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Dr. Andre Tkacenko, JPL
Third Term 2011-2012

Homework Set #3
Due on Thursday, April 26 in class.

1. (10 points) (Adapted from CO-BV, Exercise 2.9) (Voronoi sets and polyhedral
decomposition:) Let x0, . . . ,xK ∈ Rn denote a set of (K + 1) real vectors. Consider the set
of points in Rn that are closer (in the Euclidean norm sense) to x0 than the other vectors
from above. Specifically, consider the set

V , {x ∈ Rn : ||x− x0||2 ≤ ||x− x`||2 , ` = 1, . . . ,K} .

The set V is called the Voronoi region around x0 with respect to x1, . . . ,xK .

(a) Show that V is a polyhedron. Specifically, express V in the form V = {x : Ax � b}.
(b) Conversely, given a polyhedron P with nonempty interior, show how to find a set of

points x0, . . . ,xK so that the polyhedron is the Voronoi region of x0 with respect to
x1, . . . ,xK .

(c) Similar to the Voronoi region V defined above, we can also consider the following sets:

Vk = {x ∈ Rn : ||x− xk||2 ≤ ||x− x`||2 , ` 6= k} , k = 0, . . . ,K .

The set Vk consists of points in Rn for which the closest point in the set {x0, . . . ,xK}
is xk. (Note that we have V0 = V here.)
The sets V0, . . . ,VK give a polyhedral decomposition of Rn. More precisely, the sets Vk
are polyhedra and we have

K⋃
k=0

Vk = Rn , int(Vk) ∩ int(V`) = ∅ for k 6= ` .

In other words, the polyhedra Vk taken together comprise the whole vector space Rn

and are such that Vk and V` intersect at most along a boundary for any k 6= `.
Suppose now that P1, . . . ,Pm are polyhedra such that

m⋃
k=1

Pk = Rn , int(Pk) ∩ int(P`) = ∅ for k 6= ` .

Can this polyhedral decomposition of Rn be described as the Voronoi regions generated
by an appropriate set of points? If so, prove this statement and if not, show a
counterexample.

2. (10 points) (Adapted from CO-BV, Exercise 2.10) (Solution set of a quadratic inequality:)
Let C ⊆ Rn be the solution set of the following quadratic inequality:

C ,
{
x ∈ Rn : xTAx + bTx + c ≤ 0

}
.

Here, A ∈ Sn, b ∈ Rn, and c ∈ R.



(a) Show that C is convex if A � 0. Also, show via a counterexample that the converse is
false.

(b) Show that the intersection of C with the hyperplane H defined as

H ,
{
x ∈ Rn : gTx + h = 0

}
,

where g ∈ Rn with g 6= 0 and h ∈ R, is convex if
(
A + λggT

)
� 0 for some λ ∈ R.

Also, show via a counterexample that the converse is false.

3. (10 points) (Adapted from CO-BV, Exercise 2.15) (Some sets of probability distributions:)
Let X be a real-valued discrete random variable with Pr {X = ak} = pk for k = 1, . . . , n,

where a1 < · · · < an. Also, let p ,
[
p1 · · · pn

]T
denote the associated vector of

probabilities. Evidently p ∈ Rn and also lies in the standard probability simplex
P ,

{
x ∈ Rn : 1Tx = 1 , x � 0

}
. Which of the following conditions are convex in p? More

specifically, for which of the following conditions is the set of p ∈ P that satisfy the
condition convex?

(a) α ≤ E[f(X)] ≤ β, where E[f(X)] is the expected value of f(X) given by

E[f(X)] =
n∑

k=1

pkf(ak) .

The function f : R→ R is given here.

(b) Pr {X > α} ≤ β.

(c) E
[
|X|3

]
≤ αE[|X|].

(d) E
[
X2
]
≤ α.

(e) E
[
X2
]
≥ α.

(f) Var(X) ≤ α, where Var(X) , E
[
(X − E[X])2

]
is the variance of X.

(g) Var(X) ≥ α.

(h) Q1(X) ≥ α, where Q1(X) is the first quartile of X defined by

Q1(X) = inf

{
β : FX(β) ≥ 1

4

}
,

and FX(x) is the cumulative distribution function (cdf) of X given by
FX(x) , Pr {X ≤ x}. In other words, the first quartile represents the smallest value of
X for which all values less than or equal to it account for at least 25% of the total
probability.
Hint: The illustration in Figure 1 shows how to calculate the quantile from the cdf.
From the example shown in this figure, it is clear that Q1(X) = a2 in this case.

(i) Q1(X) ≤ α.

4. (10 points) (Adapted from CO-BV, Exercise 3.18) (Convexity/concavity of common
functions of matrices:) Suppose X ∈ Rn×n. Show the following results.

(a) f(X) = tr
(
X−1

)
is convex on dom(f) = Sn++.
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Figure 1: Illustration showing how to compute the quantile Q1(X) from the cdf FX(β). Here,
Q1(X) = a2.

(b) f(X) = (det(X))
1
n is concave on dom(f) = Sn++.

Hint: For both cases, determine the convexity/concavity of the matrix function under
consideration by considering the convexity/concavity of the scalar function
g(t) , f(Z + tV), where Z � 0 and V ∈ Sn. Then, with the use of an appropriate
eigenvalue decomposition, the results will follow.

*5. (30 points) (Adapted from CO-BV, Exercise 3.25) (Maximum probability distance between
distributions:) Let p,q ∈ Rn represent two probability distributions on the set {1, . . . , n}
(so that p,q � 0 and 1Tp = 1Tq = 1). We define the maximum probability distance
dmp(p,q) between p and q as the maximum difference in probability assigned by p and q
over all possible events. In other words, we have

dmp(p,q) , max {|Pp(C)− Pq(C)| : C ⊆ {1, . . . , n}} .

Here, Pp(C) is the probability of C under the distribution p, i.e., we have

Pp(C) ,
∑
k∈C

pk .

Find a simple expression for dmp(p,q), involving ||p− q||1, and show that dmp(p,q) is a
convex function on Rn ×Rn. (Its domain is

{
(p,q) : p,q � 0,1Tp = 1Tq = 1

}
, but it has a

natural extension to all of Rn × Rn.)

Reading assignments:

1. Read through Chapter 2 and begin Chapter 3 of CO-BV.

Reminders:

Late homework policy for EE 150: Late homeworks will not be accepted. There will be no
exceptions to this other than institute established emergency reasons, in which case a signed
letter is required from an authorized official.



NCT Problems: Remember that problems with an asterisk, such as *7 are no collaboration type
(NCT) problems.

Texts: The abbreviation CO-BV corresponds to the textbook “Convex Optimization” by Stephen
Boyd and Lieven Vandenberghe. In addition, CO-AE refers to the Additional Exercises for
Convex Optimization, also by Boyd and Vandenberghe. Finally, CVX corresponds to the cvx

Users’ Guide by Michael Grant and Stephen Boyd.

http://www.stanford.edu/~boyd/cvxbook/bv_cvxbook.pdf
http://www.stanford.edu/~boyd/cvxbook/bv_cvxbook_extra_exercises.pdf
http://www.stanford.edu/~boyd/cvxbook/bv_cvxbook_extra_exercises.pdf
http://web.cvxr.com/cvx/cvx_usrguide.pdf
http://web.cvxr.com/cvx/cvx_usrguide.pdf

