
EE 150 - Applications of Convex Optimization in Signal Processing and Communications
Dr. Andre Tkacenko, JPL
Third Term 2011-2012

Homework Set #4
Due on Thursday, May 3 in class.

1. (10 points) (Adapted from CO-BV, Exercise 3.49) (Log-concave functions:) Show that the
following functions are log-concave.

(a) Logistic function:

f(x) =
ex

1 + ex
, dom(f(x)) = R .

(b) Harmonic mean:

f(x) =
1

1
x1

+ · · ·+ 1
xn

, dom(f(x)) = Rn
++ .

(c) Product over sum:

f(x) =

n∏
k=1

xk

n∑
k=1

xk

, dom(f(x)) = Rn
++ .

(d) Determinant over trace:

f(X) =
det(X)

tr(X)
, dom(f(X)) = Sn++ .

Hint: The Cauchy-Schwarz inequality may be useful here, which states that for any inner
product 〈·, ·〉, we have

|〈x,y〉|2 ≤ 〈x,x〉 · 〈y,y〉 ,

with equality if and only if x and y are linearly dependent, which is equivalent to saying
that either y = Cx or x = Cy for some C ∈ F.

2. (10 points) (Adapted from CO-BV, Exercise 4.7) (Convex-affine/convex-concave fractional
functions:)

(a) Convex-affine fractional functions: Consider a problem of the following form:

minimize
f0(x)

cTx + d
subject to fk(x) ≤ 0 , k = 1, . . . ,m

Ax = b

,

where f0(x) , f1(x) , . . . , fm(x) are convex, and the domain of the objective function is
defined as

{
x ∈ dom(f0(x)) : cTx + d > 0

}
.

i. Show that this is a quasiconvex optimization problem.



ii. Show that the problem is equivalent to

minimize g0(y, t)

subject to gk(y, t) ≤ 0 , k = 1, . . . ,m

Ay = bt

cTy + td = 1

,

where gk(x, t) is the perspective of fk(x), i.e., gk(x, t) = tfk(x/t). The variables
are y ∈ Rn and t ∈ R. Show that this problem is convex.

(b) Convex-concave fractional functions: Analogous to the problem analyzed above,
consider a problem of the form:

minimize
f0(x)

h(x)

subject to fk(x) ≤ 0 , k = 1, . . . ,m

Ax = b

,

where f0(x) , f1(x) , . . . , fm(x) are convex, h(x) is concave, and the domain of the
objective function is defined as {x ∈ dom(f0(x)) ∩ dom(h(x)) : h(x) > 0} and
f0(x) ≥ 0 everywhere.

i. Show that this is a quasiconvex optimization problem.

ii. Show that the problem is equivalent to

minimize g0(y, t)

subject to gk(y, t) ≤ 0 , k = 1, . . . ,m

Ay = bt

h̃(y, t) ≤ −1

,

where gk(x, t) is the perspective of fk(x) and h̃(x, t) is the perspective of −h(x).
Show that this problem is convex.

iii. As an example, apply the technique derived in the previous part to the
unconstrained problem with

f0(x) =
1

m
tr(F(x)) , h(x) = (det(F(x)))

1
m ,

with dom
(
f0(x)
h(x)

)
= {x : F(x) � 0}, where F(x) = F0 + x1F1 + · · ·+ xnFn for

given Fk ∈ Sm. In this problem, we minimize the ratio of the arithmetic mean over
the geometric mean of the eigenvalues of an affine matrix function F(x).

3. (10 points) (Adapted from CO-BV, Exercise 4.24) (Complex `1- `2-, and `∞-norm
approximation:) Consider the problem

minimize ||Ax− b||p ,

where A ∈ Cm×n, b ∈ Cm, and the variable is x ∈ Cn. Recall that the (real or complex)
`p-norm is defined by

||y||p ,

(
m∑
k=1

|yk|p
) 1

p



for p ≥ 1, and ||y||∞ = max
k=1,...,m

|yk|. For p = 1, 2, and ∞, express the complex `p-norm

approximation problem as a second-order cone program (SOCP) or quadratically constrained
quadratic program (QCQP) with real variables and data.

4. (10 points) (Adapted from CO-AE, Exercise 3.11) (Using Schur complements to express
matrix-based optimization problems as semidefinite programs:) Formulate each of the
following optimization problems as a semidefinite program (SDP). The variable is x ∈ Rn

and the function F(x) is defined as

F(x) = F0 + x1F1 + · · ·+ xnFn ,

with Fk ∈ Sm. The domain of f(x) in each subproblem is dom(f(x)) = {x ∈ Rn : F(x) � 0}.

(a) Minimize f(x) = cT (F(x))−1 c, where c ∈ Rm.

(b) Minimize f(x) = max
k=1,...,K

cTk (F(x))−1 ck, where ck ∈ Rm for k = 1, . . . ,K.

(c) Minimize f(x) = sup
||c||2≤1

cT (F(x))−1 c.

(d) Minimize f(x) = E
[
cT (F(x))−1 c

]
, where c is a random vector with mean c = E[c]

and covariance S = E
[
(c− c) (c− c)T

]
. Assume here that the covariance matrix has

the following representation: S =
m∑
k=1

sks
T
k , where sk ∈ Rm for k = 1, . . . ,m.

*5. (30 points) (Adapted from CO-AE, Exercise 2.19) (Majorization and symmetric functions of
eigenvalues:) Here, we use x[k] to denote the k-th largest element of a vector x ∈ Rn. Thus,
x[1],x[2], . . . ,x[n] are the elements of x sorted in decreasing order. We say that a vector
y ∈ Rn majorizes a vector x ∈ Rn if

y[1] ≥ x[1] ,

y[1] + y[2] ≥ x[1] + x[2] ,

y[1] + y[2] + y[3] ≥ x[1] + x[2] + x[3] ,

...

y[1] + y[2] + · · ·+ y[n−1] ≥ x[1] + x[2] + · · ·+ x[n−1] ,

y[1] + y[2] + · · ·+ y[n] = x[1] + x[2] + · · ·+ x[n] .

In other words, the descending-ordered partial sums of y are greater than or equal to those
of x and the sum of the components of y and x are equal.

(a) It can be shown that y majorizes x if and only if there exists a doubly stochastic matrix
P such that x = Py. A doubly stochastic matrix is one with nonnegative entries whose
rows and columns add up to unity:

Pk,` ≥ 0 , k, ` = 1, . . . , n , P1 = 1 , 1TP = 1T .

Use this characterization to show the following: if f : R→ R is a convex function and
y majorizes x, then

n∑
k=1

f(yk) ≥
n∑

k=1

f(xk) .



(b) We use the notation λk(X) to denote the k-th largest eigenvalue of a matrix X ∈ Sn, so
that λ1(X) , . . . , λn(X) are the eigenvalues of X sorted in decreasing order. Let r be
any integer in the set {1, . . . , n}. Show that

λ1(X) + · · ·+ λr(X) = sup {tr(XZ) : Z ∈ Sn , 0 � Z � I , tr(Z) = r} . (1)

What does this tell us about the convexity properties of the function
gr(X) = λ1(X) + · · ·+ λr(X) (i.e., the sum of the largest r eigenvalues of X)?

Hint: Show that the right-hand side of (1) is equal to the left-hand side by using an
eigenvalue decomposition of X to reduce the maximization in (1) to a simple linear
program whose solution is the sum of the r largest eigenvalues of X.

(c) Let X = θU + (1− θ)V be a convex combination of two matrices U,V ∈ Sn. Use the
results of the previous part to show that the vector

a , θ


λ1(U)

...

λn(U)

+ (1− θ)


λ1(V)

...

λn(V)


majorizes the vector b ,

[
λ1(X) · · · λn(X)

]T
.

(d) Combine the results of parts (a) and (c) to show that if f : R→ R is convex, then the
function h : Sn → R defined as

h(X) =
n∑

k=1

f(λk(X))

is convex.

For example, by taking f(x) = x log(x), we can conclude that the function

h(X) =
n∑

k=1

λk(X) log(λk(X)) is convex on Sn++. This function arises in quantum

information theory where it is known as the (negative) Von Neumann entropy. When X

is diagonal, i.e., X = diag(x), it reduces to the negative Shannon entropy
∑
k

xk log xk.

Reading assignments:

1. Read through Chapter 3 and begin Chapter 4 of CO-BV.

Reminders:

Late homework policy for EE 150: Late homeworks will not be accepted. There will be no
exceptions to this other than institute established emergency reasons, in which case a signed
letter is required from an authorized official.

NCT Problems: Remember that problems with an asterisk, such as *7 are no collaboration type



(NCT) problems.

Texts: The abbreviation CO-BV corresponds to the textbook “Convex Optimization” by Stephen
Boyd and Lieven Vandenberghe. In addition, CO-AE refers to the Additional Exercises for
Convex Optimization, also by Boyd and Vandenberghe. Finally, CVX corresponds to the cvx

Users’ Guide by Michael Grant and Stephen Boyd.

http://www.stanford.edu/~boyd/cvxbook/bv_cvxbook.pdf
http://www.stanford.edu/~boyd/cvxbook/bv_cvxbook_extra_exercises.pdf
http://www.stanford.edu/~boyd/cvxbook/bv_cvxbook_extra_exercises.pdf
http://web.cvxr.com/cvx/cvx_usrguide.pdf
http://web.cvxr.com/cvx/cvx_usrguide.pdf

