q) is a
convex function on R” x R™. (Its domain is {(p, q) :p,q=0,1Tp=17q = 1}, but it has a
natural extension to all of R™ x R".)

Reading assignments:

1. Read through Chapter 2 and begin Chapter 3 of CO-BV.

Reminders:

Late homework policy for EE 150: Late homeworks will not be accepted. There will be no
exceptions to this other than institute established emergency reasons, in which case a signed
letter is required from an authorized official.



NCT Problems: Remember that problems with an asterisk, such as *7 are no collaboration type
(NCT) problems.

Texts: The abbreviation CO-BV corresponds to the textbook “Convexr Optimization” by Stephen
Boyd and Lieven Vandenberghe. In addition, CO-AE refers to the Additional Fxercises for

Convexr Optimization, also by Boyd and Vandenberghe. Finally, CVX corresponds to the cvx
Users’ Guide by Michael Grant and Stephen Boyd.



http://www.stanford.edu/~boyd/cvxbook/bv_cvxbook.pdf
http://www.stanford.edu/~boyd/cvxbook/bv_cvxbook_extra_exercises.pdf
http://www.stanford.edu/~boyd/cvxbook/bv_cvxbook_extra_exercises.pdf
http://web.cvxr.com/cvx/cvx_usrguide.pdf
http://web.cvxr.com/cvx/cvx_usrguide.pdf

