EE 150 - Applications of Convex Optimization in Signal Processing and Communications
Dr. Andre Tkacenko, JPL
Third Term 2011-2012

Homework Set #4

Due on Thursday, May 3 in class.

1. (10 points) (Adapted from CO-BV, Exercise 3.49) (Log-concave functions:) Show that the
following functions are log-concave.

(a) Logistic function:

e
f) = 15—, dom(f(2) =R
(b) Harmonic mean:
1
f(x) = 1. 1 dom(f(x)) = R:L--i-
(¢) Product over sum:
[[ o
fx) =T dom(f(x)) = RY,
Dok
k=1
(d) Determinant over trace:
_ det(X) e
f(X) - tI‘(X) ’ dOHl(f(X)) - S++ '

Hint: The Cauchy-Schwarz inequality may be useful here, which states that for any inner
product (-, ), we have
5, y)° < (%) - (v, y)

with equality if and only if x and y are linearly dependent, which is equivalent to saying
that either y = C'x or x = Cy for some C € F.

2. (10 points) (Adapted from CO-BV, Exercise 4.7) (Convez-affine/convex-concave fractional
functions:)

(a) Convez-affine fractional functions: Consider a problem of the following form:

minimize Jolx)
cI'x+d
subject to  fx(x) <0, k=1,...,m >’
Ax =D
where fo(x),f1(x),..., fm(x) are convex, and the domain of the objective function is

defined as {x € dom(fy(x)): c'x+d > 0}.

i. Show that this is a quasiconvex optimization problem.



ii. Show that the problem is equivalent to

minimize  go(y,t)
subject to gx(y,t) <0, k=1,...,m
Ay =Dbt ’
cly+td=1
where gx(x,t) is the perspective of fi(x), i.e., gr(x,t) = tfr(x/t). The variables
are y € R" and ¢t € R. Show that this problem is convex.

(b) Convex-concave fractional functions: Analogous to the problem analyzed above,
consider a problem of the form:

o fo(x)
minimize
h(x)
subject to  fr(x) <0, k=1,...,m "’
Ax=Db
where fo(x),f1(x),..., fm(x) are convex, h(x) is concave, and the domain of the

objective function is defined as {x € dom(fp(x)) Ndom(h(x)) : h(x) > 0} and
fo(x) > 0 everywhere.

i. Show that this is a quasiconvex optimization problem.
ii. Show that the problem is equivalent to

minimize  go(y,t)

subject to gx(y,t) <0, k=1,....,m
Ay =Dbt ’
h(y,t) < —1

where gj,(x, t) is the perspective of fi(x) and h(x,t) is the perspective of —h(x).
Show that this problem is convex.

iii. As an example, apply the technique derived in the previous part to the
unconstrained problem with

fol®) = “tx(F(x)) , h(x) = (det(F(x)))% |

m

with dom(f0 x)> = {x: F(x) > 0}, where F(x) =Fo + 2:F1 +--- + 2, F,, for
given Fj € S™. In this problem, we minimize the ratio of the arithmetic mean over
the geometric mean of the eigenvalues of an affine matrix function F(x).

3. (10 points) (Adapted from CO-BV, Exercise 4.24) (Complex {1- l2-, and log-norm

approzimation:) Consider the problem
minimize [[Ax — bl|,

where A € C"™*" b € C™, and the variable is x € C". Recall that the (real or complex)
{p-norm is defined by

n O\
I, & (z |yk|p)
k=1



*5.

for p> 1, and ||y|| = max lyk|. For p =1, 2, and oo, express the complex ¢,-norm

approximation problem as a second-order cone program (SOCP) or quadratically constrained
quadratic program (QCQP) with real variables and data.

(10 points) (Adapted from CO-AE, Exercise 3.11) (Using Schur complements to express
matriz-based optimization problems as semidefinite programs:) Formulate each of the
following optimization problems as a semidefinite program (SDP). The variable is x € R"
and the function F(x) is defined as

F(X) :F0+$1F1 —i——l—l’nFn,
with Fj, € S™. The domain of f(x) in each subproblem is dom(f(x)) = {x € R" : F(x) > 0}.

(a) Minimize f(x) =c? (F(x)) ' ¢, where ¢ € R™.
(b) Minimize f(x) = i machz (F(x)) ' cp, where ¢y e R™ for k=1,..., K.

=1,...

(¢) Minimize f(x) = sup ¢ (F(x)) 'ec.
lell,<1

(d) Minimize f(x) =FE |:CT (F(x)) ™" c}, where c is a random vector with mean ¢ = F|c]

and covariance S = E [(c —C)(c— E)T} . Assume here that the covariance matrix has

the following representation: S = Z sksf, where s € R™ for k=1,...,m.
k=1

(30 points) (Adapted from CO-AE, Exercise 2.19) (Majorization and symmetric functions of
eigenvalues:) Here, we use x| to denote the k-th largest element of a vector x € R". Thus,
X(1],X[2]; - - - » X[n] are the elements of x sorted in decreasing order. We say that a vector

y € R™ majorizes a vector x € R" if

yp 2 Xqps
Y tye = XgtXpg,
Yty typE 2 Xp Xt X,
Yoty toootYn-y = X tXp oo+ Xpoq),
Y+ ¥+t Y = XgtXg oo Xy

In other words, the descending-ordered partial sums of y are greater than or equal to those
of x and the sum of the components of y and x are equal.

(a) It can be shown that y majorizes x if and only if there exists a doubly stochastic matrix
P such that x = Py. A doubly stochastic matrix is one with nonnegative entries whose
rows and columns add up to unity:

Piy>0, ktl=1,....n, P1=1, 1TP =17,

Use this characterization to show the following: if f : R — R is a convex function and

> ) =D flaw)
k=1 k=1

y majorizes x, then



(b) We use the notation A (X) to denote the k-th largest eigenvalue of a matrix X € S”, so
that A1(X),..., A\, (X) are the eigenvalues of X sorted in decreasing order. Let r be
any integer in the set {1,...,n}. Show that

AMX) 4+ M(X) =sup {tr(XZ) : ZeS", 0<Z =<1, tr(Z)=r}. (1)

What does this tell us about the convexity properties of the function
gr(X) =M (X) + -+ A (X) (i.e., the sum of the largest r eigenvalues of X)?

Hint: Show that the right-hand side of (1) is equal to the left-hand side by using an
eigenvalue decomposition of X to reduce the maximization in (1) to a simple linear
program whose solution is the sum of the r largest eigenvalues of X.

(¢c) Let X =0U + (1 —6)V be a convex combination of two matrices U,V € S". Use the
results of the previous part to show that the vector

A1(U) A(V)
a=6 +(1-90)
An(U) An (V)
majorizes the vector b = [ \(X) -+ Ap(X) ]T.

(d) Combine the results of parts (a) and (c) to show that if f: R — R is convex, then the
function h : S™ — R defined as

X)=) fw(X
k=1

1S convex.

For example, by taking f(z) = xlog(z), we can conclude that the function

Z Ak(X) log(Ax(X)) is convex on S} . This function arises in quantum

mformatlon theory where it is known as the (negative) Von Neumann entropy. When X

is diagonal, i.e., X = diag(x), it reduces to the negative Shannon entropy Z x) log xp.
k

Reading assignments:

1. Read through Chapter 3 and begin Chapter 4 of CO-BV.

Reminders:
Late homework policy for EE 150: Late homeworks will not be accepted. There will be no
exceptions to this other than institute established emergency reasons, in which case a signed

letter is required from an authorized official.

NCT Problems: Remember that problems with an asterisk, such as *7 are no collaboration type



(NCT) problems.

Texts: The abbreviation CO-BV corresponds to the textbook “Convexr Optimization” by Stephen
Boyd and Lieven Vandenberghe. In addition, CO-AE refers to the Additional Exercises for

Convex Optimization, also by Boyd and Vandenberghe. Finally, CVX corresponds to the cvx
Users’ Guide by Michael Grant and Stephen Boyd.



http://www.stanford.edu/~boyd/cvxbook/bv_cvxbook.pdf
http://www.stanford.edu/~boyd/cvxbook/bv_cvxbook_extra_exercises.pdf
http://www.stanford.edu/~boyd/cvxbook/bv_cvxbook_extra_exercises.pdf
http://web.cvxr.com/cvx/cvx_usrguide.pdf
http://web.cvxr.com/cvx/cvx_usrguide.pdf

