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1. This is self-explanatory.

2. (a) Clearly the inequality holds if a = 0 or b = 0. Furthermore, in this case, it is easy to see
that we have equality if and only if ap = bq = 0. When a, b > 0, we have the following:

ab = elog(ab) = e[log(a)+log(b)] = e

[
p
p
log(a)+ q

q
log(b)

]
,

= e

[
1
p
log(ap)+ 1

q
log(bq)

]
,

≤ 1

p
elog(a

p) +
1

q
elog(b

q) , (1)

=
ap

p
+
bq

q
.

Here, (1) follows from the hint with θ = 1
p . Assuming p <∞ (the special case p =∞

can be argued via a continuity argument as p→∞), it follows that 0 < θ < 1, and so
we have equality in (1) if and only if log(ap) = log(bq), which is equivalent to saying
ap = bq.

(b) When either x = 0 or y = 0, the inequality clearly holds with equality if and only if
x = y = 0, which is consistent with the condition for equality stipulated in the
problem. For the case where x 6= 0 and y 6= 0, we have ||x||p > 0 and ||y||q > 0 and so
we get the following for any k with 1 ≤ k ≤ n:

|xkyk|
||x||p ||y||q

=
|xk|
||x||p

· |yk|
||y||q
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p
· |xk|

p

||x||pp
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1

q
· |yk|

q

||y||qq
. (2)

Here, (2) follows from Young’s inequality and we have equality if and only if
|xk|p
||x||pp

= |yk|q
||y||qq

. Summing each inequality in (2) for 1 ≤ k ≤ n yields
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n∑
k=1

|xkyk| ≤
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p
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q
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|yk|q
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︸ ︷︷ ︸
||y||qq
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=
1

p
+

1

q
= 1 . (4)

Here, we have equality in (3) if and only if |xk|
p

||x||pp
= |yk|q
||y||qq

for all 1 ≤ k ≤ n. Rearranging

(4), we get
n∑
k=1

|xkyk| ≤ ||x||p ||y||q ,

which completes the proof.



(c) We will first prove the inequality mentioned in the hint. For this, let us first suppose
c = 0. In this case, the inequality trivially holds with equality if and only if c = Kd
with K = 0. Similarly, if d = 0, the inequality trivially holds with equality if and only
if d = Kc with K = 0. Now suppose both c, d 6= 0. We can express c and d in polar
form as c = ρce

jφc and d = ρde
jφd , where ρc, ρd > 0 and 0 ≤ φc, φd < 2π. Then we have

the following:

|c+ d| =
√

(c+ d) (c+ d)∗ =
√
ρ2c + 2ρcρd cos (φc − φd) + ρ2d ,

≤
√
ρ2c + 2ρcρd + ρ2d =

√
(ρc + ρd)

2 = ρc + ρd = |c|+ |d| . (5)

Here, (5) follows from the fact that cos(x) ≤ 1 with equality if and only if x ≡ 0
(mod 2π) (i.e., x = 2πm for some m ∈ Z). As −2π < φc − φd < 2π, we have equality in
(5) if and only if φc − φd = 0, or equivalently if and only if φc = φd. In this case, we
either have d = ρde

jφc = ρd
ρc
ρce

jφc = Kc, where K = ρd
ρc
> 0 or

c = ρce
jφd = ρc

ρd
ρde

jφd = Kd, where K = ρc
ρd
> 0. Hence, for c, d 6= 0, we have

|c+ d| ≤ |c|+ |d| with equality if and only if c = Kd or d = Kc for some K > 0.
Combining everything proven here, we have shown that |c+ d| ≤ |c|+ |d| with equality
if and only if c = Kd or d = Kc for some K ≥ 0.

Now to prove Minkowski’s inequality, let us first consider the special case of p = 1.
Using the triangle inequality proven above, it is clear that

|xk + yk| ≤ |xk|+ |yk| , (6)

with equality if and only if xk = λkyk or yk = λkxk for some λk ≥ 0. Summing the
inequality in (6) over all k yields

||x + y||1 ≤ ||x||1 + ||y||1 ,

with equality if and only if xk = λkyk or yk = λkxk for some λk ≥ 0 for all 1 ≤ k ≤ n.
This proves Minkowski’s inequality for the special case of p = 1.
For p > 1, let us express Hölder’s inequality in the following form for vectors a,b ∈ Cn:

n∑
k=1

|akbk| ≤ ||a||p ||b|| p
p−1

, (7)

where ak , [a]k and bk , [b]k for 1 ≤ k ≤ n. This follows since 1
p + 1

q = 1 is equivalent

to q = p
p−1 . We have equality in (7) if and only if |ak|

p
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=
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p−1

||b||
p

p−1
p

p−1

.

Setting ak = xk and bk = (|xk|+ |yk|)p−1 in (7) yields

n∑
k=1

|xk| (|xk|+ |yk|)p−1 ≤ ||x||p

(
n∑
k=1

(|xk|+ |yk|)p
) p−1

p

. (8)

Similarly, setting ak = yk and bk = (|xk|+ |yk|)p−1 in (7) yields

n∑
k=1

|yk| (|xk|+ |yk|)p−1 ≤ ||y||p

(
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) p−1

p
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Adding (8) and (9) yields the following:

n∑
k=1

(|xk|+ |yk|)p ≤

(
n∑
k=1

(|xk|+ |yk|)p
) p−1

p (
||x||p + ||y||p

)
.

Dividing both sides of the above equation by the common term yields(
n∑
k=1

(|xk|+ |yk|)p
) 1

p

≤ ||x||p + ||y||p . (10)

Tracing back the conditions for equality from (8) and (9) in (10), it follows that we

have equality in (10) if and only if |xk|
p

||x||p
= |yk|p
||y||p

for all 1 ≤ k ≤ n. Equivalently, we have

equality in (10) if and only if |xk| = C |yk| or |yk| = C |xk| for some C > 0 for all
1 ≤ k ≤ n. By the triangle inequality for complex scalars, though, we have(

n∑
k=1

(|xk + yk|)p
) 1

p

≤

(
n∑
k=1

(|xk|+ |yk|)p
) 1

p

, (11)

with equality if and only if xk = λkyk or yk = λkxk for some λk ≥ 0 for all 1 ≤ k ≤ n.
Combining (10) and (11), along with their respective conditions for equality, it follows
that (

n∑
k=1

(|xk + yk|)p
) 1

p

≤ ||x||p + ||y||p ,

with equality if and only if x = λy or y = λx for some λ ≥ 0. This completes the proof
of Minkowski’s inequality for p > 1.

3. For z = 0, we clearly have ||z||p� = ||z||q = 0. To prove the result for z 6= 0, for convenience
of notation, set xk = [x]k and zk = [z]k for 1 ≤ k ≤ n. Then, note that we have∣∣∣z†x∣∣∣ =

∣∣∣∣∣
n∑
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z∗kxk

∣∣∣∣∣ ≤
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where the last inequality follows from Hölder’s inequality. If we set
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, (13)

then we have∣∣∣z†x∣∣∣ =
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and so we have equality in (12). However, from (13), we also have

||x||p =

(
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) 1

p

=
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) 1
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=
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, (14)

=
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1
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) 1
p

= (1)
1
p = 1 .



Here, we used the fact that (q − 1) p = q in (14), which follows from the fact that 1
p + 1

q = 1.
Thus, the choice of x given in (13) satisfies the condition that ||x||p = 1 and achieves the
upper bound given in (12). From this, we conclude that

||z||p� = ||z||q = ||z|| p
p−1

.

4. (a) Note that we have[
Im 0m×n
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(b) The first part follows directly from applying the first set of hints given in this
subproblem to the results of part (a). To prove the second part, we use the fact that

det

([
Im X

0n×n In

])
= det
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Im 0

Y In

])
=

m+n∏
k=1

1 = 1 ,

for any m× n matrix X and n×m matrix Y along with the second set of hints given
in this subproblem to the results of the first part of this subproblem.

(c) This follows directly from the hints given in this subproblem along with the hints given
in the previous subproblem.

(d) Using the results from part (c), we have
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.



Comparing the (1, 1)-th block of both expressions for M−1 yields(
A−BD−1C

)−1
= A−1 + A−1B

(
D−CA−1B

)−1
CA−1 ,

as desired.

*5. For convenience, define the following vectors:

v , v − µx , y , y0 − µy , z ,

[
v

y

]
. (15)

Then, from the hint given in the problem, we have

fv(v) =

1

(2π)
m+n

2 (det(Σz))
1
2
e−

1
2
zT Σ−1

z z

1

(2π)
n
2 (det(Σy))

1
2
e−

1
2
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y y
,

=
1

(2π)
m
2

(
det(Σy)

det(Σz)

) 1
2

e−
1
2 [zT Σ−1

z z−yT Σ−1
y y] . (16)

From the results from part (b) of the previous problem, we have

det(Σz) = det(Σv) det(Σy) .

Using this in (16), we get

fv(v) =
1

(2π)
m
2 (det(Σv))

1
2

e−
1
2 [zT Σ−1

z z−yT Σ−1
y y] . (17)

Now, from the results of part (d) of the previous problem, we have

Σ−1z =

[
Σ−1v −Σ−1v ΣxyΣ−1y

−Σ−1y ΣyxΣ−1v Σ−1y ΣyxΣ−1v ΣxyΣ−1y + Σ−1y

]
.

Using this, we have the following:

zTΣ−1z z =
[
vT yT

] [ Σ−1v −Σ−1v ΣxyΣ−1y

−Σ−1y ΣyxΣ−1v Σ−1y ΣyxΣ−1v ΣxyΣ−1y + Σ−1y

][
v

y

]
,

=
[ (
vTΣ−1v − yTΣ−1y ΣyxΣ−1v

) (
−vTΣ−1v ΣxyΣ−1y + yTΣ−1y ΣyxΣ−1v ΣxyΣ−1y + yTΣ−1y

) ] [ v
y

]
,

= vTΣ−1v v − yTΣ−1y ΣyxΣ−1v v − vTΣ−1v ΣxyΣ−1y y + yTΣ−1y ΣyxΣ−1v ΣxyΣ−1y y + yTΣ−1y y .

From this, it can be seen that we have the following:

zTΣ−1z z − yTΣ−1y y =
(
v −ΣxyΣ−1y y

)T
Σ−1v

(
v −ΣxyΣ−1y y

)
, (18)

where we used the fact that Σyx = ΣT
xy. Using (15) in (18), it is clear that we have

zTΣ−1z z − yTΣ−1y y = (v − µv)T Σ−1v (v − µv) ,

which, upon substitution into (17), leads to the following:

fv(v) =
1

(2π)
m
2 (det(Σv))

1
2

e−
1
2
(v−µv)

TΣ−1
v (v−µv) .

This shows that v ∼ N (µv,Σv) as desired.


