
EE 150 - Applications of Convex Optimization in Signal Processing and Communications
Dr. Andre Tkacenko, JPL
Third Term 2011-2012

Homework Set #7
Due on Friday, May 25 at 1 PM in 110 Moore.

1. (10 points) (Adapted from CO-AE, Exercise 5.3) (Approximation with trigonometric
polynomials:) Suppose y(t) : R→ R is a T -periodic function. We will approximate y(t) with
the trigonometric polynomial

f(t) =
a0

2
+

K∑
k=1

ak cos

(
2πkt

T

)
+

K∑
k=1

bk sin

(
2πkt

T

)
.

We consider two approximations: one that minimizes the L2-norm of the error, given by

||f − y||2 =

(∫ T/2

−T/2
|f(t)− y(t)|2 dt

)1/2

,

and one that minimizes the L1-norm of the error, given by

||f − y||1 =

∫ T/2

−T/2
|f(t)− y(t)| dt .

The L2 approximation is, of course, given by the (truncated) Fourier expansion of y.
To find an L1 approximation, we discretize t at 2N points given by

tm = −T
2

+
mT

2N
, m = 0, . . . , 2N − 1 ,

and approximate the L1-norm as

||f − y||1 ≈
T

2N

2N−1∑
m=0

|f(tm)− y(tm)| .

(A standard rule of thumb is to take N to be at least 10 times larger than K.) The L1

approximation (or really, an approximation of the L1 approximation) can now be found
using linear programming.
We consider a specific case, where y(t) is a 1-periodic square-wave, defined for
−1/2 ≤ t < 1/2 as

y(t) =

{
1 , −1/4 ≤ t < 1/4

0 , otherwise
.

(The graph of y over a few cycles explains the name ‘square-wave’.)
Find the optimal L2 approximation and optimal (discretized) L1 approximation for K = 10.
You can find the optimal L2 approximation analytically, or by solving a least-squares
problem associated with the discretized version of the problem. Since y is even, you can
take the sine coefficients in your approximations to be zero. Show y and the two
approximations on the same plot.
In addition, plot a histogram of the residuals (i.e., the numbers f(tm)− y(tm)) for the two
approximations. Use the same axis range, so the two residual distributions can be easily
compared. (The MATLAB command hist might be helpful here.) Make some brief
comments about what you see.



2. (10 points) (Adapted from CO-AE, Exercise 5.6) (Total variation image interpolation:) A
grayscale image is represented as an m× n matrix of intensities Uorig. You are given the
values Uorig

k,` , for (k, `) ∈ K, where K ⊂ {1, . . . ,m} × {1, . . . , n}. Your job is to interpolate
the image, by guessing the missing values. The reconstructed image will be represented by
U ∈ Rm×n, where U satisfies the interpolation conditions Uk,` = Uorig

k,` for (k, `) ∈ K.
The reconstruction is found by minimizing a roughness measure subject to the interpolation
conditions. One common roughness measure is the `2 variation (squared), given by

m∑
k=2

n∑
`=2

(
(Uk,` − Uk−1,`)

2 + (Uk,` − Uk,`−1)2
)
.

Another method minimizes instead the total variation, given by

m∑
k=2

n∑
`=2

(|Uk,` − Uk−1,`|+ |Uk,` − Uk,`−1|) .

Evidently, both methods lead to convex optimization problems.
Carry out `2 and total variation interpolation on the problem instance with data given in
tv img interp.m obtained from the image tv img interp.png. This will define m, n, and
matrices Uorig and Known. The matrix Known is m× n, with (k, `)-th entry one if
(k, `) ∈ K, and zero otherwise. The .m file also has skeleton plotting code. (We give you the
entire original image so you can compare your reconstruction to the original; obviously your
solution cannot access Uorig

k,` for (k, `) 6∈ K.)

3. (10 points) (Adapted from CO-AE, Exercise 5.10) (Identifying a sparse linear dynamical
system:) A linear dynamical system has the form

x(t+ 1) = Ax(t) + Bu(t) + w(t) , t = 1, . . . , T − 1 ,

where x(t) ∈ Rn is the state, u(t) ∈ Rm is the input signal, and w(t) ∈ Rn is the process
noise, each at time t. We assume the process noises are independent and identically
distributed (i.i.d.) with distribution N (0,W), where W � 0 is the covariance matrix. The
matrix A ∈ Rn×n is called the dynamics matrix or the state transition matrix, and the
matrix B ∈ Rn×m is called the input matrix.
You are given accurate measurements of the state and input signal, i.e., x(1) , . . . ,x(T ) and
u(1) , . . . ,u(T − 1), and W is known. Your job is to find a state transition matrix Â and
input matrix B̂ from this set of data, that are plausible, and in addition are sparse, i.e.,
have many zero entries. (The sparser the better.)
By doing this, you are effectively estimating the structure of the dynamical system, i.e., you
are determining which components of x(t) and u(t) affect which components of x(t+ 1). In
some applications, this structure might be more interesting than the actual values of the
(nonzero) coefficients in Â and B̂.
By plausible, we mean that

T−1∑
t=1

∣∣∣∣∣∣W−1/2
(
x(t+ 1)− Âx(t)− B̂u(t)

)∣∣∣∣∣∣2
2
≤ n (T − 1) + 2

√
2n (T − 1) .

(You can just take this as our definition of plausible. But to explain this choice, we note that
when Â = A and B̂ = B, the left-hand side (LHS) is χ2, with n (T − 1) degrees of freedom,
and so has mean n (T − 1) and standard deviation

√
2n (T − 1). Thus, the constraint above

states that the LHS does not exceed the mean by more than 2 standard deviations.)

http://www.systems.caltech.edu/dsp/ee150_acospc/hw_sets/tv_img_interp.m
http://www.systems.caltech.edu/dsp/ee150_acospc/hw_sets/tv_img_interp.png


(a) Describe a method for finding Â and B̂, based on convex optimization.
We are looking for a very simple method, that involves solving one convex
optimization problem. (There are many extensions of this basic method, that would
improve the simple method, i.e., yield sparser Â and B̂ that are still plausible. We are
not asking you to describe or implement any of these.)

(b) Carry out your method on the data found in sparse lds data.m. Give the values of Â
and B̂ that you find, and verify that they are plausible.
In the data file, we give you the true values of A and B, so you can evaluate the
performance of your method. (Needless to say, you are not allowed to use these values
when forming Â and B̂.) Using these true values, give the number of false positives
and false negatives in both Â and B̂. A false positive in Â, for example, is an entry
that is nonzero, while the corresponding entry in A is zero. Similarly, a false negative
is an entry of Â that is zero, while the corresponding entry of A is nonzero. To judge

whether an entry of Â (or B̂) is nonzero, you can use the test
∣∣∣Âk,`∣∣∣ ≥ 0.01 (or∣∣∣B̂k,`∣∣∣ ≥ 0.01).

4. (10 points) (Adapted from CO-AE, Exercise 5.14) (Spectrum analysis with quantized
measurements:) A sample is made up of n compounds, in quantities qi ≥ 0, for i = 1, . . . , n.
Each compound has a (nonnegative) spectrum, which we represent as a vector s(i) ∈ Rm+ , for
i = 1, . . . , n. (Precisely what s(i) means does not matter to us here.) The spectrum of the
sample is given by s =

∑n
i=1 qis

(i). We can write this more compactly as s = Sq, where
S ∈ Rm×n+ is a matrix whose columns are s(1), . . . , s(n).
Measurement of the spectrum of the sample gives us an interval for each spectrum value,
i.e., l,u ∈ Rm+ for which

li ≤ si ≤ ui , i = 1, . . . ,m .

(In other words, we do not get s directly.) This occurs, for example, if our measurements
are quantized.
Given l and u (and S), we cannot in general deduce q exactly. Instead, we ask you to do
the following. For each compound i, find the range of possible values for qi that are
consistent with the spectrum measurements. We will denote these ranges as
qi ∈

[
qmin
i , qmax

i

]
. Your job is to find qmin

i and qmax
i .

Note that if qmin
i is large, we can confidently conclude that there is a significant amount of

compound i in the sample. If qmax
i is small, we can confidently conclude that there is not

much of compound i in the sample.

(a) Explain how to find qmin
i and qmax

i , given S, l, and u.

(b) Carry out the method of part (a) for the problem instance given in spectrum data.m.
(Executing this file defines the problem data, and plots the compound spectra and
measurement bounds.) Plot the minimum and maximum values versus i, using the
commented out code in the data file. Report your values for qmin

4 and qmax
4 .

*5. (30 points) (Adapted from CO-AE, Exercise 12.6) (Antenna array weight design:) We
consider an array of n omnidirectional antennas in a plane, at positions (xk, yk), for
k = 1, . . . , n. A narrowband signal plane wave transmitted at a carrier frequency of Fc is
incident from an angle θ, as shown in Figure 1. The delay of the signal at the k-th antenna
relative to the origin induces a phase shift of the complex baseband signal received at the

http://www.systems.caltech.edu/dsp/ee150_acospc/hw_sets/sparse_lds_data.m
http://www.systems.caltech.edu/dsp/ee150_acospc/hw_sets/spectrum_data.m


(0, 0)

(xk, yk)

θ

Figure 1: Pictorial view of a plane wave incident upon an antenna array with angle θ.

k-th antenna of the form ejφk(θ) , exp
(
j
(

2πxk
λ cos θ + 2πyk

λ sin θ
))

, where λ = c/Fc is the

wavelength and c is the speed of light. Defining the dimensionless normalized antenna
positions xk ,

2πxk
λ and yk ,

2πyk
λ , we have φk(θ) = (xk cos θ + yk sin θ). The complex

baseband signals of the n antennas are combined linearly to form the output of the antenna
array given by the following.

G(θ) =
n∑
k=1

wke
jφk(θ) ,

=
n∑
k=1

[(wre,k cosφk(θ)− wim,k sinφk(θ)) + j (wre,k sinφk(θ) + wim,k cosφk(θ))] ,

where wre,k , Re[wk] and wim,k , Im[wk] for k = 1, . . . , n. The complex weights in the
above linear combination are called the antenna array coefficients or shading coefficients,
and will be the design variables in the problem. For a given set of weights, the combined
output G(θ) is a function of the angle of arrival θ of the plane wave. The design problem is
to select weights wk that achieve a desired directional pattern G(θ).
We now describe a basic weight design problem. To steer the beam in a desired direction,
we require unit gain in a target direction θtar, i.e., G

(
θtar
)

= 1. In addition, we want |G(θ)|
small for

∣∣θ − θtar
∣∣ ≥ ∆, where 2∆ is our beamwidth. To do this, we can minimize

max
|θ−θtar|≥∆

|G(θ)| ,

where the maximum is over all θ ∈ [−π, π) with
∣∣θ − θtar

∣∣ ≥ ∆. This number is called the
sidelobe level for the array and our goal is to minimize it. If we achieve a small sidelobe
level, then the array is relatively insensitive to signals arriving from directions that are more
than ∆ away from the target direction. This results in the optimization problem

minimize max
|θ−θtar|≥∆

|G(θ)|

subject to G
(
θtar
)

= 1
,

with w ∈ Cn as the variable, where [w]k = wk.
The objective function can be approximated by first discretizing the angle of arrival θ with,
say, N values θ1, . . . , θN (assumed, for example, uniformly spaced) over the interval[
θtar + ∆, θtar + 2π −∆

]
. Then, we replace the original objective function with

max
{
|G(θ`)| :

∣∣θ` − θtar
∣∣ ≥ ∆ , ` = 1, . . . , N

}
.



(a) Formulate the antenna array weight design problem as an SOCP.

(b) Solve an instance using cvx, with n = 40, λ = 2π, θtar = 15◦, ∆ = 15◦, N = 400, and
antenna positions generated using

>> rand(’state’,0);

>> n = 40;

>> x = 30 * rand(n,1);

>> y = 30 * rand(n,1);

Compute the optimal weights and make a plot of |G(θ)| in decibels (dB) versus θ (i.e.,
plot 20 log10(|G(θ)|) as a function of θ).
Hint: cvx can directly handle complex variables, and recognizes the modulus abs(x)

of a complex number as a convex function of its real and imaginary parts, so you do
not need to explicitly form the SOCP from part (a).

Reading assignments:

1. Read through Chapter 6 and begin Chapter 7 of CO-BV. Look over parts of CVX as
necessary.

Reminders:

Late homework policy for EE 150: Late homeworks will not be accepted. There will be no
exceptions to this other than institute established emergency reasons, in which case a signed
letter is required from an authorized official.

NCT Problems: Remember that problems with an asterisk, such as *7 are no collaboration type
(NCT) problems.

Texts: The abbreviation CO-BV corresponds to the textbook “Convex Optimization” by Stephen
Boyd and Lieven Vandenberghe. In addition, CO-AE refers to the Additional Exercises for
Convex Optimization, also by Boyd and Vandenberghe. Finally, CVX corresponds to the cvx

Users’ Guide by Michael Grant and Stephen Boyd.

http://www.stanford.edu/~boyd/cvxbook/bv_cvxbook.pdf
http://www.stanford.edu/~boyd/cvxbook/bv_cvxbook_extra_exercises.pdf
http://www.stanford.edu/~boyd/cvxbook/bv_cvxbook_extra_exercises.pdf
http://web.cvxr.com/cvx/cvx_usrguide.pdf
http://web.cvxr.com/cvx/cvx_usrguide.pdf

