EE 150 - Applications of Convex Optimization in Signal Processing and Communications Dr. Andre Tkacenko, JPL Third Term 2011-2012

Homework Set #3 - Solutions

1. (a) Note that \mathbf{x} is closer to \mathbf{x}_0 than to \mathbf{x}_ℓ in the Euclidean norm sense if and only if we have the following.

$$\begin{split} ||\mathbf{x} - \mathbf{x}_0||_2 &\leq ||\mathbf{x} - \mathbf{x}_\ell||_2 \iff ||\mathbf{x} - \mathbf{x}_0||_2^2 \leq ||\mathbf{x} - \mathbf{x}_\ell||_2^2 ,\\ &\iff (\mathbf{x} - \mathbf{x}_0)^T (\mathbf{x} - \mathbf{x}_0) \leq (\mathbf{x} - \mathbf{x}_\ell)^T (\mathbf{x} - \mathbf{x}_\ell) ,\\ &\iff \mathbf{x}^T \mathbf{x} - 2\mathbf{x}_0^T \mathbf{x} + \mathbf{x}_0^T \mathbf{x}_0 \leq \mathbf{x}^T \mathbf{x} - 2\mathbf{x}_\ell^T \mathbf{x} + \mathbf{x}_\ell^T \mathbf{x}_\ell ,\\ &\iff 2 (\mathbf{x}_\ell - \mathbf{x}_0)^T \mathbf{x} \leq \mathbf{x}_\ell^T \mathbf{x}_\ell - \mathbf{x}_0^T \mathbf{x}_0 . \end{split}$$

Note that the last condition above defines a halfspace for every ℓ . Thus, we can express \mathcal{V} as $\mathcal{V} = \{\mathbf{x} : \mathbf{A}\mathbf{x} \leq \mathbf{b}\}$ with

$$\mathbf{A} = 2 \begin{bmatrix} \mathbf{x}_1 - \mathbf{x}_0 \\ \vdots \\ \mathbf{x}_K - \mathbf{x}_0 \end{bmatrix} = \begin{bmatrix} 2(\mathbf{x}_1 - \mathbf{x}_0) \\ \vdots \\ 2(\mathbf{x}_K - \mathbf{x}_0) \end{bmatrix}, \ \mathbf{b} = \begin{bmatrix} \mathbf{x}_1^T \mathbf{x}_1 - \mathbf{x}_0^T \mathbf{x}_0 \\ \vdots \\ \mathbf{x}_K^T \mathbf{x}_K - \mathbf{x}_0^T \mathbf{x}_0 \end{bmatrix}.$$

(b) Suppose we have $\mathcal{P} = \{\mathbf{x} : \mathbf{A}\mathbf{x} \leq \mathbf{b}\}$ with $\mathbf{A} \in \mathbb{R}^{K \times n}$ and $\mathbf{b} \in \mathbb{R}^{K}$. Then, as \mathcal{P} is assumed to have a nonempty interior, we can choose any point $\mathbf{x}_{0} \in \{\mathbf{x} : \mathbf{A}\mathbf{x} \prec \mathbf{b}\}$, and then construct K points \mathbf{x}_{ℓ} by taking the mirror image of \mathbf{x}_{0} with respect to the hyperplanes $\{\mathbf{x} : \mathbf{a}_{\ell}^{T}\mathbf{x} = b_{\ell}\}$. In other words, we choose \mathbf{x}_{ℓ} of the form $\mathbf{x}_{\ell} = \mathbf{x}_{0} + \lambda \mathbf{a}_{\ell}$, where λ is chosen in such a way that the distance of \mathbf{x}_{ℓ} to the hyperplane defined by $\mathbf{a}_{\ell}^{T}\mathbf{x} = b_{\ell}$ is equal to the distance of \mathbf{x}_{0} to the hyperplane. This leads to the following condition:

$$b_{\ell} - \mathbf{a}_{\ell}^T \mathbf{x}_0 = \mathbf{a}_{\ell}^T \mathbf{x}_{\ell} - b_{\ell}.$$

Substituting $\mathbf{x}_{\ell} = \mathbf{x}_0 + \lambda \mathbf{a}_{\ell}$ into the above condition and solving for λ yields

$$\lambda = \frac{2\left(b_{\ell} - \mathbf{a}_{\ell}^{T}\mathbf{x}_{0}\right)}{||\mathbf{a}_{\ell}||_{2}^{2}}$$

Thus, if we choose

$$\mathbf{x}_{\ell} = \mathbf{x}_0 + \frac{2\left(b_{\ell} - \mathbf{a}_{\ell}^T \mathbf{x}_0\right)}{\left|\left|\mathbf{a}_{\ell}\right|\right|_2^2} \mathbf{a}_{\ell}, \ \ell = 1, \dots, K,$$

then the polyhedron \mathcal{P} is the Voronoi region of \mathbf{x}_0 with respect to $\mathbf{x}_1, \ldots, \mathbf{x}_K$.

(c) A polyhedral decomposition of \mathbb{R}^n can not always be described as Voronoi regions generated by a set of points $\{\mathbf{x}_1, \ldots, \mathbf{x}_m\}$. A counterexample in \mathbb{R}^2 is shown below in Figure 1. In this figure, \mathbb{R}^2 is decomposed into 4 polyhedra $\mathcal{P}_1, \ldots, \mathcal{P}_4$ by 2 hyperplanes $\mathcal{H}_1, \mathcal{H}_2$. Suppose we arbitrarily pick $\mathbf{x}_1 \in \mathcal{P}_1$ and $\mathbf{x}_2 \in \mathcal{P}_2$. Then $\mathbf{x}_3 \in \mathcal{P}_3$ must be the mirror image of \mathbf{x}_1 and \mathbf{x}_2 with respect to \mathcal{H}_2 and \mathcal{H}_1 , respectively. However, the mirror image of \mathbf{x}_1 with respect to \mathcal{H}_2 lies in $\widetilde{\mathcal{P}}_1$, and the mirror image of \mathbf{x}_2 with respect to \mathcal{H}_1 lies in $\widetilde{\mathcal{P}}_2$, so it is impossible to find such an \mathbf{x}_3 .

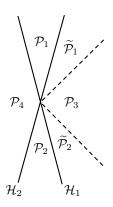


Figure 1: Polyhedral decomposition/Voronoi region partition counterexample in \mathbb{R}^2 .

- **2.** Recall that a set is convex if and only if its intersection with an arbitrary line of the form $\{\hat{\mathbf{x}} + t\mathbf{v} : t \in \mathbb{R}\}$ is convex. We will use this property for both parts of this problem.
 - (a) Note that we have

$$(\widehat{\mathbf{x}} + t\mathbf{v})^T \mathbf{A} (\widehat{\mathbf{x}} + t\mathbf{v}) + \mathbf{b}^T (\widehat{\mathbf{x}} + t\mathbf{v}) + c = \alpha t^2 + \beta t + \gamma$$

where we have

$$\alpha \triangleq \mathbf{v}^T \mathbf{A} \mathbf{v} \,, \,\, \beta \triangleq \mathbf{b}^T \mathbf{v} + 2 \widehat{\mathbf{x}}^T \mathbf{A} \mathbf{v} \,, \,\, \gamma \triangleq c + \mathbf{b}^T \widehat{\mathbf{x}} + \widehat{\mathbf{x}}^T \mathbf{A} \widehat{\mathbf{x}} \,.$$

The intersection of \mathcal{C} with the line defined by $\hat{\mathbf{x}}$ and \mathbf{v} is the set

$$\left\{\widehat{\mathbf{x}} + t\mathbf{v} : \alpha t^2 + \beta t + \gamma \le 0\right\},\$$

which is convex if $\alpha \ge 0$. This is true for any **v** if $\mathbf{v}^T \mathbf{A} \mathbf{v} \ge 0$ for all **v**, i.e., $\mathbf{A} \succeq \mathbf{0}$. To show that the converse is false, consider the following counterexample. Suppose $\mathbf{A} = -1$, $\mathbf{b} = 0$, and c = -1. Then, $\mathbf{A} \not\ge \mathbf{0}$, but we have

$$\mathcal{C} = \left\{ x \in \mathbb{R} : -x^2 - 1 \le 0 \right\} = \left\{ x \in \mathbb{R} : x^2 + 1 \ge 0 \right\} = \mathbb{R},$$

which is clearly convex.

(b) Suppose that we define α , β , and γ as in the previous part of the solution. Note that we now also have

$$\mathbf{g}^T \left(\widehat{\mathbf{x}} + t \mathbf{v} \right) + h = \delta t + \epsilon$$

where we have

$$\delta \triangleq \mathbf{g}^T \mathbf{v} \,, \ \epsilon \triangleq \mathbf{g}^T \widehat{\mathbf{x}} + h \,.$$

Without loss of generality, we can assume that $\hat{\mathbf{x}} \in \mathcal{H}$, i.e., $\epsilon = 0$. The intersection of $\mathcal{C} \cap \mathcal{H}$ with the line defined by $\hat{\mathbf{x}}$ and \mathbf{v} is

$$\left\{\widehat{\mathbf{x}} + t\mathbf{v} : \alpha t^2 + \beta t + \gamma \le 0, \ \delta t = 0\right\}$$

If $\delta = \mathbf{g}^T \mathbf{v} \neq 0$, then the intersection is the singleton $\{\hat{\mathbf{x}}\}\$ if $\gamma \leq 0$, or it is empty otherwise. In either case, it is a convex set. If $\delta = \mathbf{g}^T \mathbf{v} = 0$, then the set reduces to

$$\left\{\widehat{\mathbf{x}} + t\mathbf{v} : \alpha t^2 + \beta t + \gamma \le 0\right\} ,$$

which is convex if $\alpha \geq 0$. Therefore, $\mathcal{C} \cap \mathcal{H}$ is convex if

$$\mathbf{g}^T \mathbf{v} = 0 \Longrightarrow \mathbf{v}^T \mathbf{A} \mathbf{v} \ge 0.$$
 (1)

But this is true if there exists a λ such that $(\mathbf{A} + \lambda \mathbf{g}\mathbf{g}^T) \succeq \mathbf{0}$. In this case, (1) holds, because then we have

$$\mathbf{v}^T \mathbf{A} \mathbf{v} = \mathbf{v}^T \left(\mathbf{A} + \lambda \mathbf{g} \mathbf{g}^T \right) \mathbf{v} \ge 0$$

for all \mathbf{v} satisfying $\mathbf{g}^T \mathbf{v} = 0$.

To show the converse is false, consider the following counterexample. Suppose we take

$$\mathbf{A} = \begin{bmatrix} 0 & 0 \\ 0 & -1 \end{bmatrix}, \ \mathbf{b} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}, \ c = -1, \ \mathbf{g} = \begin{bmatrix} 1 \\ 0 \end{bmatrix}, \ h = 0.$$

Then we clearly have

$$\mathbf{A} + \lambda \mathbf{g} \mathbf{g}^T = \begin{bmatrix} \lambda & 0 \\ 0 & -1 \end{bmatrix} \not\succeq \mathbf{0} \,,$$

for any choice of λ . In this case, though, we have

$$C = \{(x_1, x_2) \in \mathbb{R}^2 : -x_2^2 - 1 \le 0\} = \mathbb{R}^2,$$

and so we have $\mathcal{C} \cap \mathcal{H} = \mathcal{H} = \{(x_1, x_2) \in \mathbb{R}^2 : x_1 = 0\}$, which is clearly convex.

- **3.** We first note that the constraints $p_k \ge 0$, k = 1, ..., n define halfspaces, and $\sum_{k=1}^n p_k = 1$ defines a hyperplane, so \mathcal{P} is a polyhedron, and hence, a convex set.
 - (a) The condition here is

$$\alpha \le \sum_{k=1}^n p_k f(a_k) \le \beta \,,$$

which is equivalent to two linear inequalities, and as such is convex in **p**.

(b) The condition here is

$$\Pr\left\{X > \alpha\right\} = \sum_{k:a_k > \alpha} p_k \le \beta \,,$$

which is equivalent to a linear inequality, and as such is convex in \mathbf{p} .

(c) The condition here is equivalent to

$$\sum_{k=1}^{n} p_k \left(|a_k|^3 - \alpha |a_k| \right) \le 0 \,,$$

which is equivalent to a linear inequality, and as such is convex in **p**.

(d) The condition here is

$$\sum_{k=1}^{n} p_k a_k^2 \le \alpha$$

which is equivalent to a linear inequality, and as such is convex in ${\bf p}.$

(e) The condition here is

$$\sum_{k=1}^{n} p_k a_k^2 \ge \alpha \,,$$

which is equivalent to a linear inequality, and as such is convex in **p**.

(f) The condition here is

$$\operatorname{Var}(X) = E[X^2] - (E[X])^2 = \sum_{k=1}^n p_k a_k^2 - \left(\sum_{k=1}^n p_k a_k\right)^2 \le \alpha \,,$$

which is not convex in general. As a counterexample, take n = 2, $a_1 = 0$, $a_2 = 1$, and $\alpha = \frac{1}{5}$. Then, $(p_1, p_2) = (1, 0)$ and $(p_1, p_2) = (0, 1)$ are two points which satisfy $\operatorname{Var}(X) = 0 \leq \frac{1}{5} = \alpha$, but the convex combination $(p_1, p_2) = (\frac{1}{2}, \frac{1}{2})$ does not $(\operatorname{Var}(X) = \frac{1}{4} > \frac{1}{5} = \alpha$ here).

(g) The condition here is

$$\sum_{k=1}^n p_k a_k^2 - \left(\sum_{k=1}^n p_k a_k\right)^2 \ge \alpha \Longleftrightarrow \sum_{k=1}^n \sum_{\ell=1}^n p_k a_k a_\ell p_\ell - \sum_{k=1}^n a_k^2 p_k + \alpha \le 0.$$

By defining the following quantities:

$$\mathbf{a} \triangleq \begin{bmatrix} a_1 \\ \vdots \\ a_n \end{bmatrix}, \ \mathbf{A} \triangleq \mathbf{a} \mathbf{a}^T, \ \mathbf{b} \triangleq \begin{bmatrix} a_1^2 \\ \vdots \\ a_n^2 \end{bmatrix}$$

it follows that the condition is equivalent to

$$\mathbf{p}^T \mathbf{A} \mathbf{p} - \mathbf{b}^T \mathbf{p} + \alpha \le 0.$$

However, this defines a convex set, i.e., it is convex in \mathbf{p} , since $\mathbf{A} = \mathbf{a}\mathbf{a}^T \succeq \mathbf{0}$ (see the results of part (a) of the previous problem).

(h) For emphasize the dependence of the first quartile on \mathbf{p} , let us denote $Q_1(X) = f(\mathbf{p})$. From Figure 1 of the homework set, we have $f(\mathbf{p}) = a_2$. Using this figure, it can be seen that the condition $f(\mathbf{p}) \ge \alpha$ is equivalent to

$$F_X(\beta) < \frac{1}{4}$$
 for all $\beta < \alpha$.

If $\alpha \leq a_1$, this is always true. Otherwise, define $k \triangleq \max \{\ell : a_\ell < \alpha\}$. This is a fixed integer, independent of **p**. The constraint $f(\mathbf{p}) \geq \alpha$ holds if and only if

$$F_X(a_k) = \sum_{\ell=1}^k p_\ell < \frac{1}{4}$$

This is a strict linear inequality in \mathbf{p} , which defines an open halfspace. As such, it is convex in \mathbf{p} .

(i) Using the notation defined in the previous part of the solution, it follows that the condition $f(\mathbf{p}) \leq \alpha$ is equivalent to

$$F_X(\beta) \ge \frac{1}{4}$$
 for all $\beta \ge \alpha$.

This can be expressed as a linear inequality as follows:

$$\sum_{\ell=k+1}^n p_\ell \ge \frac{1}{4}.$$

Here, if $\alpha \leq a_1$, we define k = 0. As such, this condition is convex in **p**.

4. (a) Following the hint, we have

$$g(t) = \operatorname{tr}\left((\mathbf{Z} + t\mathbf{V})^{-1}\right) = \operatorname{tr}\left(\left(\mathbf{Z}^{\frac{1}{2}}\left(\mathbf{I}_{n} + t\mathbf{Z}^{-\frac{1}{2}}\mathbf{V}\mathbf{Z}^{-\frac{1}{2}}\right)\mathbf{Z}^{\frac{1}{2}}\right)^{-1}\right), \\ = \operatorname{tr}\left(\mathbf{Z}^{-\frac{1}{2}}\left(\mathbf{I}_{n} + t\mathbf{Z}^{-\frac{1}{2}}\mathbf{V}\mathbf{Z}^{-\frac{1}{2}}\right)^{-1}\mathbf{Z}^{-\frac{1}{2}}\right) = \operatorname{tr}\left(\mathbf{Z}^{-1}\left(\mathbf{I}_{n} + t\mathbf{Z}^{-\frac{1}{2}}\mathbf{V}\mathbf{Z}^{-\frac{1}{2}}\right)^{-1}\right).$$

For sake of simplicity, let us define $\mathbf{A} \triangleq \mathbf{Z}^{-\frac{1}{2}} \mathbf{V} \mathbf{Z}^{-\frac{1}{2}} \in \mathbb{S}^n$ and let $\mathbf{A} = \mathbf{Q} \mathbf{\Lambda} \mathbf{Q}^T$ denote an eigenvalue decomposition of \mathbf{A} , where \mathbf{Q} is an $n \times n$ unitary matrix of eigenvectors of \mathbf{A} and $\mathbf{\Lambda} = \text{diag}(\lambda_1, \ldots, \lambda_n)$ is a diagonal matrix of eigenvalues of \mathbf{A} . Substituting this into the expression above yields

$$g(t) = \operatorname{tr}\left(\mathbf{Z}^{-1} \left(\mathbf{I}_{n} + t\mathbf{A}\right)^{-1}\right) = \operatorname{tr}\left(\mathbf{Z}^{-1} \left(\mathbf{I}_{n} + t\mathbf{Q}\mathbf{\Lambda}\mathbf{Q}^{T}\right)^{-1}\right),$$

$$= \operatorname{tr}\left(\mathbf{Z}^{-1} \left(\mathbf{Q} \left(\mathbf{I}_{n} + t\mathbf{\Lambda}\right)\mathbf{Q}^{T}\right)^{-1}\right) = \operatorname{tr}\left(\mathbf{Z}^{-1}\mathbf{Q} \left(\mathbf{I}_{n} + t\mathbf{\Lambda}\right)^{-1}\mathbf{Q}^{T}\right),$$

$$= \operatorname{tr}\left(\left(\mathbf{Q}^{T}\mathbf{Z}\mathbf{Q}\right) \left(\mathbf{I}_{n} + t\mathbf{\Lambda}\right)^{-1}\right) = \sum_{k=1}^{n} \frac{\left[\mathbf{Q}^{T}\mathbf{Z}\mathbf{Q}\right]_{k,k}}{1 + t\lambda_{k}}.$$

Now note that from the last equality that $\mathbf{g}(t)$ can be expressed as a positive weighted sum of convex functions $\frac{1}{1+t\lambda_k}$. Hence, g(t) is convex.

(b) In this part, we will use the same eigenvalue decomposition of $\mathbf{A} \triangleq \mathbf{Z}^{-\frac{1}{2}} \mathbf{V} \mathbf{Z}^{-\frac{1}{2}} = \mathbf{Q} \mathbf{\Lambda} \mathbf{Q}^T$ as was done in the previous part. Here, we have

$$g(t) = (\det(\mathbf{Z} + t\mathbf{V}))^{\frac{1}{n}} = \left(\det\left(\mathbf{Z}^{\frac{1}{2}}\left(\mathbf{I}_{n} + t\mathbf{Z}^{-\frac{1}{2}}\mathbf{V}\mathbf{Z}^{-\frac{1}{2}}\right)\mathbf{Z}^{\frac{1}{2}}\right)\right)^{\frac{1}{n}},$$

$$= \left(\det(\mathbf{Z})^{\frac{1}{2}}\det(\mathbf{I}_{n} + t\mathbf{Q}\mathbf{\Lambda}\mathbf{Q}^{T})\det(\mathbf{Z})^{\frac{1}{2}}\right)^{\frac{1}{n}},$$

$$= \left(\det(\mathbf{Z})\det(\mathbf{Q}(\mathbf{I}_{n} + t\mathbf{\Lambda})\mathbf{Q}^{T})\right)^{\frac{1}{n}},$$

$$= \left(\det(\mathbf{Z})\right)^{\frac{1}{n}}\left(\det(\mathbf{Q})\det(\mathbf{I}_{n} + t\mathbf{\Lambda})\det(\mathbf{Q}^{T})\right)^{\frac{1}{n}},$$

$$= \left(\det(\mathbf{Z})\right)^{\frac{1}{n}}\left(\det(\mathbf{Q})\det(\mathbf{I}_{n} + t\mathbf{\Lambda})\det(\mathbf{Q}^{T})\right)^{\frac{1}{n}},$$

$$= \left(\det(\mathbf{Z})\right)^{\frac{1}{n}}\left(\det(\mathbf{I}_{n} + t\mathbf{\Lambda})\right)^{\frac{1}{n}},$$

$$= \left(\det(\mathbf{Z})\right)^{\frac{1}{n}}\left(\det(\mathbf{I}_{n} + t\mathbf{\Lambda})\right)^{\frac{1}{n}},$$

$$= \left(\det(\mathbf{Z})\right)^{\frac{1}{n}}\left(\det(\mathbf{I}_{n} + t\mathbf{\Lambda})\right)^{\frac{1}{n}}.$$

From the last equality, we have shown that g(t) can be expressed as a product of a positive constant and the geometric mean of $(1 + t\lambda_k)$ for k = 1, ..., n, which is concave in t. Hence, the net result is that g(t) is concave.

***5.** First note that we have

$$P_{\mathbf{p}}(\mathcal{C}) = 1 - P_{\mathbf{p}}\left(\widetilde{\mathcal{C}}\right) \,$$

where $\widetilde{\mathcal{C}} \triangleq \{1, \ldots, n\} \setminus \mathcal{C}$ is the *complement* of \mathcal{C} in the set $\{1, \ldots, n\}$. Hence we have

$$P_{\mathbf{p}}(\mathcal{C}) - P_{\mathbf{q}}(\mathcal{C}) = -P_{\mathbf{p}}\left(\widetilde{\mathcal{C}}\right) + P_{\mathbf{q}}\left(\widetilde{\mathcal{C}}\right) = -\left(P_{\mathbf{p}}\left(\widetilde{\mathcal{C}}\right) - P_{\mathbf{q}}\left(\widetilde{\mathcal{C}}\right)\right)$$

and so $d_{\rm mp}(\mathbf{p},\mathbf{q})$ can be expressed equivalently as

$$d_{\mathrm{mp}}(\mathbf{p},\mathbf{q}) = \max \left\{ P_{\mathbf{p}}(\mathcal{C}) - P_{\mathbf{q}}(\mathcal{C}) : \mathcal{C} \subseteq \{1,\ldots,n\} \right\}.$$

As $d_{\rm mp}(\mathbf{p}, \mathbf{q})$ is the maximum of 2^n linear functions of (\mathbf{p}, \mathbf{q}) (since the number of events in the set $S \triangleq \{1, \ldots, n\}$ is the cardinality of the *power set* $\mathcal{P}(S)$, which is 2^n), it follows that $d_{\rm mp}(\mathbf{p}, \mathbf{q})$ is convex.

To simplify the expression for $d_{\rm mp}(\mathbf{p}, \mathbf{q})$, let us identify a subset \mathcal{C} that maximizes

$$P_{\mathbf{p}}(\mathcal{C}) - P_{\mathbf{q}}(\mathcal{C}) = \sum_{k \in \mathcal{C}} (p_k - q_k) .$$
⁽²⁾

We claim that such an optimal subset is given by

$$\mathcal{C}^{\star} \triangleq \{k \in \{1, \dots, n\} : p_k > q_k\} .$$

$$(3)$$

To show this, first note that the indices for which $p_k = q_k$ clearly do not matter. Thus, we will ignore these indices and assume without loss of generality that for each index, either $p_k > q_k$ or $p_k < q_k$. In other words, we need only compute (2) over relevant indices for which either $p_k > q_k$ or $p_k < q_k$. Now consider any other subset C. If there is an element ℓ in C^* but not C, then by adding ℓ to C, we increase $(P_{\mathbf{p}}(C) - P_{\mathbf{q}}(C))$ by $(p_\ell - q_\ell) > 0$, and so Ccould not have been optimal. Conversely, suppose that $\ell \in C \setminus C^*$, so $(p_\ell - q_\ell) < 0$. If we remove ℓ from C, we would increase $(P_{\mathbf{p}}(C) - P_{\mathbf{q}}(C))$ by $(q_\ell - p_\ell) > 0$, and so C could not have been optimal. This proves that C^* as defined in (3) is optimal for maximizing the expression in (2) and so we have

$$d_{\rm mp}(\mathbf{p}, \mathbf{q}) = \sum_{k: p_k > q_k} \left(p_k - q_k \right) \,. \tag{4}$$

To express $d_{mp}(\mathbf{p}, \mathbf{q})$ in terms of $||\mathbf{p} - \mathbf{q}||_1$, note that we have

$$\sum_{k:p_k>q_k} (p_k - q_k) + \sum_{k:p_k \le q_k} (p_k - q_k) = \sum_{k=1}^n (p_k - q_k) = \sum_{k=1}^n p_k - \sum_{k=1}^n q_k = \mathbf{1}^T \mathbf{p} - \mathbf{1}^T \mathbf{q} = 1 - 1 = 0,$$

and so
$$\sum_{k=1}^n (p_k - q_k) = \sum_{k=1}^n (p_k - q_k) = \sum_{k=1}^n (p_k - q_k) = \sum_{k=1}^n (p_k - q_k) = \mathbf{1}^T \mathbf{p} - \mathbf{1}^T \mathbf{q} = 1 - 1 = 0,$$

$$\sum_{k:p_k > q_k} (p_k - q_k) = -\sum_{k:p_k \le q_k} (p_k - q_k) \; .$$

Substituting this into (4) yields the following:

$$d_{\rm mp}(\mathbf{p}, \mathbf{q}) = \frac{1}{2} \sum_{k: p_k > q_k} (p_k - q_k) + \frac{1}{2} \sum_{k: p_k > q_k} (p_k - q_k) ,$$

$$= \frac{1}{2} \sum_{k: p_k > q_k} (p_k - q_k) - \frac{1}{2} \sum_{k: p_k \le q_k} (p_k - q_k) ,$$

$$= \frac{1}{2} \sum_{k=1}^n |p_k - q_k| .$$

Hence, we conclude

$$d_{\mathrm{mp}}(\mathbf{p}, \mathbf{q}) = \frac{1}{2} ||\mathbf{p} - \mathbf{q}||_1 .$$

From this, it is very clear that $d_{\rm mp}(\mathbf{p}, \mathbf{q})$ is convex.

The best way to interpret this result is as an interpretation of the ℓ_1 -norm for probability distributions. It states that the ℓ_1 -distance between two probability distributions is twice the maximum difference in probability, over all events, of the distributions.