EE 150 - Applications of Convex Optimization in Signal Processing and Communications Dr. Andre Tkacenko, JPL Third Term 2011-2012

Homework Set #6

Due on Friday, May 18 at 1 PM in 110 Moore.

1. (10 points) (Adapted from CO-BV, Exercise 5.1) (*Elementary example of duality:*) Consider the optimization problem

minimize
$$x^2 + 1$$

subject to $(x-2)(x-4) \le 0$,

with variable $x \in \mathbb{R}$.

- (a) Analysis of primal problem: Give the feasible set, the optimal solution x^* , and the optimal value p^* .
- (b) Lagrangian and dual function: Plot the objective $x^2 + 1$ versus x. On the same plot, show the feasible set, optimal point and value, and plot the Lagrangian $L(x, \lambda)$ versus x for a few positive values of λ . Verify the lower bound property $(p^* \ge \inf_x \{L(x, \lambda)\}$ for $\lambda \ge 0)$. Derive and sketch the Lagrange dual function g.
- (c) Lagrange dual problem: State the dual problem, and verify that it is a concave maximization problem. Find the dual optimal solution λ^* and the dual optimal value d^* . Does strong duality hold?
- (d) Sensitivity analysis: Let $p^{\star}(u)$ denote the optimal value of the problem

minimize
$$x^2 + 1$$

subject to $(x-2)(x-4) \le u$,

as a function of the parameter u. Plot $p^{\star}(u)$. Verify that $\frac{dp^{\star}(0)}{du} = -\lambda^{\star}$.

2. (10 points) (Adapted from CO-BV, Exercise 5.19) (Sum of the largest elements of a vector:) Define $f : \mathbb{R}^n \to \mathbb{R}$ as

$$f(\mathbf{x}) \triangleq \sum_{i=1}^r x_{[i]},$$

where r is an integer between 1 and n, and $x_{[1]} \ge \cdots \ge x_{[r]}$ are the components of **x** sorted in decreasing order. In other words, $f(\mathbf{x})$ is the sum of the r largest elements of **x**. In this problem, we study the constraint

$$f(\mathbf{x}) \leq \alpha$$
.

As was shown in Lecture #7, this is a convex constraint, and equivalent to a set of C(n,r) = n!/(r!(n-r)!) linear inequalities

$$x_{i_1} + \dots + x_{i_r} \le \alpha, \ 1 \le i_1 < \dots < i_r \le n$$

The purpose of this problem is to derive a more compact representation.

(a) Given a vector $\mathbf{x} \in \mathbb{R}^n$, show that $f(\mathbf{x})$ is equal to the optimal value of the LP

maximize
$$\mathbf{x}^T \mathbf{y}$$

subject to $\mathbf{0} \leq \mathbf{y} \leq \mathbf{1}$,
 $\mathbf{1}^T \mathbf{y} = r$

with $\mathbf{y} \in \mathbb{R}^n$ as the variable.

(b) Derive the dual of the LP in part (a). Show that it can be written as

$$\begin{array}{ll} \text{minimize} & rt + \mathbf{1}^T \mathbf{u} \\ \text{subject to} & t\mathbf{1} + \mathbf{u} \succeq \mathbf{x} \\ & \mathbf{u} \succeq \mathbf{0} \end{array}$$

where the variables are $t \in \mathbb{R}$, $\mathbf{u} \in \mathbb{R}^n$. By duality, this LP has the same optimal value as the LP in (a), i.e., $f(\mathbf{x})$. We therefore have the following result: \mathbf{x} satisfies $f(\mathbf{x}) \leq \alpha$ if and only if there exist $t \in \mathbb{R}$ and $\mathbf{u} \in \mathbb{R}^n$ such that

$$rt + \mathbf{1}^T \mathbf{u} \leq \alpha, \ t\mathbf{1} + \mathbf{u} \succeq \mathbf{x}, \ \mathbf{u} \succeq \mathbf{0}.$$

These conditions form a set of 2n + 1 linear inequalities in the 2n + 1 variables **x**, **u**, and *t*.

(c) As an application, consider the patch illumination example from Lecture #1. This can be shown to be expressed as the following SOCP:

minimize
$$t$$

subject to $\mathbf{a}_k^T \mathbf{p} \leq I_{\text{des}} t$, $k = 1, \dots, n$
 $\left\| \begin{bmatrix} 2\sqrt{I_{\text{des}}} \\ t - \mathbf{a}_k^T \mathbf{p} \end{bmatrix} \right\|_2 \leq t + \mathbf{a}_k^T \mathbf{p}$, $k = 1, \dots, n$
 $\mathbf{0} \leq \mathbf{p} \leq p_{\max} \mathbf{1}$

Here, the variables are $\mathbf{p} \in \mathbb{R}^m$ and $t \in \mathbb{R}$, while the problem data consists of $\mathbf{a}_k \in \mathbb{R}^m_+$ for $k = 1, \ldots, n$, $I_{\text{des}} \in \mathbb{R}_{++}$, and $p_{\text{max}} \in \mathbb{R}_{++}$.

Suppose we add one of the constraints mentioned in Lecture #1 that no more than half of the total power is in any m_0 lamps. Show that with this additional constraint, the problem above can be formulated as

minimize
$$t$$

subject to $\mathbf{a}_k^T \mathbf{p} \leq I_{\text{des}} t$, $k = 1, ..., n$
 $\left\| \begin{bmatrix} 2\sqrt{I_{\text{des}}} \\ t - \mathbf{a}_k^T \mathbf{p} \end{bmatrix} \right\|_2 \leq t + \mathbf{a}_k^T \mathbf{p}, \ k = 1, ..., n$
 $\mathbf{0} \leq \mathbf{p} \leq p_{\text{max}} \mathbf{1}$
 $m_0 s + \mathbf{1}^T \mathbf{q} \leq \frac{1}{2} \mathbf{1}^T \mathbf{p}, \ s \mathbf{1} + \mathbf{q} \succeq \mathbf{p}, \ \mathbf{q} \succeq \mathbf{0}$

,

with variables $\mathbf{t} \in \mathbb{R}$, $\mathbf{p} \in \mathbb{R}^m$, $s \in \mathbb{R}$, and $\mathbf{q} \in \mathbb{R}^m$. Note that this is also an SOCP.

3. (10 points) (Adapted from CO-BV, Exercise 5.20) (*Dual of the channel capacity problem:*) Derive a dual for the problem

minimize
$$\mathbf{c}^T \mathbf{x} + \sum_{i=1}^m y_i \log y_i$$

subject to $\mathbf{P}\mathbf{x} = \mathbf{y}$
 $\mathbf{x} \succeq \mathbf{0}, \ \mathbf{1}^T \mathbf{x} = 1$

where $\mathbf{P} \in \mathbb{R}^{m \times n}$ has nonnegative elements, and its columns add up to unity (i.e., $\mathbf{P}^T \mathbf{1} = \mathbf{1}$). The variables are $\mathbf{x} \in \mathbb{R}^n$ and $\mathbf{y} \in \mathbb{R}^m$. (For $c_{\ell} = -\sum_{k=1}^m p_{k,\ell} \log p_{k,\ell}$, the optimal value is, up to a factor log 2, the capacity of a discrete memoryless channel with channel transition probability matrix \mathbf{P} ; see Problem 5 of Homework Set #5.) Simplify the dual problem as much as possible.

- 4. (10 points) (Adapted from CO-AE, Exercise 4.14) (Kantorovich inequality:)
 - (a) Suppose $\mathbf{a} \in \mathbb{R}^n$ with $a_1 \ge \cdots \ge a_n > 0$, and $\mathbf{b} \in \mathbb{R}^n$ with $b_k = 1/a_k$. Derive the KKT conditions for the convex optimization problem

minimize
$$-\log(\mathbf{a}^T \mathbf{x}) - \log(\mathbf{b}^T \mathbf{x})$$

subject to $\mathbf{x} \succeq \mathbf{0}, \ \mathbf{1}^T \mathbf{x} = 1$

Show that $\mathbf{x} = (1/2, 0, ..., 0, 1/2)$ is optimal.

(b) Suppose $\mathbf{A} \in \mathbb{S}_{++}^n$ with eigenvalues λ_k sorted in decreasing order. Apply the result of part (a), with $a_k = \lambda_k$, to prove the *Kantorovich inequality*:

$$2\left(\mathbf{u}^{T}\mathbf{A}\mathbf{u}\right)^{1/2}\left(\mathbf{u}^{T}\mathbf{A}^{-1}\mathbf{u}\right)^{1/2} \leq \sqrt{\frac{\lambda_{1}}{\lambda_{n}}} + \sqrt{\frac{\lambda_{n}}{\lambda_{1}}},$$

for all **u** with $||\mathbf{u}||_2 = 1$.

*5. (30 points) (Adapted from CO-AE, Exercise 4.4) (Source localization from range measurements:) A signal emitted by a source at an unknown position $\mathbf{x} \in \mathbb{R}^n$ (n = 2 or n = 3) is received by m sensors at known positions $\mathbf{y}_1, \ldots, \mathbf{y}_m \in \mathbb{R}^n$. From the strength of the received signals, we can obtain noisy estimates d_k of the distances $||\mathbf{x} - \mathbf{y}_k||_2$. We are interested in estimating the source position \mathbf{x} based on the measured distances d_k . In the following problem, the error between the squares of the actual and observed distances is minimized:

minimize
$$f_0(\mathbf{x}) = \sum_{k=1}^m \left(||\mathbf{x} - \mathbf{y}_k||_2^2 - d_k^2 \right)^2$$

Introducing a new variable $t = \mathbf{x}^T \mathbf{x}$, we can express this as

minimize
$$\sum_{k=1}^{m} \left(t - 2\mathbf{y}_k^T \mathbf{x} + ||\mathbf{y}_k||_2^2 - d_k^2 \right)^2$$
. (1)
subject to $\mathbf{x}^T \mathbf{x} - t = 0$

The variables are $\mathbf{x} \in \mathbb{R}^n$ and $t \in \mathbb{R}$. Although this problem is not convex, it can be shown that strong duality holds. (It is a variation on the problem discussed on pg. 229 of CO-BV

and in Exercise 5.29 of CO-BV.) Solve (1) for an example with m = 5,

$$\mathbf{y}_1 = \begin{bmatrix} 1.8\\ 2.5 \end{bmatrix}, \ \mathbf{y}_2 = \begin{bmatrix} 2.0\\ 1.7 \end{bmatrix}, \ \mathbf{y}_3 = \begin{bmatrix} 1.5\\ 1.5 \end{bmatrix}, \ \mathbf{y}_4 = \begin{bmatrix} 1.5\\ 2.0 \end{bmatrix}, \ \mathbf{y}_5 = \begin{bmatrix} 2.5\\ 1.5 \end{bmatrix},$$

and

 $\mathbf{d} = (2.00, 1.24, 0.59, 1.31, 1.44)$.

In Figure 1, some contour lines of the cost function f_0 are shown, along with the sensor positions \mathbf{y}_k indicated by circles.

Figure 1: Contour plot of the objective $f_0(x_1, x_2)$ for the given problem data, with the sensor position vectors \mathbf{y}_k indicated by circles.

To solve the problem, you can note that \mathbf{x}^* is easily obtained from the KKT conditions for (1) if the optimal multiplier ν^* for the equality constraint is known. You can use one of the following two methods to find ν^* .

- Derive the dual problem, express it as an SDP, and solve it using cvx.
- Reduce the KKT conditions to a nonlinear equation in ν , and pick the correct solution.

Reading assignments:

1. Read through Chapter 5 and begin Chapter 6 of CO-BV.

Reminders:

Late homework policy for EE 150: Late homeworks will not be accepted. There will be no exceptions to this other than institute established emergency reasons, in which case a signed letter is required from an authorized official.

NCT Problems: Remember that problems with an asterisk, such as *7 are no collaboration type (NCT) problems.

Texts: The abbreviation CO-BV corresponds to the textbook "Convex Optimization" by Stephen Boyd and Lieven Vandenberghe. In addition, CO-AE refers to the Additional Exercises for Convex Optimization, also by Boyd and Vandenberghe. Finally, CVX corresponds to the cvx Users' Guide by Michael Grant and Stephen Boyd.