EE 150 - Applications of Convex Optimization in Signal Processing and Communications
Dr. Andre Tkacenko, JPL
Third Term 2011-2012

Homework Set #5
Due on Friday, May 11 at 1 PM in 110 Moore.

1. (10 points) (Adapted from CO-BV, Exercise 4.20) (Power assignment in a wireless
communication system:) We consider n transmitters with powers p1,...,p, > 0,
transmitting to n receivers. These powers are the optimization variable in the problem. We
let G € R™*™ denote the matrix of path gains from the transmitters to the receivers;

Gij > 0 is the path gain from transmitter j to receiver i. The signal power at receiver i is
then S; = G, ;p;, and the interference power at receiver i is I; = zk# G kpr- The
signal-to-interference-plus-noise ratio, denoted SINR, at receiver i is given by S;/ (I; + IV;),
where N; > 0 is the (self-) noise power in receiver i. The objective in the problem is to
maximize the minimum SINR ratio over all receivers, i.e., to maximize

min Si
i=1,..on I + N;

There are a number of constraints on the powers that must be satisfied, in addition to the
obvious one p; > 0. The first is a maximum allowable power for each transmitter, i.e.,

pi < P where P > 0 is given. In addition, the transmitters are partitioned into
groups, with each group sharing the same power supply, so there is a total power constraint
for each group of transmitter powers. More precisely, we have subsets Ky, ..., Ky, of
{1,...,n} with K U--- UK, ={1,...,n} and KC; N K; = 0 if j # . For each group K, the
total associated transmitter power cannot exceed Plgp > 0:

Zpkgplgp, l=1,...,m.
ke,

Finally, we have a limit P, > 0 on the total received power at each receiver:

n
ZGi,kpk < -Pirca i = 17"'7”‘
k=1
(This constraint reflects the fact that the receivers will saturate if the total received power is
too large.)
Formulate the SINR maximization problem as a generalized linear-fractional program.

2. (10 points) (Adapted from CO-BV, Exercise 4.28) (Robust quadratic programming:) In
lecture, we discussed robust linear programming as an application of second-order cone
programming. For this problem, we consider a similar robust variation of the (convex)
quadratic program

minimize (1/2)x’Px+qlx+r
subject to Ax =<b '

For simplicity, we assume that only the matrix P is subject to errors, while the other
parameters (q,r, A, b) are known exactly. The robust quadratic program is defined as

minimize  sup {(1/2) xTPx +qlx + r}
PeE

subject to Ax <b



where & is the set of possible matrices P.
For each of the following sets £, express the robust QP as a convex problem. Be as specific
as you can. If the problem can be expressed in a standard form (e.g., QP, QCQP, SOCP,
SDP), say so.

(a) A finite set of matrices: £ = {P1,..., Pk}, where P, € S}, i=1,... K.

(b) A set specified by a nominal value Py € S} plus a bound on the eigenvalues of the
deviation P — Py:
E={PeS": 1I<XP—-Py =11}

where v € Ry and Py € S%}.

(¢) An ellipsoid of matrices:

K
£= {P0+ZPiui ]y < 1} .

=1

You can assume P; € 8,1 =0,..., K.
Hint: A hyperbolic constraint of the form

Ix||2<yz, y>0, 2>0,

where x € R” and y, z € R can be shown to be true if and only if the second-order cone

(SOC) constraint
2x
y—z

3. (10 points) (Adapted from CO-BV, Exercise 4.39) (SDPs and congruence transformations:)
Consider the SDP

<y+z,y>0,2>0
2

holds true.

minimize c¢!x
subject to x1F1+---+z2,F, +G X0

)

with F;, G € S¥, ¢ € R™.
(a) Suppose R € R¥*F is nonsingular. Show that the SDP is equivalent to the SDP
minimize c¢’x
subject to xlf‘l + .- —I—xnf‘n + G <0 7

where F; = RTF,R, G = RTGR.

uppose there exists a nonsingular R such that Ni and G are iagonal. ow that the
b) S h i i lar R h that F d G d 1. Sh hat th
SDP is equivalent to an LP.

(¢) Suppose there exists a nonsingular R such that F; and G have the form

o1 a; ~ I b
; l],izl,...,n,ezlﬁ ]

F, =
b? 3

where o;, 8 € R and a;, b € R¥~1. Show that the SDP is equivalent to an SOCP with a
single SOC constraint.



4. (10 points) (Adapted from CO-BV, Exercise 5.12) (Analytic centering:) Derive a dual
problem for

m
minimize —E log(bi—azrx) ,
i=1

with domain {X : a;frx <b,i=1,..., m} First introduce new variables y; and equality
constraints y; = b; — aZTx.

(The solution of this problem is called the analytic center of the linear inequalities aiTx < b,
1=1,...,m. Analytic centers have geometric applications and play an important role in
barrier methods used to numerically solve convex optimization problems.)

*5. (30 points) (Adapted from CO-AE, Exercise 4.57) (Capacity of a communication channel:)
We consider a communication channel with input X (¢) € {1,...,n} and output
Y(t) € {1,...,m}, where ¢ represents time. The relation between the input and output is
given statistically:

pij =Pr{Y(t)=1i|X(t)=4},i=1,....,m, j=1,...,n.

The matrix P € R™*" is called the channel transition matriz, and the channel is called a
discrete memoryless channel (since the inputs and outputs take on discrete values and the
statistics do not vary with time here).

A famous result of Shannon states that information can be sent over the communication
channel, with arbitrarily small probability of error, at any rate less than a number C', called
the channel capacity, in bits per second. Shannon also showed that the capacity of a
discrete memoryless channel can be found by solving an optimization problem. Assume that
X has a probability distribution denoted x € R", i.e.,

zj=Pr{X=j},j=1,...,n.

The mutual information between X and Y is given by

m n
pl,]
1Y) =303 a5 logy e id—.
i=1 j=1 Y 2 k=1 TRPik

Then the channel capacity C' is given by

C=supl(X;Y),

where the supremum is over all possible probability distributions for the input X, i.e., over
x>0, 17x =1.

Show how the channel capacity can be computed using convex optimization.

Hint: Introduce the variable y = Px, which gives the probability distribution of the output
Y, and show that the mutual information can be expressed as

m
I(X;Y) = —c"x = yilogy i,
i=1
where ¢; = =371, pijlogy pij = >0 pijloga(1/pij), j=1,...,n.

Reading assignments:



1. Read through Chapter 4 and begin Chapter 5 of CO-BV.

Reminders:

Late homework policy for EE 150: Late homeworks will not be accepted. There will be no

exceptions to this other than institute established emergency reasons, in which case a signed
letter is required from an authorized official.

NCT Problems: Remember that problems with an asterisk, such as *7 are no collaboration type
(NCT) problems.

Texts: The abbreviation CO-BV corresponds to the textbook “Convexr Optimization” by Stephen
Boyd and Lieven Vandenberghe. In addition, CO-AE refers to the Additional Exercises for

Conver Optimization, also by Boyd and Vandenberghe. Finally, CVX corresponds to the cvx
Users’ Guide by Michael Grant and Stephen Boyd.



http://www.stanford.edu/~boyd/cvxbook/bv_cvxbook.pdf
http://www.stanford.edu/~boyd/cvxbook/bv_cvxbook_extra_exercises.pdf
http://www.stanford.edu/~boyd/cvxbook/bv_cvxbook_extra_exercises.pdf
http://web.cvxr.com/cvx/cvx_usrguide.pdf
http://web.cvxr.com/cvx/cvx_usrguide.pdf

