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Dr. Andre Tkacenko, JPL
Third Term 2011-2012

Homework Set #6
Due on Friday, May 18 at 1 PM in 110 Moore.

1. (10 points) (Adapted from CO-BV, Exercise 5.1) (Elementary example of duality:) Consider
the optimization problem

minimize x2 + 1

subject to (x− 2) (x− 4) ≤ 0
,

with variable x ∈ R.

(a) Analysis of primal problem: Give the feasible set, the optimal solution x?, and the
optimal value p?.

(b) Lagrangian and dual function: Plot the objective x2 + 1 versus x. On the same plot,
show the feasible set, optimal point and value, and plot the Lagrangian L(x, λ) versus
x for a few positive values of λ. Verify the lower bound property (p? ≥ infx {L(x, λ)}
for λ ≥ 0). Derive and sketch the Lagrange dual function g.

(c) Lagrange dual problem: State the dual problem, and verify that it is a concave
maximization problem. Find the dual optimal solution λ? and the dual optimal value
d?. Does strong duality hold?

(d) Sensitivity analysis: Let p?(u) denote the optimal value of the problem

minimize x2 + 1

subject to (x− 2) (x− 4) ≤ u
,

as a function of the parameter u. Plot p?(u). Verify that dp?(0)
du = −λ?.

2. (10 points) (Adapted from CO-BV, Exercise 5.19) (Sum of the largest elements of a vector:)
Define f : Rn → R as

f(x) ,
r∑

i=1

x[i] ,

where r is an integer between 1 and n, and x[1] ≥ · · · ≥ x[r] are the components of x sorted
in decreasing order. In other words, f(x) is the sum of the r largest elements of x. In this
problem, we study the constraint

f(x) ≤ α .

As was shown in Lecture #7, this is a convex constraint, and equivalent to a set of
C(n, r) = n!/ (r! (n− r)!) linear inequalities

xi1 + · · ·+ xir ≤ α , 1 ≤ i1 < · · · < ir ≤ n .

The purpose of this problem is to derive a more compact representation.



(a) Given a vector x ∈ Rn, show that f(x) is equal to the optimal value of the LP

maximize xTy

subject to 0 � y � 1

1Ty = r

,

with y ∈ Rn as the variable.

(b) Derive the dual of the LP in part (a). Show that it can be written as

minimize rt+ 1Tu

subject to t1 + u � x

u � 0

,

where the variables are t ∈ R, u ∈ Rn. By duality, this LP has the same optimal value
as the LP in (a), i.e., f(x). We therefore have the following result: x satisfies f(x) ≤ α
if and only if there exist t ∈ R and u ∈ Rn such that

rt+ 1Tu ≤ α , t1 + u � x , u � 0 .

These conditions form a set of 2n+ 1 linear inequalities in the 2n+ 1 variables x, u,
and t.

(c) As an application, consider the patch illumination example from Lecture #1. This can
be shown to be expressed as the following SOCP:

minimize t

subject to aTk p ≤ Idest , k = 1, . . . , n∣∣∣∣∣
∣∣∣∣∣
[

2
√
Ides

t− aTk p

]∣∣∣∣∣
∣∣∣∣∣
2

≤ t+ aTk p , k = 1, . . . , n

0 � p � pmax1

.

Here, the variables are p ∈ Rm and t ∈ R, while the problem data consists of ak ∈ Rm
+

for k = 1, . . . , n, Ides ∈ R++, and pmax ∈ R++.
Suppose we add one of the constraints mentioned in Lecture #1 that no more than half
of the total power is in any m0 lamps. Show that with this additional constraint, the
problem above can be formulated as

minimize t

subject to aTk p ≤ Idest , k = 1, . . . , n∣∣∣∣∣
∣∣∣∣∣
[

2
√
Ides

t− aTk p

]∣∣∣∣∣
∣∣∣∣∣
2

≤ t+ aTk p , k = 1, . . . , n

0 � p � pmax1

m0s+ 1Tq ≤ 1

2
1Tp , s1 + q � p , q � 0

,

with variables t ∈ R, p ∈ Rm, s ∈ R, and q ∈ Rm. Note that this is also an SOCP.



3. (10 points) (Adapted from CO-BV, Exercise 5.20) (Dual of the channel capacity problem:)
Derive a dual for the problem

minimize cTx +
m∑
i=1

yi log yi

subject to Px = y

x � 0 , 1Tx = 1

,

where P ∈ Rm×n has nonnegative elements, and its columns add up to unity (i.e.,
PT1 = 1). The variables are x ∈ Rn and y ∈ Rm. (For c` = −

∑m
k=1 pk,` log pk,`, the optimal

value is, up to a factor log 2, the capacity of a discrete memoryless channel with channel
transition probability matrix P; see Problem 5 of Homework Set #5.)
Simplify the dual problem as much as possible.

4. (10 points) (Adapted from CO-AE, Exercise 4.14) (Kantorovich inequality:)

(a) Suppose a ∈ Rn with a1 ≥ · · · ≥ an > 0, and b ∈ Rn with bk = 1/ak.
Derive the KKT conditions for the convex optimization problem

minimize − log
(
aTx

)
− log

(
bTx

)
subject to x � 0 , 1Tx = 1

.

Show that x = (1/2, 0, . . . , 0, 1/2) is optimal.

(b) Suppose A ∈ Sn++ with eigenvalues λk sorted in decreasing order. Apply the result of
part (a), with ak = λk, to prove the Kantorovich inequality :

2
(
uTAu

)1/2 (
uTA−1u

)1/2 ≤√λ1
λn

+

√
λn
λ1

,

for all u with ||u||2 = 1.

*5. (30 points) (Adapted from CO-AE, Exercise 4.4) (Source localization from range
measurements:) A signal emitted by a source at an unknown position x ∈ Rn (n = 2 or
n = 3) is received by m sensors at known positions y1, . . . ,ym ∈ Rn. From the strength of
the received signals, we can obtain noisy estimates dk of the distances ||x− yk||2. We are
interested in estimating the source position x based on the measured distances dk.
In the following problem, the error between the squares of the actual and observed distances
is minimized:

minimize f0(x) =

m∑
k=1

(
||x− yk||22 − d

2
k

)2
.

Introducing a new variable t = xTx, we can express this as

minimize

m∑
k=1

(
t− 2yT

k x + ||yk||22 − d
2
k

)2
subject to xTx− t = 0

. (1)

The variables are x ∈ Rn and t ∈ R. Although this problem is not convex, it can be shown
that strong duality holds. (It is a variation on the problem discussed on pg. 229 of CO-BV



and in Exercise 5.29 of CO-BV.)
Solve (1) for an example with m = 5,

y1 =

[
1.8

2.5

]
, y2 =

[
2.0

1.7

]
, y3 =

[
1.5

1.5

]
, y4 =

[
1.5

2.0

]
, y5 =

[
2.5

1.5

]
,

and
d = (2.00, 1.24, 0.59, 1.31, 1.44) .

In Figure 1, some contour lines of the cost function f0 are shown, along with the sensor
positions yk indicated by circles.
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Figure 1: Contour plot of the objective f0(x1, x2) for the given problem data, with the sensor
position vectors yk indicated by circles.

To solve the problem, you can note that x? is easily obtained from the KKT conditions for
(1) if the optimal multiplier ν? for the equality constraint is known. You can use one of the
following two methods to find ν?.

– Derive the dual problem, express it as an SDP, and solve it using cvx.

– Reduce the KKT conditions to a nonlinear equation in ν, and pick the correct solution.

Reading assignments:
1. Read through Chapter 5 and begin Chapter 6 of CO-BV.

Reminders:

Late homework policy for EE 150: Late homeworks will not be accepted. There will be no
exceptions to this other than institute established emergency reasons, in which case a signed
letter is required from an authorized official.

NCT Problems: Remember that problems with an asterisk, such as *7 are no collaboration type
(NCT) problems.

Texts: The abbreviation CO-BV corresponds to the textbook “Convex Optimization” by Stephen
Boyd and Lieven Vandenberghe. In addition, CO-AE refers to the Additional Exercises for
Convex Optimization, also by Boyd and Vandenberghe. Finally, CVX corresponds to the cvx

Users’ Guide by Michael Grant and Stephen Boyd.

http://www.stanford.edu/~boyd/cvxbook/bv_cvxbook.pdf
http://www.stanford.edu/~boyd/cvxbook/bv_cvxbook_extra_exercises.pdf
http://www.stanford.edu/~boyd/cvxbook/bv_cvxbook_extra_exercises.pdf
http://web.cvxr.com/cvx/cvx_usrguide.pdf
http://web.cvxr.com/cvx/cvx_usrguide.pdf

