EE 150 - Applications of Convex Optimization in Signal Processing and Communications Dr. Andre Tkacenko, JPL
 Third Term 2011-2012

Homework Set \#4

Due on Thursday, May $\mathbf{3}$ in class.

1. (10 points) (Adapted from CO-BV, Exercise 3.49) (Log-concave functions:) Show that the following functions are log-concave.
(a) Logistic function:

$$
f(x)=\frac{e^{x}}{1+e^{x}}, \operatorname{dom}(f(x))=\mathbb{R}
$$

(b) Harmonic mean:

$$
f(\mathbf{x})=\frac{1}{\frac{1}{x_{1}}+\cdots+\frac{1}{x_{n}}}, \operatorname{dom}(f(\mathbf{x}))=\mathbb{R}_{++}^{n}
$$

(c) Product over sum:

$$
f(\mathbf{x})=\frac{\prod_{k=1}^{n} x_{k}}{\sum_{k=1}^{n} x_{k}}, \operatorname{dom}(f(\mathbf{x}))=\mathbb{R}_{++}^{n}
$$

(d) Determinant over trace:

$$
f(\mathbf{X})=\frac{\operatorname{det}(\mathbf{X})}{\operatorname{tr}(\mathbf{X})}, \operatorname{dom}(f(\mathbf{X}))=\mathbb{S}_{++}^{n} .
$$

Hint: The Cauchy-Schwarz inequality may be useful here, which states that for any inner product $\langle\cdot, \cdot\rangle$, we have

$$
|\langle\mathbf{x}, \mathbf{y}\rangle|^{2} \leq\langle\mathbf{x}, \mathbf{x}\rangle \cdot\langle\mathbf{y}, \mathbf{y}\rangle,
$$

with equality if and only if \mathbf{x} and \mathbf{y} are linearly dependent, which is equivalent to saying that either $\mathbf{y}=C \mathbf{x}$ or $\mathbf{x}=C \mathbf{y}$ for some $C \in \mathbb{F}$.
2. (10 points) (Adapted from CO-BV, Exercise 4.7) (Convex-affine/convex-concave fractional functions:)
(a) Convex-affine fractional functions: Consider a problem of the following form:

$$
\begin{array}{ll}
\operatorname{minimize} & \frac{f_{0}(\mathbf{x})}{\mathbf{c}^{T} \mathbf{x}+d} \\
\text { subject to } & f_{k}(\mathbf{x}) \leq 0, k=1, \ldots, m \\
& \mathbf{A x}=\mathbf{b}
\end{array}
$$

where $f_{0}(\mathbf{x}), \mathbf{f}_{1}(\mathbf{x}), \ldots, f_{m}(\mathbf{x})$ are convex, and the domain of the objective function is defined as $\left\{\mathbf{x} \in \operatorname{dom}\left(f_{0}(\mathbf{x})\right): \mathbf{c}^{T} \mathbf{x}+d>0\right\}$.
i. Show that this is a quasiconvex optimization problem.
ii. Show that the problem is equivalent to

$$
\begin{array}{ll}
\operatorname{minimize} & g_{0}(\mathbf{y}, t) \\
\text { subject to } & g_{k}(\mathbf{y}, t) \leq 0, k=1, \ldots, m \\
& \mathbf{A y}=\mathbf{b} t \\
& \mathbf{c}^{T} \mathbf{y}+t d=1
\end{array}
$$

where $g_{k}(\mathbf{x}, t)$ is the perspective of $f_{k}(\mathbf{x})$, i.e., $g_{k}(\mathbf{x}, t)=t f_{k}(\mathbf{x} / t)$. The variables are $\mathbf{y} \in \mathbb{R}^{n}$ and $t \in \mathbb{R}$. Show that this problem is convex.
(b) Convex-concave fractional functions: Analogous to the problem analyzed above, consider a problem of the form:

$$
\begin{array}{ll}
\operatorname{minimize} & \frac{f_{0}(\mathbf{x})}{h(\mathbf{x})} \\
\text { subject to } & f_{k}(\mathbf{x}) \leq 0, k=1, \ldots, m \\
& \mathbf{A x}=\mathbf{b}
\end{array}
$$

where $f_{0}(\mathbf{x}), \mathbf{f}_{1}(\mathbf{x}), \ldots, f_{m}(\mathbf{x})$ are convex, $h(\mathbf{x})$ is concave, and the domain of the objective function is defined as $\left\{\mathbf{x} \in \operatorname{dom}\left(f_{0}(\mathbf{x})\right) \cap \operatorname{dom}(h(\mathbf{x})): h(\mathbf{x})>0\right\}$ and $f_{0}(\mathbf{x}) \geq 0$ everywhere.
i. Show that this is a quasiconvex optimization problem.
ii. Show that the problem is equivalent to

$$
\begin{array}{ll}
\operatorname{minimize} & g_{0}(\mathbf{y}, t) \\
\text { subject to } & g_{k}(\mathbf{y}, t) \leq 0, k=1, \ldots, m \\
& \mathbf{A y}=\mathbf{b} t \\
& \widetilde{h}(\mathbf{y}, t) \leq-1
\end{array}
$$

where $g_{k}(\mathbf{x}, t)$ is the perspective of $f_{k}(\mathbf{x})$ and $\widetilde{h}(\mathbf{x}, t)$ is the perspective of $-h(\mathbf{x})$. Show that this problem is convex.
iii. As an example, apply the technique derived in the previous part to the unconstrained problem with

$$
f_{0}(\mathbf{x})=\frac{1}{m} \operatorname{tr}(\mathbf{F}(\mathbf{x})), h(\mathbf{x})=(\operatorname{det}(\mathbf{F}(\mathbf{x})))^{\frac{1}{m}},
$$

with $\operatorname{dom}\left(\frac{f_{0}(\mathbf{x})}{h(\mathbf{x})}\right)=\{\mathbf{x}: \mathbf{F}(\mathbf{x}) \succ \mathbf{0}\}$, where $\mathbf{F}(\mathbf{x})=\mathbf{F}_{0}+x_{1} \mathbf{F}_{1}+\cdots+x_{n} \mathbf{F}_{n}$ for given $\mathbf{F}_{k} \in \mathbb{S}^{m}$. In this problem, we minimize the ratio of the arithmetic mean over the geometric mean of the eigenvalues of an affine matrix function $\mathbf{F}(\mathbf{x})$.
3. (10 points) (Adapted from CO-BV, Exercise 4.24) (Complex $\ell_{1}-\ell_{2}-$, and ℓ_{∞}-norm approximation:) Consider the problem

$$
\operatorname{minimize}\|\mathbf{A x}-\mathbf{b}\|_{p},
$$

where $\mathbf{A} \in \mathbb{C}^{m \times n}, \mathbf{b} \in \mathbb{C}^{m}$, and the variable is $\mathbf{x} \in \mathbb{C}^{n}$. Recall that the (real or complex) ℓ_{p}-norm is defined by

$$
\|\mathbf{y}\|_{p} \triangleq\left(\sum_{k=1}^{m}\left|y_{k}\right|^{p}\right)^{\frac{1}{p}}
$$

for $p \geq 1$, and $\|\mathbf{y}\|_{\infty}=\max _{k=1, \ldots, m}\left|y_{k}\right|$. For $p=1,2$, and ∞, express the complex ℓ_{p}-norm approximation problem as a second-order cone program (SOCP) or quadratically constrained quadratic program (QCQP) with real variables and data.
4. (10 points) (Adapted from CO-AE, Exercise 3.11) (Using Schur complements to express matrix-based optimization problems as semidefinite programs:) Formulate each of the following optimization problems as a semidefinite program (SDP). The variable is $\mathbf{x} \in \mathbb{R}^{n}$ and the function $\mathbf{F}(\mathbf{x})$ is defined as

$$
\mathbf{F}(\mathbf{x})=\mathbf{F}_{0}+x_{1} \mathbf{F}_{1}+\cdots+x_{n} \mathbf{F}_{n}
$$

with $\mathbf{F}_{k} \in \mathbb{S}^{m}$. The domain of $f(\mathbf{x})$ in each subproblem is $\operatorname{dom}(f(\mathbf{x}))=\left\{\mathbf{x} \in \mathbb{R}^{n}: \mathbf{F}(\mathbf{x}) \succ \mathbf{0}\right\}$.
(a) Minimize $f(\mathbf{x})=\mathbf{c}^{T}(\mathbf{F}(\mathbf{x}))^{-1} \mathbf{c}$, where $\mathbf{c} \in \mathbb{R}^{m}$.
(b) Minimize $f(\mathbf{x})=\max _{k=1, \ldots, K} \mathbf{c}_{k}^{T}(\mathbf{F}(\mathbf{x}))^{-1} \mathbf{c}_{k}$, where $\mathbf{c}_{k} \in \mathbb{R}^{m}$ for $k=1, \ldots, K$.
(c) Minimize $f(\mathbf{x})=\sup _{\|\mathbf{c}\|_{2} \leq 1} \mathbf{c}^{T}(\mathbf{F}(\mathbf{x}))^{-1} \mathbf{c}$.
(d) Minimize $f(\mathbf{x})=E\left[\mathbf{c}^{T}(\mathbf{F}(\mathbf{x}))^{-1} \mathbf{c}\right]$, where \mathbf{c} is a random vector with mean $\overline{\mathbf{c}}=E[\mathbf{c}]$ and covariance $\mathbf{S}=E\left[(\mathbf{c}-\overline{\mathbf{c}})(\mathbf{c}-\overline{\mathbf{c}})^{T}\right]$. Assume here that the covariance matrix has the following representation: $\mathbf{S}=\sum_{k=1}^{m} \mathbf{s}_{k} \mathbf{s}_{k}^{T}$, where $\mathbf{s}_{k} \in \mathbb{R}^{m}$ for $k=1, \ldots, m$.
*5. (30 points) (Adapted from CO-AE, Exercise 2.19) (Majorization and symmetric functions of eigenvalues:) Here, we use $\mathbf{x}_{[k]}$ to denote the k-th largest element of a vector $\mathbf{x} \in \mathbb{R}^{n}$. Thus, $\mathbf{x}_{[1]}, \mathbf{x}_{[2]}, \ldots, \mathbf{x}_{[n]}$ are the elements of \mathbf{x} sorted in decreasing order. We say that a vector $\mathbf{y} \in \mathbb{R}^{n}$ majorizes a vector $\mathbf{x} \in \mathbb{R}^{n}$ if

$$
\begin{aligned}
\mathbf{y}_{[1]} & \geq \mathbf{x}_{[1]}, \\
\mathbf{y}_{[1]}+\mathbf{y}_{[2]} & \geq \mathbf{x}_{[1]}+\mathbf{x}_{[2]}, \\
\mathbf{y}_{[1]}+\mathbf{y}_{[2]}+\mathbf{y}_{[3]} & \geq \mathbf{x}_{[1]}+\mathbf{x}_{[2]}+\mathbf{x}_{[3]}, \\
& \vdots \\
\mathbf{y}_{[1]}+\mathbf{y}_{[2]}+\cdots+\mathbf{y}_{[n-1]} & \geq \mathbf{x}_{[1]}+\mathbf{x}_{[2]}+\cdots+\mathbf{x}_{[n-1]}, \\
\mathbf{y}_{[1]}+\mathbf{y}_{[2]}+\cdots+\mathbf{y}_{[n]} & =\mathbf{x}_{[1]}+\mathbf{x}_{[2]}+\cdots+\mathbf{x}_{[n]} .
\end{aligned}
$$

In other words, the descending-ordered partial sums of \mathbf{y} are greater than or equal to those of \mathbf{x} and the sum of the components of \mathbf{y} and \mathbf{x} are equal.
(a) It can be shown that \mathbf{y} majorizes \mathbf{x} if and only if there exists a doubly stochastic matrix \mathbf{P} such that $\mathbf{x}=\mathbf{P y}$. A doubly stochastic matrix is one with nonnegative entries whose rows and columns add up to unity:

$$
P_{k, \ell} \geq 0, k, \ell=1, \ldots, n, \mathbf{P} 1=\mathbf{1}, \mathbf{1}^{T} \mathbf{P}=\mathbf{1}^{T} .
$$

Use this characterization to show the following: if $f: \mathbb{R} \rightarrow \mathbb{R}$ is a convex function and \mathbf{y} majorizes \mathbf{x}, then

$$
\sum_{k=1}^{n} f\left(y_{k}\right) \geq \sum_{k=1}^{n} f\left(x_{k}\right)
$$

(b) We use the notation $\lambda_{k}(\mathbf{X})$ to denote the k-th largest eigenvalue of a matrix $\mathbf{X} \in \mathbb{S}^{n}$, so that $\lambda_{1}(\mathbf{X}), \ldots, \lambda_{n}(\mathbf{X})$ are the eigenvalues of \mathbf{X} sorted in decreasing order. Let r be any integer in the set $\{1, \ldots, n\}$. Show that

$$
\begin{equation*}
\lambda_{1}(\mathbf{X})+\cdots+\lambda_{r}(\mathbf{X})=\sup \left\{\operatorname{tr}(\mathbf{X Z}): \mathbf{Z} \in \mathbb{S}^{n}, \mathbf{0} \preceq \mathbf{Z} \preceq \mathbf{I}, \operatorname{tr}(\mathbf{Z})=r\right\} . \tag{1}
\end{equation*}
$$

What does this tell us about the convexity properties of the function $g_{r}(\mathbf{X})=\lambda_{1}(\mathbf{X})+\cdots+\lambda_{r}(\mathbf{X})$ (i.e., the sum of the largest r eigenvalues of \mathbf{X})?

Hint: Show that the right-hand side of (1) is equal to the left-hand side by using an eigenvalue decomposition of \mathbf{X} to reduce the maximization in (1) to a simple linear program whose solution is the sum of the r largest eigenvalues of \mathbf{X}.
(c) Let $\mathbf{X}=\theta \mathbf{U}+(1-\theta) \mathbf{V}$ be a convex combination of two matrices $\mathbf{U}, \mathbf{V} \in \mathbb{S}^{n}$. Use the results of the previous part to show that the vector

$$
\mathbf{a} \triangleq \theta\left[\begin{array}{c}
\lambda_{1}(\mathbf{U}) \\
\vdots \\
\lambda_{n}(\mathbf{U})
\end{array}\right]+(1-\theta)\left[\begin{array}{c}
\lambda_{1}(\mathbf{V}) \\
\vdots \\
\lambda_{n}(\mathbf{V})
\end{array}\right]
$$

majorizes the vector $\mathbf{b} \triangleq\left[\begin{array}{lll}\lambda_{1}(\mathbf{X}) & \cdots & \lambda_{n}(\mathbf{X})\end{array}\right]^{T}$.
(d) Combine the results of parts (a) and (c) to show that if $f: \mathbb{R} \rightarrow \mathbb{R}$ is convex, then the function $h: \mathbb{S}^{n} \rightarrow \mathbb{R}$ defined as

$$
h(\mathbf{X})=\sum_{k=1}^{n} f\left(\lambda_{k}(\mathbf{X})\right)
$$

is convex.
For example, by taking $f(x)=x \log (x)$, we can conclude that the function $h(\mathbf{X})=\sum_{k=1}^{n} \lambda_{k}(\mathbf{X}) \log \left(\lambda_{k}(\mathbf{X})\right)$ is convex on \mathbb{S}_{++}^{n}. This function arises in quantum information theory where it is known as the (negative) Von Neumann entropy. When \mathbf{X} is diagonal, i.e., $\mathbf{X}=\operatorname{diag}(\mathbf{x})$, it reduces to the negative Shannon entropy $\sum_{k} x_{k} \log x_{k}$.

Reading assignments:

1. Read through Chapter 3 and begin Chapter 4 of CO-BV.

Reminders:

Late homework policy for EE 150: Late homeworks will not be accepted. There will be no exceptions to this other than institute established emergency reasons, in which case a signed letter is required from an authorized official.

NCT Problems: Remember that problems with an asterisk, such as *7 are no collaboration type
(NCT) problems.
Texts: The abbreviation CO-BV corresponds to the textbook "Convex Optimization" by Stephen Boyd and Lieven Vandenberghe. In addition, CO-AE refers to the Additional Exercises for Convex Optimization, also by Boyd and Vandenberghe. Finally, CVX corresponds to the cvx Users' Guide by Michael Grant and Stephen Boyd.

