EE 150 - Applications of Convex Optimization in Signal Processing and Communications
Dr. Andre Tkacenko, JPL
Third Term 2011-2012

Homework Set #6

Due on Friday, May 18 at 1 PM in 110 Moore.

1. (10 points) (Adapted from CO-BV, Exercise 5.1) (Elementary example of duality:) Consider
the optimization problem

minimize 2% +1
subject to (z —2)(z —4) <0’

with variable z € R.

(a) Analysis of primal problem: Give the feasible set, the optimal solution z*, and the
optimal value p*.

(b) Lagrangian and dual function: Plot the objective x2 4+ 1 versus . On the same plot,
show the feasible set, optimal point and value, and plot the Lagrangian L(z, A) versus
x for a few positive values of A. Verify the lower bound property (p* > inf, {L(x,\)}
for A > 0). Derive and sketch the Lagrange dual function g.

(¢) Lagrange dual problem: State the dual problem, and verify that it is a concave
maximization problem. Find the dual optimal solution A* and the dual optimal value
d*. Does strong duality hold?

(d) Sensitivity analysis: Let p*(u) denote the optimal value of the problem
minimize 22 +1
subject to (z—2)(z —4) <wu

I

dp*(0
pdi(J,) =—A%

as a function of the parameter u. Plot p*(u). Verify that

2. (10 points) (Adapted from CO-BV, Exercise 5.19) (Sum of the largest elements of a vector:)
Define f : R" — R as

IESESBETE
i=1

where 7 is an integer between 1 and n, and x[j) > --- > z},) are the components of x sorted
in decreasing order. In other words, f(x) is the sum of the r largest elements of x. In this
problem, we study the constraint

fx) <a.

As was shown in Lecture #7, this is a convex constraint, and equivalent to a set of
C(n,r) =n!/(r! (n —r)!) linear inequalities

T+t Lo, 1< < <4 <n.

The purpose of this problem is to derive a more compact representation.



(a) Given a vector x € R", show that f(x) is equal to the optimal value of the LP

maximize xTy
subject to 0 <y <1 .,
lTy =r

with y € R” as the variable.
(b) Derive the dual of the LP in part (a). Show that it can be written as

minimize rt+ 17u
subject to t14+u>=x ,
u~0

where the variables are t € R, u € R”. By duality, this LP has the same optimal value
as the LP in (a), i.e., f(x). We therefore have the following result: x satisfies f(x) < «
if and only if there exist ¢t € R and u € R" such that

rt—i—lTuSa, tl4+u>=x, u>=0.

These conditions form a set of 2n + 1 linear inequalities in the 2n + 1 variables x, u,
and t.

(c) As an application, consider the patch illumination example from Lecture #1. This can
be shown to be expressed as the following SOCP:

minimize ¢
subject to agp <lgest, k=1,...,n

[2@

St—l—agp, k=1,...,n
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Here, the variables are p € R™ and ¢ € R, while the problem data consists of a; € R’
for k=1,...,n, Iqes € R4, and ppax € Ry

Suppose we add one of the constraints mentioned in Lecture #1 that no more than half
of the total power is in any mg lamps. Show that with this additional constraint, the
problem above can be formulated as

minimize ¢
subject to agp <lgest, k=1,...,n

[2@
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1
mos +17q < §1Tp, sl+q>p, q=0

with variables t € R, p € R™, s € R, and q € R™. Note that this is also an SOCP.



3.

*5.

(10 points) (Adapted from CO-BV, Exercise 5.20) (Dual of the channel capacity problem:)
Derive a dual for the problem

m
minimize ¢’ x + Z y; log y;
i=1
subject to Px =y
x>0, 17x=1

where P € R™*™ has nonnegative elements, and its columns add up to unity (i.e.,

P71 = 1). The variables are x € R” and y € R™. (For ¢y = — > rey Ph,elog pi ¢, the optimal
value is, up to a factor log 2, the capacity of a discrete memoryless channel with channel
transition probability matrix P; see Problem 5 of Homework Set #5.)

Simplify the dual problem as much as possible.

(10 points) (Adapted from CO-AE, Exercise 4.14) (Kantorovich inequality:)

(a) Suppose a € R" with a; > --- > a, > 0, and b € R" with by = 1/ay.
Derive the KKT conditions for the convex optimization problem

minimize — log(aTx) — log(bTx)
subject to x>0, 1Tx=1

Show that x = (1/2,0,...,0,1/2) is optimal.

(b) Suppose A € S, with eigenvalues Ay sorted in decreasing order. Apply the result of
part (a), with ap = \g, to prove the Kantorovich inequality:

2 (o Aw) 7 (uT AT < 2 [l
n 1

for all u with |[|u||, = 1.

(30 points) (Adapted from CO-AE, Exercise 4.4) (Source localization from range
measurements:) A signal emitted by a source at an unknown position x € R" (n = 2 or
n = 3) is received by m sensors at known positions yi,...,y¥m, € R™. From the strength of
the received signals, we can obtain noisy estimates dj, of the distances ||x — yj||,. We are
interested in estimating the source position x based on the measured distances dy.
In the following problem, the error between the squares of the actual and observed distances
is minimized:
m 2
minimize  fo(x) = Y (Ix —yell3 —d) " .

k=1

Introducing a new variable t = x7x, we can express this as
s 2
minimize Z (t —2yix + ||yk|]§ — di) )
k=1 :

subject to x'x —t =0

The variables are x € R™ and t € R. Although this problem is not convex, it can be shown
that strong duality holds. (It is a variation on the problem discussed on pg. 229 of CO-BV



and in Exercise 5.29 of CO-BV.)
Solve (1) for an example with m =5,

B 1.8 B 2.0 B 1.5 B 1.5 B 2.5
Y1 = 2.5 , Y2 = 1.7 , Y3 = 1.5 y Y4 = 2.0 , Y5 = 1.5 )

d = (2.00,1.24,0.59,1.31,1.44) .

In Figure 1, some contour lines of the cost function fy are shown, along with the sensor
positions y; indicated by circles.

and

35

Figure 1: Contour plot of the objective fy(x1,22) for the given problem data, with the sensor
position vectors y; indicated by circles.

To solve the problem, you can note that x* is easily obtained from the KKT conditions for
(1) if the optimal multiplier v* for the equality constraint is known. You can use one of the
following two methods to find v/*.

— Derive the dual problem, express it as an SDP, and solve it using cvx.
— Reduce the KKT conditions to a nonlinear equation in v, and pick the correct solution.
Reading assignments:
1. Read through Chapter 5 and begin Chapter 6 of CO-BV.

Reminders:

Late homework policy for EE 150: Late homeworks will not be accepted. There will be no
exceptions to this other than institute established emergency reasons, in which case a signed
letter is required from an authorized official.

NCT Problems: Remember that problems with an asterisk, such as *7 are no collaboration type
(NCT) problems.

Texts: The abbreviation CO-BV corresponds to the textbook “Convexr Optimization” by Stephen
Boyd and Lieven Vandenberghe. In addition, CO-AE refers to the Additional Fxercises for
Conver Optimization, also by Boyd and Vandenberghe. Finally, CVX corresponds to the cvx
Users’ Guide by Michael Grant and Stephen Boyd.



http://www.stanford.edu/~boyd/cvxbook/bv_cvxbook.pdf
http://www.stanford.edu/~boyd/cvxbook/bv_cvxbook_extra_exercises.pdf
http://www.stanford.edu/~boyd/cvxbook/bv_cvxbook_extra_exercises.pdf
http://web.cvxr.com/cvx/cvx_usrguide.pdf
http://web.cvxr.com/cvx/cvx_usrguide.pdf

