EE 150 - Applications of Convex Optimization in Signal Processing and Communications Dr. Andre Tkacenko, JPL
 Third Term 2011-2012

Homework Set \#3

Due on Thursday, April 26 in class.

1. (10 points) (Adapted from CO-BV, Exercise 2.9) (Voronoi sets and polyhedral
decomposition:) Let $\mathbf{x}_{0}, \ldots, \mathbf{x}_{K} \in \mathbb{R}^{n}$ denote a set of $(K+1)$ real vectors. Consider the set of points in \mathbb{R}^{n} that are closer (in the Euclidean norm sense) to \mathbf{x}_{0} than the other vectors from above. Specifically, consider the set

$$
\mathcal{V} \triangleq\left\{\mathrm{x} \in \mathbb{R}^{n}:\left\|\mathrm{x}-\mathrm{x}_{0}\right\|_{2} \leq\left\|\mathrm{x}-\mathrm{x}_{\ell}\right\|_{2}, \ell=1, \ldots, K\right\} .
$$

The set \mathcal{V} is called the Voronoi region around \mathbf{x}_{0} with respect to $\mathbf{x}_{1}, \ldots, \mathbf{x}_{K}$.
(a) Show that \mathcal{V} is a polyhedron. Specifically, express \mathcal{V} in the form $\mathcal{V}=\{\mathbf{x}: \mathbf{A x} \preceq \mathbf{b}\}$.
(b) Conversely, given a polyhedron \mathcal{P} with nonempty interior, show how to find a set of points $\mathbf{x}_{0}, \ldots, \mathbf{x}_{K}$ so that the polyhedron is the Voronoi region of \mathbf{x}_{0} with respect to $\mathbf{x}_{1}, \ldots, \mathbf{x}_{K}$.
(c) Similar to the Voronoi region \mathcal{V} defined above, we can also consider the following sets:

$$
\mathcal{V}_{k}=\left\{\mathbf{x} \in \mathbb{R}^{n}:\left\|\mathbf{x}-\mathbf{x}_{k}\right\|_{2} \leq\left\|\mathbf{x}-\mathbf{x}_{\ell}\right\|_{2}, \ell \neq k\right\}, k=0, \ldots, K
$$

The set \mathcal{V}_{k} consists of points in \mathbb{R}^{n} for which the closest point in the set $\left\{\mathbf{x}_{0}, \ldots, \mathbf{x}_{K}\right\}$ is \mathbf{x}_{k}. (Note that we have $\mathcal{V}_{0}=\mathcal{V}$ here.)
The sets $\mathcal{V}_{0}, \ldots, \mathcal{V}_{K}$ give a polyhedral decomposition of \mathbb{R}^{n}. More precisely, the sets \mathcal{V}_{k} are polyhedra and we have

$$
\bigcup_{k=0}^{K} \mathcal{V}_{k}=\mathbb{R}^{n}, \operatorname{int}\left(\mathcal{V}_{k}\right) \cap \operatorname{int}\left(\mathcal{V}_{\ell}\right)=\varnothing \text { for } k \neq \ell
$$

In other words, the polyhedra \mathcal{V}_{k} taken together comprise the whole vector space \mathbb{R}^{n} and are such that \mathcal{V}_{k} and \mathcal{V}_{ℓ} intersect at most along a boundary for any $k \neq \ell$.
Suppose now that $\mathcal{P}_{1}, \ldots, \mathcal{P}_{m}$ are polyhedra such that

$$
\bigcup_{k=1}^{m} \mathcal{P}_{k}=\mathbb{R}^{n}, \operatorname{int}\left(\mathcal{P}_{k}\right) \cap \operatorname{int}\left(\mathcal{P}_{\ell}\right)=\varnothing \text { for } k \neq \ell
$$

Can this polyhedral decomposition of \mathbb{R}^{n} be described as the Voronoi regions generated by an appropriate set of points? If so, prove this statement and if not, show a counterexample.
2. (10 points) (Adapted from CO-BV, Exercise 2.10) (Solution set of a quadratic inequality:) Let $\mathcal{C} \subseteq \mathbb{R}^{n}$ be the solution set of the following quadratic inequality:

$$
\mathcal{C} \triangleq\left\{\mathbf{x} \in \mathbb{R}^{n}: \mathbf{x}^{T} \mathbf{A} \mathbf{x}+\mathbf{b}^{T} \mathbf{x}+c \leq 0\right\} .
$$

Here, $\mathbf{A} \in \mathbb{S}^{n}, \mathbf{b} \in \mathbb{R}^{n}$, and $c \in \mathbb{R}$.
(a) Show that \mathcal{C} is convex if $\mathbf{A} \succeq \mathbf{0}$. Also, show via a counterexample that the converse is false.
(b) Show that the intersection of \mathcal{C} with the hyperplane \mathcal{H} defined as

$$
\mathcal{H} \triangleq\left\{\mathbf{x} \in \mathbb{R}^{n}: \mathbf{g}^{T} \mathbf{x}+h=0\right\}
$$

where $\mathbf{g} \in \mathbb{R}^{n}$ with $\mathbf{g} \neq \mathbf{0}$ and $h \in \mathbb{R}$, is convex if $\left(\mathbf{A}+\lambda \mathbf{g g}^{T}\right) \succeq \mathbf{0}$ for some $\lambda \in \mathbb{R}$. Also, show via a counterexample that the converse is false.
3. (10 points) (Adapted from CO-BV, Exercise 2.15) (Some sets of probability distributions:) Let X be a real-valued discrete random variable with $\operatorname{Pr}\left\{X=a_{k}\right\}=p_{k}$ for $k=1, \ldots, n$, where $a_{1}<\cdots<a_{n}$. Also, let $\mathbf{p} \triangleq\left[\begin{array}{lll}p_{1} & \cdots & p_{n}\end{array}\right]^{T}$ denote the associated vector of probabilities. Evidently $\mathbf{p} \in \mathbb{R}^{n}$ and also lies in the standard probability simplex $\mathcal{P} \triangleq\left\{\mathbf{x} \in \mathbb{R}^{n}: \mathbf{1}^{T} \mathbf{x}=1, \mathbf{x} \succeq \mathbf{0}\right\}$. Which of the following conditions are convex in \mathbf{p} ? More specifically, for which of the following conditions is the set of $\mathbf{p} \in \mathcal{P}$ that satisfy the condition convex?
(a) $\alpha \leq E[f(X)] \leq \beta$, where $E[f(X)]$ is the expected value of $f(X)$ given by

$$
E[f(X)]=\sum_{k=1}^{n} p_{k} f\left(a_{k}\right)
$$

The function $f: \mathbb{R} \rightarrow \mathbb{R}$ is given here.
(b) $\operatorname{Pr}\{X>\alpha\} \leq \beta$.
(c) $E\left[|X|^{3}\right] \leq \alpha E[|X|]$.
(d) $E\left[X^{2}\right] \leq \alpha$.
(e) $E\left[X^{2}\right] \geq \alpha$.
(f) $\operatorname{Var}(X) \leq \alpha$, where $\operatorname{Var}(X) \triangleq E\left[(X-E[X])^{2}\right]$ is the variance of X.
(g) $\operatorname{Var}(X) \geq \alpha$.
(h) $Q_{1}(X) \geq \alpha$, where $Q_{1}(X)$ is the first quartile of X defined by

$$
Q_{1}(X)=\inf \left\{\beta: F_{X}(\beta) \geq \frac{1}{4}\right\}
$$

and $F_{X}(x)$ is the cumulative distribution function (cdf) of X given by $F_{X}(x) \triangleq \operatorname{Pr}\{X \leq x\}$. In other words, the first quartile represents the smallest value of X for which all values less than or equal to it account for at least 25% of the total probability.
Hint: The illustration in Figure 1 shows how to calculate the quantile from the cdf. From the example shown in this figure, it is clear that $Q_{1}(X)=a_{2}$ in this case.
(i) $Q_{1}(X) \leq \alpha$.
4. (10 points) (Adapted from CO-BV, Exercise 3.18) (Convexity/concavity of common functions of matrices:) Suppose $\mathbf{X} \in \mathbb{R}^{n \times n}$. Show the following results.
(a) $f(\mathbf{X})=\operatorname{tr}\left(\mathbf{X}^{-1}\right)$ is convex on $\operatorname{dom}(f)=\mathbb{S}_{++}^{n}$.

Figure 1: Illustration showing how to compute the quantile $Q_{1}(X)$ from the cdf $F_{X}(\beta)$. Here, $Q_{1}(X)=a_{2}$.
(b) $f(\mathbf{X})=(\operatorname{det}(\mathbf{X}))^{\frac{1}{n}}$ is concave on $\operatorname{dom}(f)=\mathbb{S}_{++}^{n}$.

Hint: For both cases, determine the convexity/concavity of the matrix function under consideration by considering the convexity/concavity of the scalar function $g(t) \triangleq f(\mathbf{Z}+t \mathbf{V})$, where $\mathbf{Z} \succ \mathbf{0}$ and $\mathbf{V} \in \mathbb{S}^{n}$. Then, with the use of an appropriate eigenvalue decomposition, the results will follow.
*5. (30 points) (Adapted from CO-BV, Exercise 3.25) (Maximum probability distance between distributions:) Let $\mathbf{p}, \mathbf{q} \in \mathbb{R}^{n}$ represent two probability distributions on the set $\{1, \ldots, n\}$ (so that $\mathbf{p}, \mathbf{q} \succeq \mathbf{0}$ and $\mathbf{1}^{T} \mathbf{p}=\mathbf{1}^{T} \mathbf{q}=1$). We define the maximum probability distance $d_{\mathrm{mp}}(\mathbf{p}, \mathbf{q})$ between \mathbf{p} and \mathbf{q} as the maximum difference in probability assigned by \mathbf{p} and \mathbf{q} over all possible events. In other words, we have

$$
d_{\operatorname{mp}}(\mathbf{p}, \mathbf{q}) \triangleq \max \left\{\left|P_{\mathbf{p}}(\mathcal{C})-P_{\mathbf{q}}(\mathcal{C})\right|: \mathcal{C} \subseteq\{1, \ldots, n\}\right\}
$$

Here, $P_{\mathbf{p}}(\mathcal{C})$ is the probability of \mathcal{C} under the distribution \mathbf{p}, i.e., we have

$$
P_{\mathbf{p}}(\mathcal{C}) \triangleq \sum_{k \in \mathcal{C}} p_{k} .
$$

Find a simple expression for $d_{\mathrm{mp}}(\mathbf{p}, \mathbf{q})$, involving $\|\mathbf{p}-\mathbf{q}\|_{1}$, and show that $d_{\mathrm{mp}}(\mathbf{p}, \mathbf{q})$ is a convex function on $\mathbb{R}^{n} \times \mathbb{R}^{n}$. (Its domain is $\left\{(\mathbf{p}, \mathbf{q}): \mathbf{p}, \mathbf{q} \succeq \mathbf{0}, \mathbf{1}^{T} \mathbf{p}=\mathbf{1}^{T} \mathbf{q}=1\right\}$, but it has a natural extension to all of $\mathbb{R}^{n} \times \mathbb{R}^{n}$.)

Reading assignments:

1. Read through Chapter 2 and begin Chapter 3 of CO-BV.

Reminders:

Late homework policy for EE 150: Late homeworks will not be accepted. There will be no exceptions to this other than institute established emergency reasons, in which case a signed letter is required from an authorized official.

NCT Problems: Remember that problems with an asterisk, such as *7 are no collaboration type (NCT) problems.

Texts: The abbreviation CO-BV corresponds to the textbook "Convex Optimization" by Stephen Boyd and Lieven Vandenberghe. In addition, CO-AE refers to the Additional Exercises for Convex Optimization, also by Boyd and Vandenberghe. Finally, CVX corresponds to the cvx Users' Guide by Michael Grant and Stephen Boyd.

