EE 150 - Applications of Convex Optimization in Signal Processing and Communications Dr. Andre Tkacenko, JPL
 Third Term 2011-2012

Homework Set \#6

Due on Friday, May 18 at 1 PM in 110 Moore.

1. (10 points) (Adapted from CO-BV, Exercise 5.1) (Elementary example of duality:) Consider the optimization problem

$$
\begin{array}{ll}
\operatorname{minimize} & x^{2}+1 \\
\text { subject to } & (x-2)(x-4) \leq 0
\end{array}
$$

with variable $x \in \mathbb{R}$.
(a) Analysis of primal problem: Give the feasible set, the optimal solution x^{\star}, and the optimal value p^{\star}.
(b) Lagrangian and dual function: Plot the objective $x^{2}+1$ versus x. On the same plot, show the feasible set, optimal point and value, and plot the Lagrangian $L(x, \lambda)$ versus x for a few positive values of λ. Verify the lower bound property ($p^{\star} \geq \inf _{x}\{L(x, \lambda)\}$ for $\lambda \geq 0$). Derive and sketch the Lagrange dual function g.
(c) Lagrange dual problem: State the dual problem, and verify that it is a concave maximization problem. Find the dual optimal solution λ^{\star} and the dual optimal value d^{\star}. Does strong duality hold?
(d) Sensitivity analysis: Let $p^{\star}(u)$ denote the optimal value of the problem

$$
\begin{array}{ll}
\operatorname{minimize} & x^{2}+1 \\
\text { subject to } & (x-2)(x-4) \leq u
\end{array}
$$

as a function of the parameter u. Plot $p^{\star}(u)$. Verify that $\frac{d p^{\star}(0)}{d u}=-\lambda^{\star}$.
2. (10 points) (Adapted from CO-BV, Exercise 5.19) (Sum of the largest elements of a vector:) Define $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ as

$$
f(\mathbf{x}) \triangleq \sum_{i=1}^{r} x_{[i]},
$$

where r is an integer between 1 and n, and $x_{[1]} \geq \cdots \geq x_{[r]}$ are the components of \mathbf{x} sorted in decreasing order. In other words, $f(\mathbf{x})$ is the sum of the r largest elements of \mathbf{x}. In this problem, we study the constraint

$$
f(\mathbf{x}) \leq \alpha .
$$

As was shown in Lecture \#7, this is a convex constraint, and equivalent to a set of $C(n, r)=n!/(r!(n-r)!)$ linear inequalities

$$
x_{i_{1}}+\cdots+x_{i_{r}} \leq \alpha, 1 \leq i_{1}<\cdots<i_{r} \leq n .
$$

The purpose of this problem is to derive a more compact representation.
(a) Given a vector $\mathbf{x} \in \mathbb{R}^{n}$, show that $f(\mathbf{x})$ is equal to the optimal value of the LP

$$
\begin{array}{ll}
\operatorname{maximize} & \mathbf{x}^{T} \mathbf{y} \\
\text { subject to } & \mathbf{0} \preceq \mathbf{y} \preceq \mathbf{1}, \\
& \mathbf{1}^{T} \mathbf{y}=r
\end{array}
$$

with $\mathbf{y} \in \mathbb{R}^{n}$ as the variable.
(b) Derive the dual of the LP in part (a). Show that it can be written as

$$
\begin{array}{ll}
\operatorname{minimize} & r t+\mathbf{1}^{T} \mathbf{u} \\
\text { subject to } & t \mathbf{1}+\mathbf{u} \succeq \mathbf{x}, \\
& \mathbf{u} \succeq \mathbf{0}
\end{array}
$$

where the variables are $t \in \mathbb{R}, \mathbf{u} \in \mathbb{R}^{n}$. By duality, this LP has the same optimal value as the LP in (a), i.e., $f(\mathbf{x})$. We therefore have the following result: \mathbf{x} satisfies $f(\mathbf{x}) \leq \alpha$ if and only if there exist $t \in \mathbb{R}$ and $\mathbf{u} \in \mathbb{R}^{n}$ such that

$$
r t+\mathbf{1}^{T} \mathbf{u} \leq \alpha, t \mathbf{1}+\mathbf{u} \succeq \mathbf{x}, \mathbf{u} \succeq \mathbf{0}
$$

These conditions form a set of $2 n+1$ linear inequalities in the $2 n+1$ variables \mathbf{x}, \mathbf{u}, and t.
(c) As an application, consider the patch illumination example from Lecture \#1. This can be shown to be expressed as the following SOCP:

$$
\begin{array}{ll}
\operatorname{minimize} & t \\
\text { subject to } & \mathbf{a}_{k}^{T} \mathbf{p} \leq I_{\mathrm{des}} t, k=1, \ldots, n \\
& \left\|\left[\begin{array}{c}
2 \sqrt{I_{\mathrm{des}}} \\
t-\mathbf{a}_{k}^{T} \mathbf{p}
\end{array}\right]\right\|_{2} \leq t+\mathbf{a}_{k}^{T} \mathbf{p}, k=1, \ldots, n \\
& \mathbf{0} \preceq \mathbf{p} \preceq p_{\max } \mathbf{1}
\end{array}
$$

Here, the variables are $\mathbf{p} \in \mathbb{R}^{m}$ and $t \in \mathbb{R}$, while the problem data consists of $\mathbf{a}_{k} \in \mathbb{R}_{+}^{m}$ for $k=1, \ldots, n, I_{\text {des }} \in \mathbb{R}_{++}$, and $p_{\text {max }} \in \mathbb{R}_{++}$.
Suppose we add one of the constraints mentioned in Lecture \#1 that no more than half of the total power is in any m_{0} lamps. Show that with this additional constraint, the problem above can be formulated as

$$
\begin{array}{ll}
\operatorname{minimize} & t \\
\text { subject to } & \mathbf{a}_{k}^{T} \mathbf{p} \leq I_{\text {des }} t, k=1, \ldots, n \\
& \left\|\left[\begin{array}{c}
2 \sqrt{I_{\text {des }}} \\
t-\mathbf{a}_{k}^{T} \mathbf{p}
\end{array}\right]\right\|_{2} \leq t+\mathbf{a}_{k}^{T} \mathbf{p}, k=1, \ldots, n, \\
& \mathbf{0} \preceq \mathbf{p} \preceq p_{\max } \mathbf{1} \\
& m_{0} s+\mathbf{1}^{T} \mathbf{q} \leq \frac{1}{2} \mathbf{1}^{T} \mathbf{p}, s \mathbf{1}+\mathbf{q} \succeq \mathbf{p}, \mathbf{q} \succeq \mathbf{0}
\end{array}
$$

with variables $\mathbf{t} \in \mathbb{R}, \mathbf{p} \in \mathbb{R}^{m}, s \in \mathbb{R}$, and $\mathbf{q} \in \mathbb{R}^{m}$. Note that this is also an SOCP.
3. (10 points) (Adapted from CO-BV, Exercise 5.20) (Dual of the channel capacity problem:) Derive a dual for the problem

$$
\begin{array}{ll}
\operatorname{minimize} & \mathbf{c}^{T} \mathbf{x}+\sum_{i=1}^{m} y_{i} \log y_{i} \\
\text { subject to } & \mathbf{P x}=\mathbf{y} \\
& \mathbf{x} \succeq \mathbf{0}, \mathbf{1}^{T} \mathbf{x}=1
\end{array}
$$

where $\mathbf{P} \in \mathbb{R}^{m \times n}$ has nonnegative elements, and its columns add up to unity (i.e., $\mathbf{P}^{T} \mathbf{1}=\mathbf{1}$). The variables are $\mathbf{x} \in \mathbb{R}^{n}$ and $\mathbf{y} \in \mathbb{R}^{m}$. (For $c_{\ell}=-\sum_{k=1}^{m} p_{k, \ell} \log p_{k, \ell}$, the optimal value is, up to a factor $\log 2$, the capacity of a discrete memoryless channel with channel transition probability matrix \mathbf{P}; see Problem 5 of Homework Set \#5.)
Simplify the dual problem as much as possible.
4. (10 points) (Adapted from CO-AE, Exercise 4.14) (Kantorovich inequality:)
(a) Suppose $\mathbf{a} \in \mathbb{R}^{n}$ with $a_{1} \geq \cdots \geq a_{n}>0$, and $\mathbf{b} \in \mathbb{R}^{n}$ with $b_{k}=1 / a_{k}$.

Derive the KKT conditions for the convex optimization problem

$$
\begin{array}{ll}
\operatorname{minimize} & -\log \left(\mathbf{a}^{T} \mathbf{x}\right)-\log \left(\mathbf{b}^{T} \mathbf{x}\right) \\
\text { subject to } & \mathbf{x} \succeq \mathbf{0}, \mathbf{1}^{T} \mathbf{x}=1
\end{array}
$$

Show that $\mathbf{x}=(1 / 2,0, \ldots, 0,1 / 2)$ is optimal.
(b) Suppose $\mathbf{A} \in \mathbb{S}_{++}^{n}$ with eigenvalues λ_{k} sorted in decreasing order. Apply the result of part (a), with $a_{k}=\lambda_{k}$, to prove the Kantorovich inequality:

$$
2\left(\mathbf{u}^{T} \mathbf{A} \mathbf{u}\right)^{1 / 2}\left(\mathbf{u}^{T} \mathbf{A}^{-1} \mathbf{u}\right)^{1 / 2} \leq \sqrt{\frac{\lambda_{1}}{\lambda_{n}}}+\sqrt{\frac{\lambda_{n}}{\lambda_{1}}},
$$

for all \mathbf{u} with $\|\mathbf{u}\|_{2}=1$.
*5. (30 points) (Adapted from CO-AE, Exercise 4.4) (Source localization from range measurements:) A signal emitted by a source at an unknown position $\mathbf{x} \in \mathbb{R}^{n}$ ($n=2$ or $n=3$) is received by m sensors at known positions $\mathbf{y}_{1}, \ldots, \mathbf{y}_{m} \in \mathbb{R}^{n}$. From the strength of the received signals, we can obtain noisy estimates d_{k} of the distances $\left\|\mathbf{x}-\mathbf{y}_{k}\right\|_{2}$. We are interested in estimating the source position \mathbf{x} based on the measured distances d_{k}.
In the following problem, the error between the squares of the actual and observed distances is minimized:

$$
\operatorname{minimize} \quad f_{0}(\mathbf{x})=\sum_{k=1}^{m}\left(\left\|\mathbf{x}-\mathbf{y}_{k}\right\|_{2}^{2}-d_{k}^{2}\right)^{2}
$$

Introducing a new variable $t=\mathbf{x}^{T} \mathbf{x}$, we can express this as

$$
\begin{array}{ll}
\operatorname{minimize} & \sum_{k=1}^{m}\left(t-2 \mathbf{y}_{k}^{T} \mathbf{x}+\left\|\mathbf{y}_{k}\right\|_{2}^{2}-d_{k}^{2}\right)^{2} . \tag{1}\\
\text { subject to } & \mathbf{x}^{T} \mathbf{x}-t=0
\end{array}
$$

The variables are $\mathbf{x} \in \mathbb{R}^{n}$ and $t \in \mathbb{R}$. Although this problem is not convex, it can be shown that strong duality holds. (It is a variation on the problem discussed on pg. 229 of CO-BV
and in Exercise 5.29 of CO-BV.)
Solve (1) for an example with $m=5$,

$$
\mathbf{y}_{1}=\left[\begin{array}{l}
1.8 \\
2.5
\end{array}\right], \mathbf{y}_{2}=\left[\begin{array}{l}
2.0 \\
1.7
\end{array}\right], \mathbf{y}_{3}=\left[\begin{array}{l}
1.5 \\
1.5
\end{array}\right], \mathbf{y}_{4}=\left[\begin{array}{l}
1.5 \\
2.0
\end{array}\right], \mathbf{y}_{5}=\left[\begin{array}{l}
2.5 \\
1.5
\end{array}\right]
$$

and

$$
\mathbf{d}=(2.00,1.24,0.59,1.31,1.44)
$$

In Figure 1, some contour lines of the cost function f_{0} are shown, along with the sensor positions \mathbf{y}_{k} indicated by circles.

Figure 1: Contour plot of the objective $f_{0}\left(x_{1}, x_{2}\right)$ for the given problem data, with the sensor position vectors \mathbf{y}_{k} indicated by circles.

To solve the problem, you can note that \mathbf{x}^{\star} is easily obtained from the KKT conditions for (1) if the optimal multiplier ν^{\star} for the equality constraint is known. You can use one of the following two methods to find ν^{\star}.

- Derive the dual problem, express it as an SDP, and solve it using cvx.
- Reduce the KKT conditions to a nonlinear equation in ν, and pick the correct solution.

Reading assignments:

1. Read through Chapter 5 and begin Chapter 6 of CO-BV.

Reminders:

Late homework policy for EE 150: Late homeworks will not be accepted. There will be no exceptions to this other than institute established emergency reasons, in which case a signed letter is required from an authorized official.

NCT Problems: Remember that problems with an asterisk, such as *7 are no collaboration type (NCT) problems.

Texts: The abbreviation CO-BV corresponds to the textbook "Convex Optimization" by Stephen Boyd and Lieven Vandenberghe. In addition, CO-AE refers to the Additional Exercises for Convex Optimization, also by Boyd and Vandenberghe. Finally, CVX corresponds to the cvx Users' Guide by Michael Grant and Stephen Boyd.

