EE 150 - Applications of Convex Optimization in Signal Processing and Communications Dr. Andre Tkacenko, JPL Third Term 2011-2012

Homework Set \#5

Due on Friday, May 11 at 1 PM in 110 Moore.

1. (10 points) (Adapted from CO-BV, Exercise 4.20) (Power assignment in a wireless communication system:) We consider n transmitters with powers $p_{1}, \ldots, p_{n} \geq 0$, transmitting to n receivers. These powers are the optimization variable in the problem. We let $\mathbf{G} \in \mathbb{R}^{n \times n}$ denote the matrix of path gains from the transmitters to the receivers; $G_{i, j} \geq 0$ is the path gain from transmitter j to receiver i. The signal power at receiver i is then $S_{i}=G_{i, i} p_{i}$, and the interference power at receiver i is $I_{i}=\sum_{k \neq i} G_{i, k} p_{k}$. The signal-to-interference-plus-noise ratio, denoted SINR, at receiver i is given by $S_{i} /\left(I_{i}+N_{i}\right)$, where $N_{i}>0$ is the (self-) noise power in receiver i. The objective in the problem is to maximize the minimum SINR ratio over all receivers, i.e., to maximize

$$
\min _{i=1, \ldots, n} \frac{S_{i}}{I_{i}+N_{i}} .
$$

There are a number of constraints on the powers that must be satisfied, in addition to the obvious one $p_{i} \geq 0$. The first is a maximum allowable power for each transmitter, i.e., $p_{i} \leq P_{i}^{\max }$, where $P_{i}^{\max }>0$ is given. In addition, the transmitters are partitioned into groups, with each group sharing the same power supply, so there is a total power constraint for each group of transmitter powers. More precisely, we have subsets $\mathcal{K}_{1}, \ldots, \mathcal{K}_{m}$ of $\{1, \ldots, n\}$ with $\mathcal{K}_{1} \cup \cdots \cup \mathcal{K}_{m}=\{1, \ldots, n\}$ and $\mathcal{K}_{j} \cap \mathcal{K}_{l}=0$ if $j \neq l$. For each group \mathcal{K}_{l}, the total associated transmitter power cannot exceed $P_{l}^{\mathrm{gp}}>0$:

$$
\sum_{k \in \mathcal{K}_{l}} p_{k} \leq P_{l}^{\mathrm{gp}}, l=1, \ldots, m
$$

Finally, we have a limit $P_{k}^{\mathrm{rc}}>0$ on the total received power at each receiver:

$$
\sum_{k=1}^{n} G_{i, k} p_{k} \leq P_{i}^{\mathrm{rc}}, i=1, \ldots, n
$$

(This constraint reflects the fact that the receivers will saturate if the total received power is too large.)
Formulate the SINR maximization problem as a generalized linear-fractional program.
2. (10 points) (Adapted from CO-BV, Exercise 4.28) (Robust quadratic programming:) In lecture, we discussed robust linear programming as an application of second-order cone programming. For this problem, we consider a similar robust variation of the (convex) quadratic program

$$
\begin{array}{ll}
\operatorname{minimize} & (1 / 2) \mathbf{x}^{T} \mathbf{P} \mathbf{x}+\mathbf{q}^{T} \mathbf{x}+r \\
\text { subject to } & \mathbf{A x} \preceq \mathbf{b}
\end{array}
$$

For simplicity, we assume that only the matrix \mathbf{P} is subject to errors, while the other parameters ($\mathbf{q}, r, \mathbf{A}, \mathbf{b}$) are known exactly. The robust quadratic program is defined as

$$
\begin{array}{ll}
\operatorname{minimize} & \sup _{\mathbf{P} \in \mathcal{E}}\left\{(1 / 2) \mathbf{x}^{T} \mathbf{P} \mathbf{x}+\mathbf{q}^{T} \mathbf{x}+r\right\}, \\
\text { subject to } & \mathbf{A x} \preceq \mathbf{b}
\end{array},
$$

where \mathcal{E} is the set of possible matrices \mathbf{P}.
For each of the following sets \mathcal{E}, express the robust QP as a convex problem. Be as specific as you can. If the problem can be expressed in a standard form (e.g., QP, QCQP, SOCP, SDP), say so.
(a) A finite set of matrices: $\mathcal{E}=\left\{\mathbf{P}_{1}, \ldots, \mathbf{P}_{K}\right\}$, where $\mathbf{P}_{i} \in \mathbb{S}_{+}^{n}, i=1, \ldots, K$.
(b) A set specified by a nominal value $\mathbf{P}_{0} \in \mathbb{S}_{+}^{n}$ plus a bound on the eigenvalues of the deviation $\mathbf{P}-\mathbf{P}_{0}$:

$$
\mathcal{E}=\left\{\mathbf{P} \in \mathbb{S}^{n}:-\gamma \mathbf{I} \preceq \mathbf{P}-\mathbf{P}_{0} \preceq \gamma \mathbf{I}\right\}
$$

where $\gamma \in \mathbb{R}_{+}$and $\mathbf{P}_{0} \in \mathbb{S}_{+}^{n}$.
(c) An ellipsoid of matrices:

$$
\mathcal{E}=\left\{\mathbf{P}_{0}+\sum_{i=1}^{K} \mathbf{P}_{i} u_{i}:\|\mathbf{u}\|_{2} \leq 1\right\}
$$

You can assume $\mathbf{P}_{i} \in \mathbb{S}_{+}^{n}, i=0, \ldots, K$.
Hint: A hyperbolic constraint of the form

$$
\|\mathbf{x}\|_{2}^{2} \leq y z, y \geq 0, z \geq 0
$$

where $\mathbf{x} \in \mathbb{R}^{n}$ and $y, z \in \mathbb{R}$ can be shown to be true if and only if the second-order cone (SOC) constraint

$$
\left\|\left[\begin{array}{c}
2 \mathbf{x} \\
y-z
\end{array}\right]\right\|_{2} \leq y+z, y \geq 0, z \geq 0
$$

holds true.
3. (10 points) (Adapted from CO-BV, Exercise 4.39) (SDPs and congruence transformations:) Consider the SDP

$$
\begin{array}{ll}
\operatorname{minimize} & \mathbf{c}^{T} \mathbf{x} \\
\text { subject to } & x_{1} \mathbf{F}_{1}+\cdots+x_{n} \mathbf{F}_{n}+\mathbf{G} \preceq \mathbf{0}
\end{array}
$$

with $\mathbf{F}_{i}, \mathbf{G} \in \mathbb{S}^{k}, \mathbf{c} \in \mathbb{R}^{n}$.
(a) Suppose $\mathbf{R} \in \mathbb{R}^{k \times k}$ is nonsingular. Show that the SDP is equivalent to the SDP

$$
\begin{array}{ll}
\operatorname{minimize} & \mathbf{c}^{T} \mathbf{x} \\
\text { subject to } & x_{1} \widetilde{\mathbf{F}}_{1}+\cdots+x_{n} \widetilde{\mathbf{F}}_{n}+\widetilde{\mathbf{G}} \preceq \mathbf{0}
\end{array}
$$

where $\widetilde{\mathbf{F}}_{i}=\mathbf{R}^{T} \mathbf{F}_{i} \mathbf{R}, \widetilde{\mathbf{G}}=\mathbf{R}^{T} \mathbf{G R}$.
(b) Suppose there exists a nonsingular \mathbf{R} such that $\widetilde{\mathbf{F}}_{i}$ and $\widetilde{\mathbf{G}}$ are diagonal. Show that the SDP is equivalent to an LP.
(c) Suppose there exists a nonsingular \mathbf{R} such that $\widetilde{\mathbf{F}}_{i}$ and $\widetilde{\mathbf{G}}$ have the form

$$
\widetilde{\mathbf{F}}_{i}=\left[\begin{array}{cc}
\alpha_{i} \mathbf{I} & \mathbf{a}_{i} \\
\mathbf{a}_{i}^{T} & \alpha_{i}
\end{array}\right], i=1, \ldots, n, \widetilde{\mathbf{G}}=\left[\begin{array}{cc}
\beta \mathbf{I} & \mathbf{b} \\
\mathbf{b}^{T} & \beta
\end{array}\right]
$$

where $\alpha_{i}, \beta \in \mathbb{R}$ and $\mathbf{a}_{i}, \mathbf{b} \in \mathbb{R}^{k-1}$. Show that the SDP is equivalent to an SOCP with a single SOC constraint.
4. (10 points) (Adapted from CO-BV, Exercise 5.12) (Analytic centering:) Derive a dual problem for

$$
\operatorname{minimize}-\sum_{i=1}^{m} \log \left(b_{i}-\mathbf{a}_{i}^{T} \mathbf{x}\right)
$$

with domain $\left\{\mathbf{x}: \mathbf{a}_{i}^{T} \mathbf{x}<b_{i}, i=1, \ldots, m\right\}$. First introduce new variables y_{i} and equality constraints $y_{i}=b_{i}-\mathbf{a}_{i}^{T} \mathbf{x}$.
(The solution of this problem is called the analytic center of the linear inequalities $\mathbf{a}_{i}^{T} \mathbf{x} \leq b_{i}$, $i=1, \ldots, m$. Analytic centers have geometric applications and play an important role in barrier methods used to numerically solve convex optimization problems.)
*5. (30 points) (Adapted from CO-AE, Exercise 4.57) (Capacity of a communication channel:) We consider a communication channel with input $X(t) \in\{1, \ldots, n\}$ and output $Y(t) \in\{1, \ldots, m\}$, where t represents time. The relation between the input and output is given statistically:

$$
p_{i, j}=\operatorname{Pr}\{Y(t)=i \mid X(t)=j\}, i=1, \ldots, m, j=1, \ldots, n .
$$

The matrix $\mathbf{P} \in \mathbb{R}^{m \times n}$ is called the channel transition matrix, and the channel is called a discrete memoryless channel (since the inputs and outputs take on discrete values and the statistics do not vary with time here).
A famous result of Shannon states that information can be sent over the communication channel, with arbitrarily small probability of error, at any rate less than a number C, called the channel capacity, in bits per second. Shannon also showed that the capacity of a discrete memoryless channel can be found by solving an optimization problem. Assume that X has a probability distribution denoted $\mathbf{x} \in \mathbb{R}^{n}$, i.e.,

$$
x_{j}=\operatorname{Pr}\{X=j\}, j=1, \ldots, n
$$

The mutual information between X and Y is given by

$$
I(X ; Y)=\sum_{i=1}^{m} \sum_{j=1}^{n} x_{j} p_{i, j} \log _{2} \frac{p_{i, j}}{\sum_{k=1}^{n} x_{k} p_{i, k}}
$$

Then the channel capacity C is given by

$$
C=\sup _{\mathbf{x}} I(X ; Y),
$$

where the supremum is over all possible probability distributions for the input X, i.e., over $\mathbf{x} \succeq \mathbf{0}, \mathbf{1}^{T} \mathbf{x}=1$.
Show how the channel capacity can be computed using convex optimization.
Hint: Introduce the variable $\mathbf{y}=\mathbf{P x}$, which gives the probability distribution of the output Y, and show that the mutual information can be expressed as

$$
I(X ; Y)=-\mathbf{c}^{T} \mathbf{x}-\sum_{i=1}^{m} y_{i} \log _{2} y_{i}
$$

where $c_{j}=-\sum_{i=1}^{m} p_{i, j} \log _{2} p_{i, j}=\sum_{i=1}^{m} p_{i, j} \log _{2}\left(1 / p_{i, j}\right), j=1, \ldots, n$.

Reading assignments:

1. Read through Chapter 4 and begin Chapter 5 of CO-BV.

Reminders:

Late homework policy for EE 150: Late homeworks will not be accepted. There will be no exceptions to this other than institute established emergency reasons, in which case a signed letter is required from an authorized official.

NCT Problems: Remember that problems with an asterisk, such as *7 are no collaboration type (NCT) problems.

Texts: The abbreviation CO-BV corresponds to the textbook "Convex Optimization" by Stephen Boyd and Lieven Vandenberghe. In addition, CO-AE refers to the Additional Exercises for Convex Optimization, also by Boyd and Vandenberghe. Finally, CVX corresponds to the cvx Users' Guide by Michael Grant and Stephen Boyd.

