EE 150 - Applications of Convex Optimization in Signal Processing and Communications Dr. Andre Tkacenko, JPL Third Term 2011-2012

Homework Set #3

Due on Thursday, April 26 in class.

1. (10 points) (Adapted from CO-BV, Exercise 2.9) (Voronoi sets and polyhedral decomposition:) Let $\mathbf{x}_0, \ldots, \mathbf{x}_K \in \mathbb{R}^n$ denote a set of (K + 1) real vectors. Consider the set of points in \mathbb{R}^n that are closer (in the Euclidean norm sense) to \mathbf{x}_0 than the other vectors from above. Specifically, consider the set

$$\mathcal{V} \triangleq \{\mathbf{x} \in \mathbb{R}^n : ||\mathbf{x} - \mathbf{x}_0||_2 \le ||\mathbf{x} - \mathbf{x}_\ell||_2, \ \ell = 1, \dots, K\}.$$

The set \mathcal{V} is called the *Voronoi region* around \mathbf{x}_0 with respect to $\mathbf{x}_1, \ldots, \mathbf{x}_K$.

- (a) Show that \mathcal{V} is a polyhedron. Specifically, express \mathcal{V} in the form $\mathcal{V} = \{\mathbf{x} : \mathbf{A}\mathbf{x} \leq \mathbf{b}\}$.
- (b) Conversely, given a polyhedron \mathcal{P} with nonempty interior, show how to find a set of points $\mathbf{x}_0, \ldots, \mathbf{x}_K$ so that the polyhedron is the Voronoi region of \mathbf{x}_0 with respect to $\mathbf{x}_1, \ldots, \mathbf{x}_K$.
- (c) Similar to the Voronoi region \mathcal{V} defined above, we can also consider the following sets:

$$\mathcal{V}_k = \{ \mathbf{x} \in \mathbb{R}^n : ||\mathbf{x} - \mathbf{x}_k||_2 \le ||\mathbf{x} - \mathbf{x}_\ell||_2, \ \ell \ne k \}, \ k = 0, \dots, K$$

The set \mathcal{V}_k consists of points in \mathbb{R}^n for which the closest point in the set $\{\mathbf{x}_0, \ldots, \mathbf{x}_K\}$ is \mathbf{x}_k . (Note that we have $\mathcal{V}_0 = \mathcal{V}$ here.)

The sets $\mathcal{V}_0, \ldots, \mathcal{V}_K$ give a polyhedral decomposition of \mathbb{R}^n . More precisely, the sets \mathcal{V}_k are polyhedra and we have

$$\bigcup_{k=0}^{K} \mathcal{V}_{k} = \mathbb{R}^{n}, \text{ int}(\mathcal{V}_{k}) \cap \text{int}(\mathcal{V}_{\ell}) = \emptyset \text{ for } k \neq \ell.$$

In other words, the polyhedra \mathcal{V}_k taken together comprise the whole vector space \mathbb{R}^n and are such that \mathcal{V}_k and \mathcal{V}_ℓ intersect at most along a boundary for any $k \neq \ell$. Suppose now that $\mathcal{P}_1, \ldots, \mathcal{P}_m$ are polyhedra such that

$$\bigcup_{k=1}^{m} \mathcal{P}_{k} = \mathbb{R}^{n}, \text{ int}(\mathcal{P}_{k}) \cap \text{ int}(\mathcal{P}_{\ell}) = \emptyset \text{ for } k \neq \ell.$$

Can this polyhedral decomposition of \mathbb{R}^n be described as the Voronoi regions generated by an appropriate set of points? If so, prove this statement and if not, show a counterexample.

2. (10 points) (Adapted from CO-BV, Exercise 2.10) (Solution set of a quadratic inequality:) Let $\mathcal{C} \subseteq \mathbb{R}^n$ be the solution set of the following quadratic inequality:

$$\mathcal{C} \triangleq \left\{ \mathbf{x} \in \mathbb{R}^n : \mathbf{x}^T \mathbf{A} \mathbf{x} + \mathbf{b}^T \mathbf{x} + c \le 0 \right\}$$

Here, $\mathbf{A} \in \mathbb{S}^n$, $\mathbf{b} \in \mathbb{R}^n$, and $c \in \mathbb{R}$.

- (a) Show that C is convex if $\mathbf{A} \succeq \mathbf{0}$. Also, show via a counterexample that the converse is false.
- (b) Show that the intersection of \mathcal{C} with the hyperplane \mathcal{H} defined as

$$\mathcal{H} \triangleq \left\{ \mathbf{x} \in \mathbb{R}^n : \mathbf{g}^T \mathbf{x} + h = 0 \right\} \,$$

where $\mathbf{g} \in \mathbb{R}^n$ with $\mathbf{g} \neq \mathbf{0}$ and $h \in \mathbb{R}$, is convex if $(\mathbf{A} + \lambda \mathbf{g}\mathbf{g}^T) \succeq \mathbf{0}$ for some $\lambda \in \mathbb{R}$. Also, show via a counterexample that the converse is false.

- **3.** (10 points) (Adapted from CO-BV, Exercise 2.15) (Some sets of probability distributions:) Let X be a real-valued discrete random variable with $\Pr \{X = a_k\} = p_k$ for k = 1, ..., n, where $a_1 < \cdots < a_n$. Also, let $\mathbf{p} \triangleq \begin{bmatrix} p_1 & \cdots & p_n \end{bmatrix}^T$ denote the associated vector of probabilities. Evidently $\mathbf{p} \in \mathbb{R}^n$ and also lies in the standard probability simplex $\mathcal{P} \triangleq \{\mathbf{x} \in \mathbb{R}^n : \mathbf{1}^T \mathbf{x} = 1, \mathbf{x} \succeq \mathbf{0}\}$. Which of the following conditions are convex in \mathbf{p} ? More specifically, for which of the following conditions is the set of $\mathbf{p} \in \mathcal{P}$ that satisfy the condition convex?
 - (a) $\alpha \leq E[f(X)] \leq \beta$, where E[f(X)] is the expected value of f(X) given by

$$E[f(X)] = \sum_{k=1}^{n} p_k f(a_k) .$$

The function $f : \mathbb{R} \to \mathbb{R}$ is given here.

- (b) $\Pr\{X > \alpha\} \le \beta$.
- (c) $E[|X|^3] \leq \alpha E[|X|].$
- (d) $E[X^2] \leq \alpha$.
- (e) $E[X^2] \ge \alpha$.

(f)
$$\operatorname{Var}(X) \leq \alpha$$
, where $\operatorname{Var}(X) \triangleq E\left[\left(X - E[X]\right)^2\right]$ is the variance of X.

- (g) $\operatorname{Var}(X) \ge \alpha$.
- (h) $Q_1(X) \ge \alpha$, where $Q_1(X)$ is the first quartile of X defined by

$$Q_1(X) = \inf\left\{\beta : F_X(\beta) \ge \frac{1}{4}\right\},$$

and $F_X(x)$ is the *cumulative distribution function* (cdf) of X given by $F_X(x) \triangleq \Pr \{X \leq x\}$. In other words, the first quartile represents the smallest value of X for which all values less than or equal to it account for at least 25% of the total probability.

Hint: The illustration in Figure 1 shows how to calculate the quantile from the cdf. From the example shown in this figure, it is clear that $Q_1(X) = a_2$ in this case.

- (i) $Q_1(X) \leq \alpha$.
- 4. (10 points) (Adapted from CO-BV, Exercise 3.18) (*Convexity/concavity of common functions of matrices:*) Suppose $\mathbf{X} \in \mathbb{R}^{n \times n}$. Show the following results.

(a)
$$f(\mathbf{X}) = \operatorname{tr}(\mathbf{X}^{-1})$$
 is convex on $\operatorname{dom}(f) = \mathbb{S}_{++}^n$

Figure 1: Illustration showing how to compute the quantile $Q_1(X)$ from the cdf $F_X(\beta)$. Here, $Q_1(X) = a_2$.

(b)
$$f(\mathbf{X}) = (\det(\mathbf{X}))^{\frac{1}{n}}$$
 is concave on $\operatorname{dom}(f) = \mathbb{S}_{++}^n$.

Hint: For both cases, determine the convexity/concavity of the matrix function under consideration by considering the convexity/concavity of the scalar function $g(t) \triangleq f(\mathbf{Z} + t\mathbf{V})$, where $\mathbf{Z} \succ \mathbf{0}$ and $\mathbf{V} \in \mathbb{S}^n$. Then, with the use of an appropriate eigenvalue decomposition, the results will follow.

*5. (30 points) (Adapted from CO-BV, Exercise 3.25) (Maximum probability distance between distributions:) Let $\mathbf{p}, \mathbf{q} \in \mathbb{R}^n$ represent two probability distributions on the set $\{1, \ldots, n\}$ (so that $\mathbf{p}, \mathbf{q} \succeq \mathbf{0}$ and $\mathbf{1}^T \mathbf{p} = \mathbf{1}^T \mathbf{q} = 1$). We define the maximum probability distance $d_{\rm mp}(\mathbf{p}, \mathbf{q})$ between \mathbf{p} and \mathbf{q} as the maximum difference in probability assigned by \mathbf{p} and \mathbf{q} over all possible events. In other words, we have

$$d_{\rm mp}(\mathbf{p}, \mathbf{q}) \triangleq \max\left\{ |P_{\mathbf{p}}(\mathcal{C}) - P_{\mathbf{q}}(\mathcal{C})| : \mathcal{C} \subseteq \{1, \dots, n\} \right\}.$$

Here, $P_{\mathbf{p}}(\mathcal{C})$ is the probability of \mathcal{C} under the distribution \mathbf{p} , i.e., we have

$$P_{\mathbf{p}}(\mathcal{C}) \triangleq \sum_{k \in \mathcal{C}} p_k$$

Find a simple expression for $d_{\rm mp}(\mathbf{p}, \mathbf{q})$, involving $||\mathbf{p} - \mathbf{q}||_1$, and show that $d_{\rm mp}(\mathbf{p}, \mathbf{q})$ is a convex function on $\mathbb{R}^n \times \mathbb{R}^n$. (Its domain is $\{(\mathbf{p}, \mathbf{q}) : \mathbf{p}, \mathbf{q} \succeq \mathbf{0}, \mathbf{1}^T \mathbf{p} = \mathbf{1}^T \mathbf{q} = 1\}$, but it has a natural extension to all of $\mathbb{R}^n \times \mathbb{R}^n$.)

Reading assignments:

1. Read through Chapter 2 and begin Chapter 3 of CO-BV.

Reminders:

Late homework policy for EE 150: Late homeworks will not be accepted. There will be no exceptions to this other than institute established emergency reasons, in which case a signed letter is required from an authorized official.

 $NCT\ Problems:$ Remember that problems with an asterisk, such as *7 are no collaboration type (NCT) problems.

Texts: The abbreviation CO-BV corresponds to the textbook "*Convex Optimization*" by Stephen Boyd and Lieven Vandenberghe. In addition, CO-AE refers to the *Additional Exercises for Convex Optimization*, also by Boyd and Vandenberghe. Finally, CVX corresponds to the cvx *Users' Guide* by Michael Grant and Stephen Boyd.