EE 150 - Applications of Convex Optimization in Signal Processing and Communications Dr. Andre Tkacenko, JPL Third Term 2011-2012

Homework Set \#3 - Solutions

1. (a) Note that \mathbf{x} is closer to \mathbf{x}_{0} than to \mathbf{x}_{ℓ} in the Euclidean norm sense if and only if we have the following.

$$
\begin{aligned}
\left\|\mathbf{x}-\mathbf{x}_{0}\right\|_{2} \leq\left\|\mathbf{x}-\mathbf{x}_{\ell}\right\|_{2} & \Longleftrightarrow\left\|\mathbf{x}-\mathbf{x}_{0}\right\|_{2}^{2} \leq\left\|\mathbf{x}-\mathbf{x}_{\ell}\right\|_{2}^{2} \\
& \Longleftrightarrow\left(\mathbf{x}-\mathbf{x}_{0}\right)^{T}\left(\mathbf{x}-\mathbf{x}_{0}\right) \leq\left(\mathbf{x}-\mathbf{x}_{\ell}\right)^{T}\left(\mathbf{x}-\mathbf{x}_{\ell}\right) \\
& \Longleftrightarrow \mathbf{x}^{T} \mathbf{x}-2 \mathbf{x}_{0}^{T} \mathbf{x}+\mathbf{x}_{0}^{T} \mathbf{x}_{0} \leq \mathbf{x}^{T} \mathbf{x}-2 \mathbf{x}_{\ell}^{T} \mathbf{x}+\mathbf{x}_{\ell}^{T} \mathbf{x}_{\ell} \\
& \Longleftrightarrow 2\left(\mathbf{x}_{\ell}-\mathbf{x}_{0}\right)^{T} \mathbf{x} \leq \mathbf{x}_{\ell}^{T} \mathbf{x}_{\ell}-\mathbf{x}_{0}^{T} \mathbf{x}_{0}
\end{aligned}
$$

Note that the last condition above defines a halfspace for every ℓ. Thus, we can express \mathcal{V} as $\mathcal{V}=\{\mathbf{x}: \mathbf{A x} \preceq \mathbf{b}\}$ with

$$
\mathbf{A}=2\left[\begin{array}{c}
\mathbf{x}_{1}-\mathbf{x}_{0} \\
\vdots \\
\mathbf{x}_{K}-\mathbf{x}_{0}
\end{array}\right]=\left[\begin{array}{c}
2\left(\mathbf{x}_{1}-\mathbf{x}_{0}\right) \\
\vdots \\
2\left(\mathbf{x}_{K}-\mathbf{x}_{0}\right)
\end{array}\right], \mathbf{b}=\left[\begin{array}{c}
\mathbf{x}_{1}^{T} \mathbf{x}_{1}-\mathbf{x}_{0}^{T} \mathbf{x}_{0} \\
\vdots \\
\mathbf{x}_{K}^{T} \mathbf{x}_{K}-\mathbf{x}_{0}^{T} \mathbf{x}_{0}
\end{array}\right]
$$

(b) Suppose we have $\mathcal{P}=\{\mathbf{x}: \mathbf{A x} \preceq \mathbf{b}\}$ with $\mathbf{A} \in \mathbb{R}^{K \times n}$ and $\mathbf{b} \in \mathbb{R}^{K}$. Then, as \mathcal{P} is assumed to have a nonempty interior, we can choose any point $\mathbf{x}_{0} \in\{\mathbf{x}: \mathbf{A x} \prec \mathbf{b}\}$, and then construct K points \mathbf{x}_{ℓ} by taking the mirror image of \mathbf{x}_{0} with respect to the hyperplanes $\left\{\mathbf{x}: \mathbf{a}_{\ell}^{T} \mathbf{x}=b_{\ell}\right\}$. In other words, we choose \mathbf{x}_{ℓ} of the form $\mathbf{x}_{\ell}=\mathbf{x}_{0}+\lambda \mathbf{a}_{\ell}$, where λ is chosen in such a way that the distance of \mathbf{x}_{ℓ} to the hyperplane defined by $\mathbf{a}_{\ell}^{T} \mathbf{x}=b_{\ell}$ is equal to the distance of \mathbf{x}_{0} to the hyperplane. This leads to the following condition:

$$
b_{\ell}-\mathbf{a}_{\ell}^{T} \mathbf{x}_{0}=\mathbf{a}_{\ell}^{T} \mathbf{x}_{\ell}-b_{\ell}
$$

Substituting $\mathbf{x}_{\ell}=\mathbf{x}_{0}+\lambda \mathbf{a}_{\ell}$ into the above condition and solving for λ yields

$$
\lambda=\frac{2\left(b_{\ell}-\mathbf{a}_{\ell}^{T} \mathbf{x}_{0}\right)}{\left\|\mathbf{a}_{\ell}\right\|_{2}^{2}}
$$

Thus, if we choose

$$
\mathbf{x}_{\ell}=\mathbf{x}_{0}+\frac{2\left(b_{\ell}-\mathbf{a}_{\ell}^{T} \mathbf{x}_{0}\right)}{\left\|\mathbf{a}_{\ell}\right\|_{2}^{2}} \mathbf{a}_{\ell}, \ell=1, \ldots, K
$$

then the polyhedron \mathcal{P} is the Voronoi region of \mathbf{x}_{0} with respect to $\mathbf{x}_{1}, \ldots, \mathbf{x}_{K}$.
(c) A polyhedral decomposition of \mathbb{R}^{n} can not always be described as Voronoi regions generated by a set of points $\left\{\mathbf{x}_{1}, \ldots, \mathbf{x}_{m}\right\}$. A counterexample in \mathbb{R}^{2} is shown below in Figure 1. In this figure, \mathbb{R}^{2} is decomposed into 4 polyhedra $\mathcal{P}_{1}, \ldots, \mathcal{P}_{4}$ by 2 hyperplanes $\mathcal{H}_{1}, \mathcal{H}_{2}$. Suppose we arbitrarily pick $\mathbf{x}_{1} \in \mathcal{P}_{1}$ and $\mathbf{x}_{2} \in \mathcal{P}_{2}$. Then $\mathbf{x}_{3} \in \mathcal{P}_{3}$ must be the mirror image of \mathbf{x}_{1} and \mathbf{x}_{2} with respect to \mathcal{H}_{2} and \mathcal{H}_{1}, respectively. However, the mirror image of \mathbf{x}_{1} with respect to \mathcal{H}_{2} lies in $\widetilde{\mathcal{P}}_{1}$, and the mirror image of \mathbf{x}_{2} with respect to \mathcal{H}_{1} lies in $\widetilde{\mathcal{P}}_{2}$, so it is impossible to find such an \mathbf{x}_{3}.

Figure 1: Polyhedral decomposition/Voronoi region partition counterexample in \mathbb{R}^{2}.
2. Recall that a set is convex if and only if its intersection with an arbitrary line of the form $\{\widehat{\mathbf{x}}+t \mathbf{v}: t \in \mathbb{R}\}$ is convex. We will use this property for both parts of this problem.
(a) Note that we have

$$
(\widehat{\mathbf{x}}+t \mathbf{v})^{T} \mathbf{A}(\widehat{\mathbf{x}}+t \mathbf{v})+\mathbf{b}^{T}(\widehat{\mathbf{x}}+t \mathbf{v})+c=\alpha t^{2}+\beta t+\gamma
$$

where we have

$$
\alpha \triangleq \mathbf{v}^{T} \mathbf{A} \mathbf{v}, \beta \triangleq \mathbf{b}^{T} \mathbf{v}+2 \widehat{\mathbf{x}}^{T} \mathbf{A} \mathbf{v}, \gamma \triangleq c+\mathbf{b}^{T} \widehat{\mathbf{x}}+\widehat{\mathbf{x}}^{T} \mathbf{A} \widehat{\mathbf{x}} .
$$

The intersection of \mathcal{C} with the line defined by $\widehat{\mathbf{x}}$ and \mathbf{v} is the set

$$
\left\{\widehat{\mathbf{x}}+t \mathbf{v}: \alpha t^{2}+\beta t+\gamma \leq 0\right\}
$$

which is convex if $\alpha \geq 0$. This is true for any \mathbf{v} if $\mathbf{v}^{T} \mathbf{A v} \geq 0$ for all \mathbf{v}, i.e., $\mathbf{A} \succeq \mathbf{0}$. To show that the converse is false, consider the following counterexample. Suppose $\mathbf{A}=-1, \mathbf{b}=0$, and $c=-1$. Then, $\mathbf{A} \nsucceq \mathbf{0}$, but we have

$$
\mathcal{C}=\left\{x \in \mathbb{R}:-x^{2}-1 \leq 0\right\}=\left\{x \in \mathbb{R}: x^{2}+1 \geq 0\right\}=\mathbb{R}
$$

which is clearly convex.
(b) Suppose that we define α, β, and γ as in the previous part of the solution. Note that we now also have

$$
\mathbf{g}^{T}(\widehat{\mathbf{x}}+t \mathbf{v})+h=\delta t+\epsilon,
$$

where we have

$$
\delta \triangleq \mathbf{g}^{T} \mathbf{v}, \epsilon \triangleq \mathbf{g}^{T} \widehat{\mathbf{x}}+h .
$$

Without loss of generality, we can assume that $\widehat{\mathbf{x}} \in \mathcal{H}$, i.e., $\epsilon=0$. The intersection of $\mathcal{C} \cap \mathcal{H}$ with the line defined by $\widehat{\mathbf{x}}$ and \mathbf{v} is

$$
\left\{\widehat{\mathbf{x}}+t \mathbf{v}: \alpha t^{2}+\beta t+\gamma \leq 0, \delta t=0\right\}
$$

If $\delta=\mathbf{g}^{T} \mathbf{v} \neq 0$, then the intersection is the singleton $\{\widehat{\mathbf{x}}\}$ if $\gamma \leq 0$, or it is empty otherwise. In either case, it is a convex set. If $\delta=\mathbf{g}^{T} \mathbf{v}=0$, then the set reduces to

$$
\left\{\widehat{\mathbf{x}}+t \mathbf{v}: \alpha t^{2}+\beta t+\gamma \leq 0\right\},
$$

which is convex if $\alpha \geq 0$. Therefore, $\mathcal{C} \cap \mathcal{H}$ is convex if

$$
\begin{equation*}
\mathbf{g}^{T} \mathbf{v}=0 \Longrightarrow \mathbf{v}^{T} \mathbf{A} \mathbf{v} \geq 0 \tag{1}
\end{equation*}
$$

But this is true if there exists a λ such that $\left(\mathbf{A}+\lambda \mathbf{g g}^{T}\right) \succeq \mathbf{0}$. In this case, (1) holds, because then we have

$$
\mathbf{v}^{T} \mathbf{A} \mathbf{v}=\mathbf{v}^{T}\left(\mathbf{A}+\lambda \mathbf{g g}^{T}\right) \mathbf{v} \geq 0
$$

for all \mathbf{v} satisfying $\mathbf{g}^{T} \mathbf{v}=0$.
To show the converse is false, consider the following counterexample. Suppose we take

$$
\mathbf{A}=\left[\begin{array}{cc}
0 & 0 \\
0 & -1
\end{array}\right], \mathbf{b}=\left[\begin{array}{l}
0 \\
0
\end{array}\right], c=-1, \mathbf{g}=\left[\begin{array}{l}
1 \\
0
\end{array}\right], h=0 .
$$

Then we clearly have

$$
\mathbf{A}+\lambda \mathbf{g g}^{T}=\left[\begin{array}{cc}
\lambda & 0 \\
0 & -1
\end{array}\right] \nsucceq \mathbf{0}
$$

for any choice of λ. In this case, though, we have

$$
\mathcal{C}=\left\{\left(x_{1}, x_{2}\right) \in \mathbb{R}^{2}:-x_{2}^{2}-1 \leq 0\right\}=\mathbb{R}^{2},
$$

and so we have $\mathcal{C} \cap \mathcal{H}=\mathcal{H}=\left\{\left(x_{1}, x_{2}\right) \in \mathbb{R}^{2}: x_{1}=0\right\}$, which is clearly convex.
3. We first note that the constraints $p_{k} \geq 0, k=1, \ldots, n$ define halfspaces, and $\sum_{k=1}^{n} p_{k}=1$ defines a hyperplane, so \mathcal{P} is a polyhedron, and hence, a convex set.
(a) The condition here is

$$
\alpha \leq \sum_{k=1}^{n} p_{k} f\left(a_{k}\right) \leq \beta
$$

which is equivalent to two linear inequalities, and as such is convex in \mathbf{p}.
(b) The condition here is

$$
\operatorname{Pr}\{X>\alpha\}=\sum_{k: a_{k}>\alpha} p_{k} \leq \beta,
$$

which is equivalent to a linear inequality, and as such is convex in \mathbf{p}.
(c) The condition here is equivalent to

$$
\sum_{k=1}^{n} p_{k}\left(\left|a_{k}\right|^{3}-\alpha\left|a_{k}\right|\right) \leq 0
$$

which is equivalent to a linear inequality, and as such is convex in \mathbf{p}.
(d) The condition here is

$$
\sum_{k=1}^{n} p_{k} a_{k}^{2} \leq \alpha
$$

which is equivalent to a linear inequality, and as such is convex in \mathbf{p}.
(e) The condition here is

$$
\sum_{k=1}^{n} p_{k} a_{k}^{2} \geq \alpha
$$

which is equivalent to a linear inequality, and as such is convex in \mathbf{p}.
(f) The condition here is

$$
\operatorname{Var}(X)=E\left[X^{2}\right]-(E[X])^{2}=\sum_{k=1}^{n} p_{k} a_{k}^{2}-\left(\sum_{k=1}^{n} p_{k} a_{k}\right)^{2} \leq \alpha,
$$

which is not convex in general. As a counterexample, take $n=2, a_{1}=0, a_{2}=1$, and $\alpha=\frac{1}{5}$. Then, $\left(p_{1}, p_{2}\right)=(1,0)$ and $\left(p_{1}, p_{2}\right)=(0,1)$ are two points which satisfy $\operatorname{Var}(X)=0 \leq \frac{1}{5}=\alpha$, but the convex combination $\left(p_{1}, p_{2}\right)=\left(\frac{1}{2}, \frac{1}{2}\right)$ does not $\left(\operatorname{Var}(X)=\frac{1}{4}>\frac{1}{5}=\alpha\right.$ here $)$.
(g) The condition here is

$$
\sum_{k=1}^{n} p_{k} a_{k}^{2}-\left(\sum_{k=1}^{n} p_{k} a_{k}\right)^{2} \geq \alpha \Longleftrightarrow \sum_{k=1}^{n} \sum_{\ell=1}^{n} p_{k} a_{k} a_{\ell} p_{\ell}-\sum_{k=1}^{n} a_{k}^{2} p_{k}+\alpha \leq 0 .
$$

By defining the following quantities:

$$
\mathbf{a} \triangleq\left[\begin{array}{c}
a_{1} \\
\vdots \\
a_{n}
\end{array}\right], \mathbf{A} \triangleq \mathbf{a a}^{T}, \mathbf{b} \triangleq\left[\begin{array}{c}
a_{1}^{2} \\
\vdots \\
a_{n}^{2}
\end{array}\right],
$$

it follows that the condition is equivalent to

$$
\mathbf{p}^{T} \mathbf{A p}-\mathbf{b}^{T} \mathbf{p}+\alpha \leq 0
$$

However, this defines a convex set, i.e., it is convex in \mathbf{p}, since $\mathbf{A}=\mathbf{a a}^{T} \succeq \mathbf{0}$ (see the results of part (a) of the previous problem).
(h) For emphasize the dependence of the first quartile on \mathbf{p}, let us denote $Q_{1}(X)=f(\mathbf{p})$. From Figure 1 of the homework set, we have $f(\mathbf{p})=a_{2}$. Using this figure, it can be seen that the condition $f(\mathbf{p}) \geq \alpha$ is equivalent to

$$
F_{X}(\beta)<\frac{1}{4} \text { for all } \beta<\alpha .
$$

If $\alpha \leq a_{1}$, this is always true. Otherwise, define $k \triangleq \max \left\{\ell: a_{\ell}<\alpha\right\}$. This is a fixed integer, independent of \mathbf{p}. The constraint $f(\mathbf{p}) \geq \alpha$ holds if and only if

$$
F_{X}\left(a_{k}\right)=\sum_{\ell=1}^{k} p_{\ell}<\frac{1}{4}
$$

This is a strict linear inequality in \mathbf{p}, which defines an open halfspace. As such, it is convex in \mathbf{p}.
(i) Using the notation defined in the previous part of the solution, it follows that the condition $f(\mathbf{p}) \leq \alpha$ is equivalent to

$$
F_{X}(\beta) \geq \frac{1}{4} \text { for all } \beta \geq \alpha
$$

This can be expressed as a linear inequality as follows:

$$
\sum_{\ell=k+1}^{n} p_{\ell} \geq \frac{1}{4}
$$

Here, if $\alpha \leq a_{1}$, we define $k=0$. As such, this condition is convex in \mathbf{p}.
4. (a) Following the hint, we have

$$
\begin{aligned}
g(t) & =\operatorname{tr}\left((\mathbf{Z}+t \mathbf{V})^{-1}\right)=\operatorname{tr}\left(\left(\mathbf{Z}^{\frac{1}{2}}\left(\mathbf{I}_{n}+t \mathbf{Z}^{-\frac{1}{2}} \mathbf{V} \mathbf{Z}^{-\frac{1}{2}}\right) \mathbf{Z}^{\frac{1}{2}}\right)^{-1}\right), \\
& =\operatorname{tr}\left(\mathbf{Z}^{-\frac{1}{2}}\left(\mathbf{I}_{n}+t \mathbf{Z}^{-\frac{1}{2}} \mathbf{V} \mathbf{Z}^{-\frac{1}{2}}\right)^{-1} \mathbf{Z}^{-\frac{1}{2}}\right)=\operatorname{tr}\left(\mathbf{Z}^{-1}\left(\mathbf{I}_{n}+t \mathbf{Z}^{-\frac{1}{2}} \mathbf{V} \mathbf{Z}^{-\frac{1}{2}}\right)^{-1}\right) .
\end{aligned}
$$

For sake of simplicity, let us define $\mathbf{A} \triangleq \mathbf{Z}^{-\frac{1}{2}} \mathbf{V} \mathbf{Z}^{-\frac{1}{2}} \in \mathbb{S}^{n}$ and let $\mathbf{A}=\mathbf{Q} \boldsymbol{\Lambda} \mathbf{Q}^{T}$ denote an eigenvalue decomposition of \mathbf{A}, where \mathbf{Q} is an $n \times n$ unitary matrix of eigenvectors of \mathbf{A} and $\boldsymbol{\Lambda}=\operatorname{diag}\left(\lambda_{1}, \ldots, \lambda_{n}\right)$ is a diagonal matrix of eigenvalues of \mathbf{A}. Substituting this into the expression above yields

$$
\begin{aligned}
g(t) & =\operatorname{tr}\left(\mathbf{Z}^{-1}\left(\mathbf{I}_{n}+t \mathbf{A}\right)^{-1}\right)=\operatorname{tr}\left(\mathbf{Z}^{-1}\left(\mathbf{I}_{n}+t \mathbf{Q} \mathbf{\Lambda} \mathbf{Q}^{T}\right)^{-1}\right), \\
& =\operatorname{tr}\left(\mathbf{Z}^{-1}\left(\mathbf{Q}\left(\mathbf{I}_{n}+t \mathbf{\Lambda}\right) \mathbf{Q}^{T}\right)^{-1}\right)=\operatorname{tr}\left(\mathbf{Z}^{-1} \mathbf{Q}\left(\mathbf{I}_{n}+t \boldsymbol{\Lambda}\right)^{-1} \mathbf{Q}^{T}\right), \\
& =\operatorname{tr}\left(\left(\mathbf{Q}^{T} \mathbf{Z} \mathbf{Q}\right)\left(\mathbf{I}_{n}+t \mathbf{\Lambda}\right)^{-1}\right)=\sum_{k=1}^{n} \frac{\left[\mathbf{Q}^{T} \mathbf{Z} \mathbf{Q}\right]_{k, k}}{1+t \lambda_{k}} .
\end{aligned}
$$

Now note that from the last equality that $\mathbf{g}(t)$ can be expressed as a positive weighted sum of convex functions $\frac{1}{1+t \lambda_{k}}$. Hence, $g(t)$ is convex.
(b) In this part, we will use the same eigenvalue decomposition of $\mathbf{A} \triangleq \mathbf{Z}^{-\frac{1}{2}} \mathbf{V} \mathbf{Z}^{-\frac{1}{2}}=\mathbf{Q} \mathbf{\Lambda} \mathbf{Q}^{T}$ as was done in the previous part. Here, we have

$$
\begin{aligned}
g(t) & =(\operatorname{det}(\mathbf{Z}+t \mathbf{V}))^{\frac{1}{n}}=\left(\operatorname{det}\left(\mathbf{Z}^{\frac{1}{2}}\left(\mathbf{I}_{n}+t \mathbf{Z}^{-\frac{1}{2}} \mathbf{V} \mathbf{Z}^{-\frac{1}{2}}\right) \mathbf{Z}^{\frac{1}{2}}\right)\right)^{\frac{1}{n}} \\
& =\left(\operatorname{det}\left(\mathbf{Z}^{\frac{1}{2}}\right) \operatorname{det}\left(\mathbf{I}_{n}+t \mathbf{Q} \mathbf{\Lambda} \mathbf{Q}^{T}\right) \operatorname{det}\left(\mathbf{Z}^{\frac{1}{2}}\right)\right)^{\frac{1}{n}} \\
& =\left((\operatorname{det}(\mathbf{Z}))^{\frac{1}{2}} \operatorname{det}\left(\mathbf{I}_{n}+t \mathbf{Q} \mathbf{\Lambda} \mathbf{Q}^{T}\right)(\operatorname{det}(\mathbf{Z}))^{\frac{1}{2}}\right)^{\frac{1}{n}} \\
& =\left(\operatorname{det}(\mathbf{Z}) \operatorname{det}\left(\mathbf{Q}\left(\mathbf{I}_{n}+t \mathbf{\Lambda}\right) \mathbf{Q}^{T}\right)\right)^{\frac{1}{n}} \\
& =(\operatorname{det}(\mathbf{Z}))^{\frac{1}{n}}\left(\operatorname{det}(\mathbf{Q}) \operatorname{det}\left(\mathbf{I}_{n}+t \mathbf{\Lambda}\right) \operatorname{det}\left(\mathbf{Q}^{T}\right)\right)^{\frac{1}{n}} \\
& =(\operatorname{det}(\mathbf{Z}))^{\frac{1}{n}}\left(\operatorname{det}\left(\mathbf{I}_{n}+t \boldsymbol{\Lambda}\right)\right)^{\frac{1}{n}} \\
& =(\operatorname{det}(\mathbf{Z}))^{\frac{1}{n}}\left(\prod_{k=1}^{n}\left(1+t \lambda_{k}\right)\right)^{\frac{1}{n}} .
\end{aligned}
$$

From the last equality, we have shown that $g(t)$ can be expressed as a product of a positive constant and the geometric mean of $\left(1+t \lambda_{k}\right)$ for $k=1, \ldots, n$, which is concave in t. Hence, the net result is that $g(t)$ is concave.
*5. First note that we have

$$
P_{\mathbf{p}}(\mathcal{C})=1-P_{\mathbf{p}}(\widetilde{\mathcal{C}}),
$$

where $\widetilde{\mathcal{C}} \triangleq\{1, \ldots, n\} \backslash \mathcal{C}$ is the complement of \mathcal{C} in the set $\{1, \ldots, n\}$. Hence we have

$$
P_{\mathbf{p}}(\mathcal{C})-P_{\mathbf{q}}(\mathcal{C})=-P_{\mathbf{p}}(\widetilde{\mathcal{C}})+P_{\mathbf{q}}(\widetilde{\mathcal{C}})=-\left(P_{\mathbf{p}}(\widetilde{\mathcal{C}})-P_{\mathbf{q}}(\widetilde{\mathcal{C}})\right),
$$

and so $d_{\mathrm{mp}}(\mathbf{p}, \mathbf{q})$ can be expressed equivalently as

$$
d_{\mathrm{mp}}(\mathbf{p}, \mathbf{q})=\max \left\{P_{\mathbf{p}}(\mathcal{C})-P_{\mathbf{q}}(\mathcal{C}): \mathcal{C} \subseteq\{1, \ldots, n\}\right\} .
$$

As $d_{\mathrm{mp}}(\mathbf{p}, \mathbf{q})$ is the maximum of 2^{n} linear functions of (\mathbf{p}, \mathbf{q}) (since the number of events in the set $\mathcal{S} \triangleq\{1, \ldots, n\}$ is the cardinality of the power set $\mathcal{P}(\mathcal{S})$, which is $\left.2^{n}\right)$, it follows that $d_{\mathrm{mp}}(\mathbf{p}, \mathbf{q})$ is convex.
To simplify the expression for $d_{\mathrm{mp}}(\mathbf{p}, \mathbf{q})$, let us identify a subset \mathcal{C} that maximizes

$$
\begin{equation*}
P_{\mathbf{p}}(\mathcal{C})-P_{\mathbf{q}}(\mathcal{C})=\sum_{k \in \mathcal{C}}\left(p_{k}-q_{k}\right) . \tag{2}
\end{equation*}
$$

We claim that such an optimal subset is given by

$$
\begin{equation*}
\mathcal{C}^{\star} \triangleq\left\{k \in\{1, \ldots, n\}: p_{k}>q_{k}\right\} \tag{3}
\end{equation*}
$$

To show this, first note that the indices for which $p_{k}=q_{k}$ clearly do not matter. Thus, we will ignore these indices and assume without loss of generality that for each index, either $p_{k}>q_{k}$ or $p_{k}<q_{k}$. In other words, we need only compute (2) over relevant indices for which either $p_{k}>q_{k}$ or $p_{k}<q_{k}$. Now consider any other subset \mathcal{C}. If there is an element ℓ in \mathcal{C}^{\star} but not \mathcal{C}, then by adding ℓ to \mathcal{C}, we increase $\left(P_{\mathbf{p}}(\mathcal{C})-P_{\mathbf{q}}(\mathcal{C})\right)$ by $\left(p_{\ell}-q_{\ell}\right)>0$, and so \mathcal{C} could not have been optimal. Conversely, suppose that $\ell \in \mathcal{C} \backslash \mathcal{C}^{\star}$, so $\left(p_{\ell}-q_{\ell}\right)<0$. If we remove ℓ from \mathcal{C}, we would increase $\left(P_{\mathbf{p}}(\mathcal{C})-P_{\mathbf{q}}(\mathcal{C})\right)$ by $\left(q_{\ell}-p_{\ell}\right)>0$, and so \mathcal{C} could not have been optimal. This proves that \mathcal{C}^{\star} as defined in (3) is optimal for maximizing the expression in (2) and so we have

$$
\begin{equation*}
d_{\mathrm{mp}}(\mathbf{p}, \mathbf{q})=\sum_{k: p_{k}>q_{k}}\left(p_{k}-q_{k}\right) . \tag{4}
\end{equation*}
$$

To express $d_{\mathrm{mp}}(\mathbf{p}, \mathbf{q})$ in terms of $\|\mathbf{p}-\mathbf{q}\|_{1}$, note that we have

$$
\sum_{k: p_{k}>q_{k}}\left(p_{k}-q_{k}\right)+\sum_{k: p_{k} \leq q_{k}}\left(p_{k}-q_{k}\right)=\sum_{k=1}^{n}\left(p_{k}-q_{k}\right)=\sum_{k=1}^{n} p_{k}-\sum_{k=1}^{n} q_{k}=\mathbf{1}^{T} \mathbf{p}-\mathbf{1}^{T} \mathbf{q}=1-1=0,
$$

and so

$$
\sum_{k: p_{k}>q_{k}}\left(p_{k}-q_{k}\right)=-\sum_{k: p_{k} \leq q_{k}}\left(p_{k}-q_{k}\right) .
$$

Substituting this into (4) yields the following:

$$
\begin{aligned}
d_{\mathrm{mp}}(\mathbf{p}, \mathbf{q}) & =\frac{1}{2} \sum_{k: p_{k}>q_{k}}\left(p_{k}-q_{k}\right)+\frac{1}{2} \sum_{k: p_{k}>q_{k}}\left(p_{k}-q_{k}\right), \\
& =\frac{1}{2} \sum_{k: p_{k}>q_{k}}\left(p_{k}-q_{k}\right)-\frac{1}{2} \sum_{k: p_{k} \leq q_{k}}\left(p_{k}-q_{k}\right), \\
& =\frac{1}{2} \sum_{k=1}^{n}\left|p_{k}-q_{k}\right| .
\end{aligned}
$$

Hence, we conclude

$$
d_{\mathrm{mp}}(\mathbf{p}, \mathbf{q})=\frac{1}{2}\|\mathbf{p}-\mathbf{q}\|_{1} .
$$

From this, it is very clear that $d_{\mathrm{mp}}(\mathbf{p}, \mathbf{q})$ is convex.
The best way to interpret this result is as an interpretation of the ℓ_{1}-norm for probability distributions. It states that the ℓ_{1}-distance between two probability distributions is twice the maximum difference in probability, over all events, of the distributions.

