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Homework Set #5
Due on Friday, May 11 at 1 PM in 110 Moore.

1. (10 points) (Adapted from CO-BV, Exercise 4.20) (Power assignment in a wireless
communication system:) We consider n transmitters with powers p1, . . . , pn ≥ 0,
transmitting to n receivers. These powers are the optimization variable in the problem. We
let G ∈ Rn×n denote the matrix of path gains from the transmitters to the receivers;
Gi,j ≥ 0 is the path gain from transmitter j to receiver i. The signal power at receiver i is
then Si = Gi,ipi, and the interference power at receiver i is Ii =

∑
k 6=iGi,kpk. The

signal-to-interference-plus-noise ratio, denoted SINR, at receiver i is given by Si/ (Ii +Ni),
where Ni > 0 is the (self-) noise power in receiver i. The objective in the problem is to
maximize the minimum SINR ratio over all receivers, i.e., to maximize

min
i=1,...,n

Si
Ii +Ni

.

There are a number of constraints on the powers that must be satisfied, in addition to the
obvious one pi ≥ 0. The first is a maximum allowable power for each transmitter, i.e.,
pi ≤ Pmax

i , where Pmax
i > 0 is given. In addition, the transmitters are partitioned into

groups, with each group sharing the same power supply, so there is a total power constraint
for each group of transmitter powers. More precisely, we have subsets K1, . . . ,Km of
{1, . . . , n} with K1 ∪ · · · ∪ Km = {1, . . . , n} and Kj ∩ Kl = 0 if j 6= l. For each group Kl, the
total associated transmitter power cannot exceed P gp

l > 0:∑
k∈Kl

pk ≤ P gp
l , l = 1, . . . ,m .

Finally, we have a limit P rc
k > 0 on the total received power at each receiver:

n∑
k=1

Gi,kpk ≤ P rc
i , i = 1, . . . , n .

(This constraint reflects the fact that the receivers will saturate if the total received power is
too large.)
Formulate the SINR maximization problem as a generalized linear-fractional program.

2. (10 points) (Adapted from CO-BV, Exercise 4.28) (Robust quadratic programming:) In
lecture, we discussed robust linear programming as an application of second-order cone
programming. For this problem, we consider a similar robust variation of the (convex)
quadratic program

minimize (1/2)xTPx + qTx + r

subject to Ax � b
.

For simplicity, we assume that only the matrix P is subject to errors, while the other
parameters (q, r,A,b) are known exactly. The robust quadratic program is defined as

minimize sup
P∈E

{
(1/2)xTPx + qTx + r

}
subject to Ax � b

,



where E is the set of possible matrices P.
For each of the following sets E , express the robust QP as a convex problem. Be as specific
as you can. If the problem can be expressed in a standard form (e.g., QP, QCQP, SOCP,
SDP), say so.

(a) A finite set of matrices: E = {P1, . . . ,PK}, where Pi ∈ Sn+, i = 1, . . . ,K.

(b) A set specified by a nominal value P0 ∈ Sn+ plus a bound on the eigenvalues of the
deviation P−P0:

E = {P ∈ Sn : −γI � P−P0 � γI}

where γ ∈ R+ and P0 ∈ Sn+.

(c) An ellipsoid of matrices:

E =

{
P0 +

K∑
i=1

Piui : ||u||2 ≤ 1

}
.

You can assume Pi ∈ Sn+, i = 0, . . . ,K.
Hint: A hyperbolic constraint of the form

||x||22 ≤ yz , y ≥ 0 , z ≥ 0 ,

where x ∈ Rn and y, z ∈ R can be shown to be true if and only if the second-order cone
(SOC) constraint ∣∣∣∣∣

∣∣∣∣∣
[

2x

y − z

]∣∣∣∣∣
∣∣∣∣∣
2

≤ y + z , y ≥ 0 , z ≥ 0

holds true.

3. (10 points) (Adapted from CO-BV, Exercise 4.39) (SDPs and congruence transformations:)
Consider the SDP

minimize cTx

subject to x1F1 + · · ·+ xnFn + G � 0
,

with Fi,G ∈ Sk, c ∈ Rn.

(a) Suppose R ∈ Rk×k is nonsingular. Show that the SDP is equivalent to the SDP

minimize cTx

subject to x1F̃1 + · · ·+ xnF̃n + G̃ � 0
,

where F̃i = RTFiR, G̃ = RTGR.

(b) Suppose there exists a nonsingular R such that F̃i and G̃ are diagonal. Show that the
SDP is equivalent to an LP.

(c) Suppose there exists a nonsingular R such that F̃i and G̃ have the form

F̃i =

[
αiI ai

aTi αi

]
, i = 1, . . . , n , G̃ =

[
βI b

bT β

]
,

where αi, β ∈ R and ai,b ∈ Rk−1. Show that the SDP is equivalent to an SOCP with a
single SOC constraint.



4. (10 points) (Adapted from CO-BV, Exercise 5.12) (Analytic centering:) Derive a dual
problem for

minimize −
m∑
i=1

log
(
bi − aTi x

)
,

with domain
{
x : aTi x < bi , i = 1, . . . ,m

}
. First introduce new variables yi and equality

constraints yi = bi − aTi x.
(The solution of this problem is called the analytic center of the linear inequalities aTi x ≤ bi,
i = 1, . . . ,m. Analytic centers have geometric applications and play an important role in
barrier methods used to numerically solve convex optimization problems.)

*5. (30 points) (Adapted from CO-AE, Exercise 4.57) (Capacity of a communication channel:)
We consider a communication channel with input X(t) ∈ {1, . . . , n} and output
Y (t) ∈ {1, . . . ,m}, where t represents time. The relation between the input and output is
given statistically:

pi,j = Pr {Y (t) = i |X(t) = j} , i = 1, . . . ,m , j = 1, . . . , n .

The matrix P ∈ Rm×n is called the channel transition matrix, and the channel is called a
discrete memoryless channel (since the inputs and outputs take on discrete values and the
statistics do not vary with time here).
A famous result of Shannon states that information can be sent over the communication
channel, with arbitrarily small probability of error, at any rate less than a number C, called
the channel capacity, in bits per second. Shannon also showed that the capacity of a
discrete memoryless channel can be found by solving an optimization problem. Assume that
X has a probability distribution denoted x ∈ Rn, i.e.,

xj = Pr {X = j} , j = 1, . . . , n .

The mutual information between X and Y is given by

I(X;Y ) =
m∑
i=1

n∑
j=1

xjpi,j log2
pi,j∑n

k=1 xkpi,k
.

Then the channel capacity C is given by

C = sup
x
I(X;Y ) ,

where the supremum is over all possible probability distributions for the input X, i.e., over
x � 0, 1Tx = 1.
Show how the channel capacity can be computed using convex optimization.
Hint: Introduce the variable y = Px, which gives the probability distribution of the output
Y , and show that the mutual information can be expressed as

I(X;Y ) = −cTx−
m∑
i=1

yi log2 yi ,

where cj = −
∑m

i=1 pi,j log2 pi,j =
∑m

i=1 pi,j log2(1/pi,j), j = 1, . . . , n.

Reading assignments:



1. Read through Chapter 4 and begin Chapter 5 of CO-BV.

Reminders:

Late homework policy for EE 150: Late homeworks will not be accepted. There will be no
exceptions to this other than institute established emergency reasons, in which case a signed
letter is required from an authorized official.

NCT Problems: Remember that problems with an asterisk, such as *7 are no collaboration type
(NCT) problems.

Texts: The abbreviation CO-BV corresponds to the textbook “Convex Optimization” by Stephen
Boyd and Lieven Vandenberghe. In addition, CO-AE refers to the Additional Exercises for
Convex Optimization, also by Boyd and Vandenberghe. Finally, CVX corresponds to the cvx

Users’ Guide by Michael Grant and Stephen Boyd.

http://www.stanford.edu/~boyd/cvxbook/bv_cvxbook.pdf
http://www.stanford.edu/~boyd/cvxbook/bv_cvxbook_extra_exercises.pdf
http://www.stanford.edu/~boyd/cvxbook/bv_cvxbook_extra_exercises.pdf
http://web.cvxr.com/cvx/cvx_usrguide.pdf
http://web.cvxr.com/cvx/cvx_usrguide.pdf

