
EE 150 - Applications of Convex Optimization in Signal Processing and Communications
Dr. Andre Tkacenko, JPL
Third Term 2011-2012

Homework Set #8
Due on Friday, June 8 at 1 PM in 110 Moore.

1. (10 points) (Adapted from CO-AE, Exercise 12.1) (FIR low-pass filter design:) Consider a
finite impulse response (FIR) filter with impulse response h[n], which is only nonzero for
n = 0, . . . , N , where N is some even integer. Suppose that h[n] is symmetric, i.e.,
h[n] = h[N − n] for all n. Then, if h[n] is also real, it can be shown that the frequency
response H

(
ej2πf

)
is given by

H
(
ej2πf

)
= e−jπNfHR(f) , (1)

where HR(f) is the amplitude response, or zero-phase response, which is given by

HR(f) =
M∑

k=0

bk cos(2πkf) ,

where M , N/2 and bk ∈ R for k = 0, . . . ,M . Since the phase term from (1) is linear, the
filter h[n] is said to be a linear phase filter.

In this problem, we will design a filter to meet certain frequency band specifications. The

design variable here is the vector b =
[
b0 · · · bM

]T ∈ RM+1. We will explore the design of
a low-pass filter. Specifically, we will set specifications on the magnitude response∣∣H
(
ej2πf

)∣∣ in dB (i.e., 20 log10
(∣∣H

(
ej2πf

)∣∣)), as shown in Figure 1(a), map those
specifications to equivalent ones for the amplitude response HR(f), as shown in Figure 1(b),
and then select the filter coefficient vector b to accommodate this latter set of specifications.
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Figure 1: Low-pass filter responses: (a) magnitude response
∣∣H
(
ej2πf

)∣∣ in dB (i.e.,
20 log10

(∣∣H
(
ej2πf

)∣∣)) and (b) amplitude response HR(f).

Referring to Figure 1(a), the filter is characterized by a passband frequency fP , a stopband
frequency fS , a peak-to-peak passband ripple δP (dB), and a stopband ripple level δS (dB). The
ripple specifications can be mapped to a linear scale, which is then used to design the
amplitude response HR(f). This leads to a passband ripple level δP and a stopband ripple
level δS . The relation between these specifications is given as follows.

δP =
K − 1

K + 1
, where K = 10δP (dB)/20 , δS = 10δS (dB)/20 .



The goal is to design the filter to meet the following specifications.

– For 0 ≤ f ≤ fP , we want 1− δP ≤ HR(f) ≤ 1 + δP . This is the passband requirement.

– For fS ≤ f ≤ 1/2, we want −δS ≤ HR(f) ≤ δS . This is the stopband requirement.

For parts (a)-(c), explain how to formulate the given design problem (for HR(f)) as a
convex or quasiconvex optimization problem.

(a) Maximum stopband attenuation: Suppose we fix fP , δP , fS , and M , and wish to
maximize the stopband attenuation, i.e., minimize δS .

(b) Minimum transition band: Suppose we fix fP , δP , δS , and M , and wish to minimize
fS , i.e., we wish to minimize the ‘transition’ band between fP and fS with fP fixed.

(c) Shortest length filter: Suppose we fix fP , δP , fS , and δS , and we wish to find the
smallest M that can meet the specifications. As the filter length is N + 1 = 2M + 1,
this is tantamount to finding the shortest length FIR filter that can meet the
specifications.

(d) Numerical filter design: Use cvx to find the shortest length filter that satisfies the
following filter specifications.

fP =
1

6
, δP (dB) = 0.1 , fS =

1

5
, δS (dB) = −30 .

For this subproblem, you may discretize the constraints in frequency, which means the
following. Choose L large (say, 500; an old rule of thumb is that L should be at least
15M), and set f` = `/ (2L), where ` = 0, . . . , L. Then replace the specifications with

– For ` with 0 ≤ f` ≤ fP , use 1− δP ≤ HR(f`) ≤ 1 + δP .

– For ` with fS ≤ f` ≤ 1
2 , use −δS ≤ HR(f`) ≤ δS .

Report the optimal value of M . Then, plot the magnitude response of the filter in dB,
i.e., 20 log10

(∣∣H
(
ej2πf

)∣∣), and verify visually that it meets the desired constraints.

2. (10 points) (Adapted from CO-AE, Exercise 7.8) (Bounding object position from multiple
camera views:) A small object is located at an unknown position in x ∈ R3, and viewed by
a set of m cameras. Our goal is to find a box in R3,

B =
{
z ∈ R3 : l � z � u

}
,

for which we can guarantee x ∈ B. We want the smallest possible such bounding box.
(Although it does not matter, we can use volume to judge the ‘smallest’ among the boxes.)

Now we describe the cameras. The object at location x ∈ R3 creates an image on the image
plane of camera i at location

vi =
1

cTi x + di
(Aix + bi) ∈ R2 .

The matrices Ai ∈ R2×3, vectors bi ∈ R2 and ci ∈ R3, and scalars di ∈ R are known, and
depend on the camera positions and orientations. We assume that cTi x + di > 0. The 3× 4
matrix

Pi =

[
Ai bi

cTi di

]



is called the camera matrix (for camera i). It is often (but not always) the case that the
first 3 columns of Pi (i.e., Ai stacked above cTi ) form an orthogonal matrix, in which case
the camera is called orthographic.

We do not have direct access to the image point vi; we only know the (square) pixel that it
lies in. In other words, the camera gives us a measurement v̂i (the center of the pixel that
the image point lies in); we are guaranteed that

||vi − v̂i||∞ ≤ ρi/2 ,

where ρi is the pixel width (and height) of camera i. (We know nothing else about vi; it
could be any point in this pixel.)

Given the data Ai, bi, ci, di, v̂i, and ρi, we are to find the smallest box B (i.e., find the
vectors l and u) that is guaranteed to contain x. In other words, find the smallest box in R3

that contains all points consistent with the observations from the camera.

(a) Explain how to solve this using convex or quasiconvex optimization. You must explain
any transformations you use, any new variables you introduce, etc. If the convexity or
quasiconvexity of any function in your formulation is not obvious, be sure to justify it.

(b) Solve the specific problem instance given in the file camera data.m. Be sure that your
final numerical answer (i.e., l and u) stands out.

3. (10 points) (Adapted from CO-AE, Exercise 6.5) (Estimating a vector with an unknown
measurement nonlinearity:) We want to estimate a vector x ∈ Rn, given some measurements

yi = φ
(
aTi x + vi

)
, i = 1, . . . ,m .

Here, ai ∈ Rn are known, vi are independent and identically distributed (i.i.d.) N
(
0, σ2

)

random noises, and φ : R→ R is an unknown monotonic increasing function, known to
satisfy

α ≤ φ′(u) ≤ β ,
for all u. (Here, α and β are known positive constants, with α < β.) We want to find a
maximum likelihood (ML) estimate of x and φ, given yi. (We also know ai, σ, α, and β.)

This sounds like an infinite-dimensional problems, since one of the parameters we are trying
to estimate is a function. In fact, we only need to know the m numbers zi = φ−1(yi) for
i = 1, . . . ,m. So by estimating φ, we really mean estimating the m numbers z1, . . . , zm.
(These numbers are not arbitrary; they must be consistent with the prior information
α ≤ φ′(u) ≤ β for all u).

(a) Explain how to find an ML estimate of x and φ (i.e., z1, . . . , zm) using convex
optimization.

(b) Carry out your method on the data given in nonlin meas data.m, which includes a
matrix A ∈ Rm×n, with rows aT1 , . . . ,a

T
m. Give x̂ml, the ML estimate of x. Plot your

estimated function φ̂ml. (You can do this by plotting [ẑml]i versus yi, with yi on the
vertical axis and [ẑml]i on the horizontal axis.)

Hint: You can assume the measurements are numbered so that yi are sorted in
nondecreasing order, i.e., y1 ≤ · · · ≤ ym. (The data given in the problem instance for part
(b) is given in this order.)

http://www.systems.caltech.edu/dsp/ee150_acospc/hw_sets/camera_data.m
http://www.systems.caltech.edu/dsp/ee150_acospc/hw_sets/nonlin_meas_data.m


4. (10 points) (Adapted from CO-AE, Exercise 7.10) (Ellipsoidal peeling:) In this exercise, you
will implement an outlier identification and removal technique called ellipsoidal peeling. We
are given a set of points x1, . . . ,xN ∈ Rn; our goal is to find a small (measured by volume)
ellipsoid E , for which xi ∈ E for i 6∈ O, where O ⊂ {1, . . . , N} is the set of ‘outliers’. Of
course, there is a trade-off between card(O) (the cardinality of the set of outliers) and
vol(E). Once we choose O, though, we can find E as the minimum volume ellipsoid that
contains xi for i 6∈ O.

Ellipsoidal peeling is a heuristic for finding reasonable choices for O. We start with O = ∅,
and find the minimum volume ellipsoid E containing all xi for i 6∈ O (which, at this step, is
all xi). Some of the points xi will be on the surface of E ; we add these points to O, and
repeat. Roughly speaking, in each step, we ‘peel off’ the points that lie on the surface of the
smallest volume enclosing ellipsoid. We then plot vol(E) versus card(O), and hope that we
see a clear knee of the curve.

There are many variations on this approach. For example, instead of dropping all points on
the surface of the current ellipsoid, we might drop only the one that corresponds to the
largest Lagrange multiplier for the constraint that requires xi ∈ E .

Apply ellipsoidal peeling to the data given in ellip peel data.m. Specifically, use the
approach in which the point corresponding to the largest Lagrange multiplier is removed at
each stage. Carry this out a total of 30 times and plot vol(E) (on a log scale) versus
card(O). Based on this plot, estimate the number of outliers present in the data. Compare
this number to that obtained using the ‘eyeball’ test in which you estimate the number of
outliers present by plotting the data. This should bring to light the advantages and
disadvantages of the ellipsoidal peeling algorithm for cases in which the data cannot be
visualized.

Hint: In cvx, you should use det rootn (which is handled exactly), rather than log det

(which is handled using an inefficient iterative procedure).

*5. (30 points) (Adapted from CO-AE, Exercise 4.10) (Binary least-squares:) We consider the
non-convex least-squares approximation problem with binary constraints

minimize ||Ax− b||22
subject to x2k = 1 , k = 1, . . . , n

, (2)

where A ∈ Rm×n and b ∈ Rm. We assume that rank(A) = n, i.e., ATA is nonsingular.

One possible application of this problem is as follows. A signal x̂ ∈ {−1, 1}n is sent over a
noisy channel and received as b = Ax̂ + v, where v ∼ N

(
0m×1, σ

2Im
)

is Gaussian noise.
The solution of (2) is the ML estimate of the input signal x̂, based on the received signal b.

(a) Derive the Lagrange dual of (2) and express it as an SDP.

Hint: You may want to consider a range condition for
(
−ATb

)
rather than the more

obvious choice ATb.

(b) Derive the dual of the SDP in part (a) and show that it is equivalent to

minimize tr
(
ATAZ

)
− 2bTAz + bTb

subject to diag(Z) = 1[
Z z

zT 1

]
� 0

. (3)

http://www.systems.caltech.edu/dsp/ee150_acospc/hw_sets/ellip_peel_data.m


Interpret this problem as a relaxation of (2). Show that if

rank

([
Z z

zT 1

])
= 1 (4)

at the optimum of (3), then the relaxation is exact, i.e., the optimal values of problems
(2) and (3) are equal, and the optimal solution z of (3) is optimal for (2). This
suggests a heuristic for rounding the solution of the SDP (3) to a feasible solution of
(2), if (4) does not hold. We compute the eigenvalue decomposition

[
Z z

zT 1

]
=

n+1∑

i=1

λi

[
vi

ti

][
vi

ti

]T
,

where vi ∈ Rn and ti ∈ R, and approximate the matrix by a rank-one matrix
[

Z z

zT 1

]
≈ λ1

[
v1

t1

][
v1

t1

]T
.

(Here, we assume the eigenvalues are sorted in decreasing order.) Then, we take
x = sgn(v1) as our guess of a good solution of (2).

Hint: To handle the linear matrix inequality constraint (LMI) appearing in the SDP,
consider a Lagrange multiplier matrix of the form

[
Z z

zT λ

]
,

where Z ∈ Sn, z ∈ Rn, and λ ∈ R.

(c) We can also give a probabilistic interpretation of the relaxation (3). Suppose we
interpret z and Z as the first and second moments of a random variable v ∈ Rn (i.e.,
z = E[v] and Z = E

[
vvT

]
). Show that (3) is equivalent to the problem

minimize E
[
||Av − b||22

]

subject to E
[
v2k
]

= 1 , k = 1, . . . , n
,

where we minimize over all possible probability distributions of v.

This interpretation suggests another heuristic method for computing suboptimal
solutions of (2) based on the result of (3). We choose a distribution with first and
second moments E[v] = z and E

[
vvT

]
= Z, respectively (for example, the Gaussian

distribution N
(
z,Z− zzT

)
). We generate a number of samples ṽ from the distribution

and round them to feasible solutions x = sgn(ṽ). We keep the solution with the lowest
objective value as our guess of the optimal solution of (2).

(d) Solve the dual problem (3) using cvx. Generate problem instances using the MATLAB
code

randn(’state’,0)

m = 50;

n = 40;

A = randn(m,n);

xhat = sign(randn(n,1));

b = A*xhat + s*randn(m,1);



for four values of the noise level s: s = 0.5, s = 1, s = 2, s = 3. For each problem
instance, compute suboptimal feasible solutions x using the following heuristics and
compare the results.

(i) x(a) = sgn(xls), where xls is the solution of the least-squares problem

minimize ||Ax− b||22 .

(ii) x(b) = sgn(z), where z is the optimal value of the variable z in the SDP (3).

(iii) x(c) is computed from a rank-one approximation of the optimal solution of (3), as
explained in part (b) above.

(iv) x(d) is computed by rounding 100 samples of N
(
z,Z− zzT

)
, as explained in part

(c) above.

Generate a table listing the values of the least-squares metric

f(x) = ||Ax− b||22 ,

for each of the heuristic solutions x(a), x(b), x(c), and x(d), as well as the true input x̂.
Include in this table the lower bound provided by the SDP relaxation given in (3).

Hint: To generate samples of N
(
z,Z− zzT

)
, consider using the following result from

probability theory. If u ∼ N (µ,Σ), then the affine transformation w , Bu + c is such

that w ∼ N
(
Bµ + c,BΣBT

)
. Thus, if u ∼ N (0n×1, In), then w , (Z− zz)1/2 u + z is

such that w ∼ N
(
z,Z− zzT

)
.

Reading assignments:

1. Read through Chapters 7 and 8 of CO-BV. Look over parts of CVX as necessary.

Reminders:

Late homework policy for EE 150: Late homeworks will not be accepted. There will be no
exceptions to this other than institute established emergency reasons, in which case a signed
letter is required from an authorized official.

NCT Problems: Remember that problems with an asterisk, such as *7 are no collaboration type
(NCT) problems.

Texts: The abbreviation CO-BV corresponds to the textbook “Convex Optimization” by Stephen
Boyd and Lieven Vandenberghe. In addition, CO-AE refers to the Additional Exercises for
Convex Optimization, also by Boyd and Vandenberghe. Finally, CVX corresponds to the cvx

Users’ Guide by Michael Grant and Stephen Boyd.

http://www.stanford.edu/~boyd/cvxbook/bv_cvxbook.pdf
http://www.stanford.edu/~boyd/cvxbook/bv_cvxbook_extra_exercises.pdf
http://www.stanford.edu/~boyd/cvxbook/bv_cvxbook_extra_exercises.pdf
http://web.cvxr.com/cvx/cvx_usrguide.pdf
http://web.cvxr.com/cvx/cvx_usrguide.pdf

