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1. Recall that A = UΣV† and B = VΣ#U†.

1) (AA#A = A)
Note that it is trivial to show that ΣΣ#Σ = Σ. Using this property, we have

ABA =
(
UΣV†

)(
VΣ#U†

)(
UΣV†

)
= UΣΣ#ΣV = UΣV† = A .

2) (A#AA# = A#)
It is easy to show that Σ#ΣΣ# = Σ#. Using this, we get

BAB =
(
VΣ#U†

)(
UΣV†

)(
VΣ#U†

)
= VΣ#ΣΣ#U† = VΣ#U† = B .

3) (
(
AA#

)†
= AA#)

First note that we have

ΣΣ# =

[
Iρ 0ρ×(m−ρ)

0(m−ρ)×ρ 0(m−ρ)×(m−ρ)

]
︸ ︷︷ ︸

C

,

where C is an m×m Hermitian matrix, i.e., C = C†. Using this result, we get

(AB)† =
((

UΣV†
)(

VΣ#U†
))†

=
(
UΣΣ#U†

)†
=
(
UCU†

)†
= UC†U† = UCU† .

(1)
Similarly, we have

AB =
(
UΣV†

)(
VΣ#U†

)
= UΣΣ#U† = UCU† . (2)

Comparing (1) with (2), we clearly have (AB)† = AB.

4) As before, note first that we have

Σ#Σ =

[
Iρ 0ρ×(n−ρ)

0(n−ρ)×ρ 0(n−ρ)×(n−ρ)

]
︸ ︷︷ ︸

D

,

where D is an n× n Hermitian matrix, i.e., D = D†. Using this result, we get

(BA)† =
((

VΣ#U†
)(

UΣV†
))†

=
(
VΣ#ΣV†

)†
=
(
VDV†

)†
= VD†V† = VDV† .

(3)
Similarly, we have

BA =
(
VΣ#U†

)(
UΣV†

)
= VΣ#ΣV† = VDV† . (4)

Comparing (3) with (4), we clearly have (BA)† = BA.



2. For simplicity, let us first prove that we always have AB = AC. To that end, we get

AB = (AB)† = B†A† = B† (ACA)† = B†A†C†A† = (AB)† (AC)† = ABAC = AC ,

where the first equality follows from property 3), the third equality follows from property 1),
the sixth equality follows from property 3), and the seventh equality follows from property
1). Similarly, we can prove that we always have BA = CA. For this, we get

BA = (BA)† = A†B† = (ACA)†B† = A†C†A†B† = (CA)† (BA)† = CABA = CA ,

where the first equality follows from property 4), the third equality follows from property 1),
the sixth equality follows from property 4), and the seventh equality follows from property
1). Now, by exploiting the facts that AB = AC and BA = CA, we have the following:

B = BAB = BAC = CAC = C ,

where the first equality follows from property 2), the second equality follows from the fact
that AB = AC, the third equality follows from the fact that BA = CA, and the fourth
equality follows from property 2).

3. (a) Note that we have

log(f(x|Σ)) = −m
2

log(2π)− 1

2
log(det(Σ))− 1

2
(x− µ)T Σ−1 (x− µ) ,

= −m
2

log(2π)− 1

2
log(det(Σ))− 1

2
tr
(

(x− µ)T Σ−1 (x− µ)
)
,

= −m
2

log(2π)− 1

2
log(det(Σ))− 1

2
tr
(
Σ−1 (x− µ) (x− µ)T

)
,

Thus, we get

L(Σ) = −mn
2
− n

2
log(det(Σ))− 1

2
tr

(
Σ−1

(
n∑
k=1

(xk − µ) (xk − µ)T
))

,

= −mn
2
− n

2
log(det(Σ))− 1

2
tr
(
Σ−1C

)
, (5)

where we have defined C as follows:

C ,
n∑
k=1

(xk − µ) (xk − µ)T . (6)

Note that C is symmetric, i.e., C = CT . Now, from the hint, we have, for symmetric
X:

d

dX
log(det(X)) = X−1 +

(
X−1

)T − diag
(
X−1

)
= 2X−1 − diag

(
X−1

)
,

d

dX
tr
(
AX−1B

)
= −X−1BAX−1 −

(
X−1

)T
ATBT

(
X−1

)T − diag
(
−X−1BAX−1

)
,

= −X−1BAX−1 −X−1ATBTX−1 + diag
(
X−1BAX−1

)



Hence, using A = Im and B = C, we get, from (5):

∇L(Σ) =
d

dΣT
L(Σ) =

d

dΣ
L(Σ) ,

= −n
2

[
2Σ−1 − diag

(
Σ−1

)]
− 1

2

[
−Σ−1CΣ−1 −Σ−1CTΣ−1 + diag

(
Σ−1CΣ−1

)]
,

= −nΣ−1 +
n

2
diag

(
Σ−1

)
+ Σ−1CΣ−1 − 1

2
diag

(
Σ−1CΣ−1

)
,

= Σ−1CΣ−1 − nΣ−1 − 1

2
diag

(
Σ−1CΣ−1 − nΣ−1

)
. (7)

Thus, from (6), we conclude the following:

∇L(Σ) = Σ−1

[
n∑
k=1

(xk − µ) (xk − µ)T
]

Σ−1 − nΣ−1

− 1

2
diag

(
Σ−1

[
n∑
k=1

(xk − µ) (xk − µ)T
]

Σ−1 − nΣ−1

)
.

(b) From (7), setting ∇L(Σ) = 0 yields the following conditions:{
Σ−1CΣ−1 − nΣ−1 = 0 , for off-diagonal entries
1
2

(
Σ−1CΣ−1 − nΣ−1

)
= 0 , for on-diagonal entries

.

Note that both cases are consistent here and lead to the following for all matrix entries:

Σ−1CΣ−1 − nΣ−1 = 0 .

Pre/post-multiplying both sides by Σ yields

C− nΣ = 0⇐⇒ Σ =
1

n
C .

Thus, from (6), we get

ΣML =
1

n

n∑
k=1

(xk − µ) (xk − µ)T ,

as desired.

4. Using property 2) and the product rule, we have

d
(
Z#
)

= d
(
Z#ZZ#

)
= d
(
Z#
(
ZZ#

))
=
(
d
(
Z#
))

ZZ# + Z#
(
d
(
ZZ#

))
. (8)

Now consider d
(
Z#Z

)
. Using the product rule, we have

d
(
Z#Z

)
=
(
d
(
Z#
))

Z + Z# (dZ)⇐⇒
(
d
(
Z#
))

Z = d
(
Z#Z

)
− Z# (dZ) .

Substituting this into (8) yields

d
(
Z#
)

= −Z# (dZ) Z# + Z#
(
d
(
ZZ#

))
+
(
d
(
Z#Z

))
Z# . (9)



As can be seen from (9), it remains to express d
(
ZZ#

)
and d

(
Z#Z

)
in terms of dZ and dZ†.

Focusing first on d
(
ZZ#

)
, we have, from the property 1), the product rule, property 3), and

the conjugate transpose rule:

d
(
ZZ#

)
= d

(
ZZ#ZZ#

)
= d
((

ZZ#
)(

ZZ#
))

,

=
(
d
(
ZZ#

))(
ZZ#

)
+
(
ZZ#

)(
d
(
ZZ#

))
,

=
(
d
(
ZZ#

))(
ZZ#

)
+
(
ZZ#

)†(
d

((
ZZ#

)†))
,

=
(
d
(
ZZ#

))(
ZZ#

)
+
(
ZZ#

)† (
d
(
ZZ#

))†
,

=
(
d
(
ZZ#

))(
ZZ#

)
+
((
d
(
ZZ#

))(
ZZ#

))†
. (10)

Now consider an alternate expression for dZ. From property 1) and the product rule, we get

dZ = d
(
ZZ#Z

)
= d
((

ZZ#
)

Z
)

=
(
d
(
ZZ#

))
Z +

(
ZZ#

)
(dZ) .

Rearranging terms yields(
d
(
ZZ#

))
Z = dZ−

(
ZZ#

)
(dZ) =

(
Im − ZZ#

)
(dZ) .

Substituting this expression into (10) yields the following upon using the conjugate
transpose rule and property 3):

d
(
ZZ#

)
=

(
Im − ZZ#

)
(dZ)

(
Z#
)

+
((

Im − ZZ#
)

(dZ)
(
Z#
))†

,

=
(
Im − ZZ#

)
(dZ)

(
Z#
)

+
(
Z#
)†

(dZ)†
(
Im − ZZ#

)†
,

=
(
Im − ZZ#

)
(dZ)

(
Z#
)

+
(
Z#
)† (

dZ†
)(

Im − ZZ#
)
. (11)

Multiplying the above expression by Z# on the left yields the following upon invoking
property 2):

Z#
(
d
(
ZZ#

))
= Z#

(
Z#
)† (

dZ†
)(

Im − ZZ#
)
. (12)

Using a similar set of arguments (which include using property 4) in this case), we can show
that d

(
Z#Z

)
is given by

d
(
Z#Z

)
=
(
In − Z#Z

)(
dZ†

)(
Z#
)†

+
(
Z#
)

(dZ)
(
In − Z#Z

)
.

Multiplying the above expression by Z# on the right yields the following upon invoking
property 2): (

d
(
Z#Z

))
Z# =

(
In − Z#Z

)(
dZ†

)(
Z#
)†

Z# . (13)

Substituting (12) and (13) in (9) yields

d
(
Z#
)

= −Z# (dZ) Z# + Z#
(
Z#
)† (

dZ†
)(

Im − ZZ#
)

+
(
In − Z#Z

)(
dZ†

)(
Z#
)†

Z# ,

as desired.



*5. (a) First note that optimizing the Frobenius norm of a matrix is equivalent to optimizing
the square of the Frobenius norm. So, to that end, consider

ξ2 = ||AX−B||2F = tr
(

(AX−B)† (AX−B)
)
,

= tr
(
X†A†AX−X†A†B−B†AX + B†B

)
. (14)

We will show that ξ2 can be expressed in the following form, given by completing the
square:

ξ2 = tr

([
A
(
X−A#B

)]† [
A
(
X−A#B

)])
+ tr

(
B†
(
Im −AA#

)
B
)
. (15)

To do so, let us define the right-hand side of the above quantity to be ξ̂2. Expanding
the terms in (15) yields

ξ̂2 = tr

((
X† −B†

(
A#
)†)

A†A
(
X−A#B

))
+ tr

(
B†B−B†AA#B

)
,

= tr

(
X†A†AX−X†A†AA#B−B†

(
A#
)†

A†AX + B†
(
A#
)†

A†AA#B

+B†B−B†AA#B
)
,

= tr

(
X†A†AX−X†A†

(
AA#

)†
B−B†

(
AA#

)†
AX

+B†
(
AA#

)†
AA#B + B†B−B†AA#B

)
, (16)

= tr

(
X†A†AX−X†

(
AA#A

)†
B−B†AA#AX

+B†AA#AA#B + B†B−B†AA#B
)
, (17)

= tr
(
X†A†AX−X†A†B−B†AX + B†AA#B + B†B−B†AA#B

)
, (18)

= tr
(
X†A†AX−X†A†B−B†AX + B†B

)
. (19)

With reference to the four defining properties of a pseudoinverse, we have that (16)
and (17) follow from property 3), while (18) follows from property 1). Comparing (19)
with (14), it is clear that ξ̂2 = ξ2, and so (15) is valid. Prior to deriving a least-squares
solution, it is useful to simplify (15) further. For this, note that we have(

Im −AA#
)† (

Im −AA#
)

=
(
Im −AA#

)(
Im −AA#

)
,

= Im − 2AA# + AA#AA# ,

= Im − 2AA# + AA# =
(
Im −AA#

)
. (20)

Here, the first equality follows from property 3) and the third equality follows from



property 1). Substituting (20) into (15) yields the following:

ξ2 = tr

([
A
(
X−A#B

)]† [
A
(
X−A#B

)])
+ tr

(
B†
(
Im −AA#

)† (
Im −AA#

)
B

)
,

=
∣∣∣∣∣∣A(X−A#B

)∣∣∣∣∣∣2
F

+
∣∣∣∣∣∣(Im −AA#

)
B
∣∣∣∣∣∣2
F

(21)

To prove that X? , A#B is a least-squares solution, note that from (21) that X only
appears in the first squared Frobenius norm term. Furthermore, this term is greater
than or equal to zero, with equality if and only if the argument is identically zero,
which occurs if X = A#B. Hence, X? = A#B is a least-squares solution. With this
choice of X, from (21), the square of the optimal objective function becomes

(ξ?)2 =
∣∣∣∣∣∣(Im −AA#

)
B
∣∣∣∣∣∣2
F
,

from which we conclude
ξ? =

∣∣∣∣∣∣(Im −AA#
)

B
∣∣∣∣∣∣
F
.

(b) As with the previous part, it will be convenient to work with the squared Frobenius
norm. We have the following:

||X||2F = ||(X−X?) + X?||2F ,

= ||X−X?||2F + ||X?||2F + tr
(

(X−X?)†X?
)

+ tr
(

(X?)† (X−X?)
)
.

For simplicity, define Y , (X?)† (X−X?), so that we have

||X||2F = ||X−X?||2F + ||X?||2F + tr
(
Y†
)

+ tr(Y) . (22)

Now note that we have the following chain of equalities:

Y = B†
(
A#
)† (

X−A#B
)

= B†
(
A#AA#

)† (
X−A#B

)
,

= B†
((

A#A
)

A#
)† (

X−A#B
)

= B†
(
A#
)† (

A#A
)† (

X−A#B
)
,

= B†
(
A#
)†

A#A
(
X−A#B

)
= B†

(
A#
)† (

A#AX−A#AA#B
)
,

= B†
(
A#
)† (

A#B−A#B
)

= 0 .

Here, the second equality follows from property 2), the fifth equality follows from
property 4), and the seventh equality follows from the fact that AX = B as well as
property 2). Thus, Y = 0 and so from (22), we get

||X||2F = ||X−X?||2F + ||X?||2F .

Note that the first squared Frobenius norm term on the right-hand side is greater than
or equal to zero with equality if and only if X = X?. Thus, we have

||X||2F ≥ ||X
?||2F ,



with equality if and only if X = X?. Upon taking square roots, we have, equivalently,

||X||F ≥ ||X
?||F ,

with equality if and only if X = X?.


