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Homework Set #3 - Solutions

1. (a) Note that x is closer to x0 than to x` in the Euclidean norm sense if and only if we
have the following.

||x− x0||2 ≤ ||x− x`||2 ⇐⇒ ||x− x0||22 ≤ ||x− x`||22 ,
⇐⇒ (x− x0)

T (x− x0) ≤ (x− x`)
T (x− x`) ,

⇐⇒ xTx− 2xT0 x + xT0 x0 ≤ xTx− 2xT` x + xT` x` ,

⇐⇒ 2 (x` − x0)
T x ≤ xT` x` − xT0 x0 .

Note that the last condition above defines a halfspace for every `. Thus, we can express
V as V = {x : Ax � b} with

A = 2




x1 − x0

...

xK − x0


 =




2 (x1 − x0)

...

2 (xK − x0)


 , b =




xT1 x1 − xT0 x0

...

xTKxK − xT0 x0


 .

(b) Suppose we have P = {x : Ax � b} with A ∈ RK×n and b ∈ RK . Then, as P is
assumed to have a nonempty interior, we can choose any point x0 ∈ {x : Ax ≺ b}, and
then construct K points x` by taking the mirror image of x0 with respect to the
hyperplanes

{
x : aT` x = b`

}
. In other words, we choose x` of the form x` = x0 + λa`,

where λ is chosen in such a way that the distance of x` to the hyperplane defined by
aT` x = b` is equal to the distance of x0 to the hyperplane. This leads to the following
condition:

b` − aT` x0 = aT` x` − b` .
Substituting x` = x0 + λa` into the above condition and solving for λ yields

λ =
2
(
b` − aT` x0

)

||a`||22
.

Thus, if we choose

x` = x0 +
2
(
b` − aT` x0

)

||a`||22
a` , ` = 1, . . . ,K ,

then the polyhedron P is the Voronoi region of x0 with respect to x1, . . . ,xK .

(c) A polyhedral decomposition of Rn can not always be described as Voronoi regions
generated by a set of points {x1, . . . ,xm}. A counterexample in R2 is shown below in
Figure 1. In this figure, R2 is decomposed into 4 polyhedra P1, . . . ,P4 by 2
hyperplanes H1,H2. Suppose we arbitrarily pick x1 ∈ P1 and x2 ∈ P2. Then x3 ∈ P3
must be the mirror image of x1 and x2 with respect to H2 and H1, respectively.
However, the mirror image of x1 with respect to H2 lies in P̃1, and the mirror image of
x2 with respect to H1 lies in P̃2, so it is impossible to find such an x3.
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Figure 1: Polyhedral decomposition/Voronoi region partition counterexample in R2.

2. Recall that a set is convex if and only if its intersection with an arbitrary line of the form
{x̂ + tv : t ∈ R} is convex. We will use this property for both parts of this problem.

(a) Note that we have

(x̂ + tv)T A (x̂ + tv) + bT (x̂ + tv) + c = αt2 + βt+ γ ,

where we have

α , vTAv , β , bTv + 2x̂TAv , γ , c+ bT x̂ + x̂TAx̂ .

The intersection of C with the line defined by x̂ and v is the set

{
x̂ + tv : αt2 + βt+ γ ≤ 0

}
,

which is convex if α ≥ 0. This is true for any v if vTAv ≥ 0 for all v, i.e., A � 0.
To show that the converse is false, consider the following counterexample. Suppose
A = −1, b = 0, and c = −1. Then, A 6� 0, but we have

C =
{
x ∈ R : −x2 − 1 ≤ 0

}
=
{
x ∈ R : x2 + 1 ≥ 0

}
= R ,

which is clearly convex.

(b) Suppose that we define α, β, and γ as in the previous part of the solution. Note that
we now also have

gT (x̂ + tv) + h = δt+ ε ,

where we have
δ , gTv , ε , gT x̂ + h .

Without loss of generality, we can assume that x̂ ∈ H, i.e., ε = 0. The intersection of
C ∩ H with the line defined by x̂ and v is

{
x̂ + tv : αt2 + βt+ γ ≤ 0 , δt = 0

}
.

If δ = gTv 6= 0, then the intersection is the singleton {x̂} if γ ≤ 0, or it is empty
otherwise. In either case, it is a convex set. If δ = gTv = 0, then the set reduces to

{
x̂ + tv : αt2 + βt+ γ ≤ 0

}
,



which is convex if α ≥ 0. Therefore, C ∩ H is convex if

gTv = 0 =⇒ vTAv ≥ 0 . (1)

But this is true if there exists a λ such that
(
A + λggT

)
� 0. In this case, (1) holds,

because then we have
vTAv = vT

(
A + λggT

)
v ≥ 0 ,

for all v satisfying gTv = 0.
To show the converse is false, consider the following counterexample. Suppose we take

A =

[
0 0

0 −1

]
, b =

[
0

0

]
, c = −1 , g =

[
1

0

]
, h = 0 .

Then we clearly have

A + λggT =

[
λ 0

0 −1

]
6� 0 ,

for any choice of λ. In this case, though, we have

C =
{

(x1, x2) ∈ R2 : −x22 − 1 ≤ 0
}

= R2 ,

and so we have C ∩ H = H =
{

(x1, x2) ∈ R2 : x1 = 0
}

, which is clearly convex.

3. We first note that the constraints pk ≥ 0, k = 1, . . . , n define halfspaces, and
∑n

k=1 pk = 1
defines a hyperplane, so P is a polyhedron, and hence, a convex set.

(a) The condition here is

α ≤
n∑

k=1

pkf(ak) ≤ β ,

which is equivalent to two linear inequalities, and as such is convex in p.

(b) The condition here is

Pr {X > α} =
∑

k:ak>α

pk ≤ β ,

which is equivalent to a linear inequality, and as such is convex in p.

(c) The condition here is equivalent to

n∑

k=1

pk

(
|ak|3 − α |ak|

)
≤ 0 ,

which is equivalent to a linear inequality, and as such is convex in p.

(d) The condition here is
n∑

k=1

pka
2
k ≤ α ,

which is equivalent to a linear inequality, and as such is convex in p.

(e) The condition here is
n∑

k=1

pka
2
k ≥ α ,

which is equivalent to a linear inequality, and as such is convex in p.



(f) The condition here is

Var(X) = E
[
X2
]
− (E[X])2 =

n∑

k=1

pka
2
k −

(
n∑

k=1

pkak

)2

≤ α ,

which is not convex in general. As a counterexample, take n = 2, a1 = 0, a2 = 1, and
α = 1

5 . Then, (p1, p2) = (1, 0) and (p1, p2) = (0, 1) are two points which satisfy
Var(X) = 0 ≤ 1

5 = α, but the convex combination (p1, p2) =
(
1
2 ,

1
2

)
does not

(Var(X) = 1
4 >

1
5 = α here).

(g) The condition here is

n∑

k=1

pka
2
k −

(
n∑

k=1

pkak

)2

≥ α⇐⇒
n∑

k=1

n∑

`=1

pkaka`p` −
n∑

k=1

a2kpk + α ≤ 0 .

By defining the following quantities:

a ,




a1
...

an


 , A , aaT , b ,




a21
...

a2n


 ,

it follows that the condition is equivalent to

pTAp− bTp + α ≤ 0 .

However, this defines a convex set, i.e., it is convex in p, since A = aaT � 0 (see the
results of part (a) of the previous problem).

(h) For emphasize the dependence of the first quartile on p, let us denote Q1(X) = f(p).
From Figure 1 of the homework set, we have f(p) = a2. Using this figure, it can be
seen that the condition f(p) ≥ α is equivalent to

FX(β) <
1

4
for all β < α .

If α ≤ a1, this is always true. Otherwise, define k , max {` : a` < α}. This is a fixed
integer, independent of p. The constraint f(p) ≥ α holds if and only if

FX(ak) =

k∑

`=1

p` <
1

4
.

This is a strict linear inequality in p, which defines an open halfspace. As such, it is
convex in p.

(i) Using the notation defined in the previous part of the solution, it follows that the
condition f(p) ≤ α is equivalent to

FX(β) ≥ 1

4
for all β ≥ α .

This can be expressed as a linear inequality as follows:

n∑

`=k+1

p` ≥
1

4
.

Here, if α ≤ a1, we define k = 0. As such, this condition is convex in p.



4. (a) Following the hint, we have

g(t) = tr
(

(Z + tV)−1
)

= tr

((
Z

1
2

(
In + tZ−

1
2 VZ−

1
2

)
Z

1
2

)−1)
,

= tr

(
Z−

1
2

(
In + tZ−

1
2 VZ−

1
2

)−1
Z−

1
2

)
= tr

(
Z−1

(
In + tZ−

1
2 VZ−

1
2

)−1)
.

For sake of simplicity, let us define A , Z−
1
2 VZ−

1
2 ∈ Sn and let A = QΛQT denote an

eigenvalue decomposition of A, where Q is an n× n unitary matrix of eigenvectors of
A and Λ = diag(λ1, . . . , λn) is a diagonal matrix of eigenvalues of A. Substituting this
into the expression above yields

g(t) = tr
(
Z−1 (In + tA)−1

)
= tr

(
Z−1

(
In + tQΛQT

)−1)
,

= tr
(
Z−1

(
Q (In + tΛ) QT

)−1)
= tr

(
Z−1Q (In + tΛ)−1 QT

)
,

= tr
((

QTZQ
)

(In + tΛ)−1
)

=
n∑

k=1

[
QTZQ

]
k,k

1 + tλk
.

Now note that from the last equality that g(t) can be expressed as a positive weighted
sum of convex functions 1

1+tλk
. Hence, g(t) is convex.

(b) In this part, we will use the same eigenvalue decomposition of

A , Z−
1
2 VZ−

1
2 = QΛQT as was done in the previous part. Here, we have

g(t) = (det(Z + tV))
1
n =

(
det
(
Z

1
2

(
In + tZ−

1
2 VZ−

1
2

)
Z

1
2

)) 1
n
,

=
(

det
(
Z

1
2

)
det
(
In + tQΛQT

)
det
(
Z

1
2

)) 1
n
,

=
(

(det(Z))
1
2 det

(
In + tQΛQT

)
(det(Z))

1
2

) 1
n
,

=
(
det(Z) det

(
Q (In + tΛ) QT

)) 1
n ,

= (det(Z))
1
n
(
det(Q) det(In + tΛ) det

(
QT
)) 1

n ,

= (det(Z))
1
n (det(In + tΛ))

1
n ,

= (det(Z))
1
n

(
n∏

k=1

(1 + tλk)

) 1
n

.

From the last equality, we have shown that g(t) can be expressed as a product of a
positive constant and the geometric mean of (1 + tλk) for k = 1, . . . , n, which is
concave in t. Hence, the net result is that g(t) is concave.

*5. First note that we have
Pp(C) = 1− Pp

(
C̃
)
,

where C̃ , {1, . . . , n} \ C is the complement of C in the set {1, . . . , n}. Hence we have

Pp(C)− Pq(C) = −Pp

(
C̃
)

+ Pq

(
C̃
)

= −
(
Pp

(
C̃
)
− Pq

(
C̃
))

,



and so dmp(p,q) can be expressed equivalently as

dmp(p,q) = max {Pp(C)− Pq(C) : C ⊆ {1, . . . , n}} .
As dmp(p,q) is the maximum of 2n linear functions of (p,q) (since the number of events in
the set S , {1, . . . , n} is the cardinality of the power set P(S), which is 2n), it follows that
dmp(p,q) is convex.
To simplify the expression for dmp(p,q), let us identify a subset C that maximizes

Pp(C)− Pq(C) =
∑

k∈C
(pk − qk) . (2)

We claim that such an optimal subset is given by

C? , {k ∈ {1, . . . , n} : pk > qk} . (3)

To show this, first note that the indices for which pk = qk clearly do not matter. Thus, we
will ignore these indices and assume without loss of generality that for each index, either
pk > qk or pk < qk. In other words, we need only compute (2) over relevant indices for which
either pk > qk or pk < qk. Now consider any other subset C. If there is an element ` in C?
but not C, then by adding ` to C, we increase (Pp(C)− Pq(C)) by (p` − q`) > 0, and so C
could not have been optimal. Conversely, suppose that ` ∈ C \ C?, so (p` − q`) < 0. If we
remove ` from C, we would increase (Pp(C)− Pq(C)) by (q` − p`) > 0, and so C could not
have been optimal. This proves that C? as defined in (3) is optimal for maximizing the
expression in (2) and so we have

dmp(p,q) =
∑

k:pk>qk

(pk − qk) . (4)

To express dmp(p,q) in terms of ||p− q||1, note that we have

∑

k:pk>qk

(pk − qk)+
∑

k:pk≤qk

(pk − qk) =

n∑

k=1

(pk − qk) =

n∑

k=1

pk−
n∑

k=1

qk = 1Tp−1Tq = 1−1 = 0 ,

and so ∑

k:pk>qk

(pk − qk) = −
∑

k:pk≤qk

(pk − qk) .

Substituting this into (4) yields the following:

dmp(p,q) =
1

2

∑

k:pk>qk

(pk − qk) +
1

2

∑

k:pk>qk

(pk − qk) ,

=
1

2

∑

k:pk>qk

(pk − qk)−
1

2

∑

k:pk≤qk

(pk − qk) ,

=
1

2

n∑

k=1

|pk − qk| .

Hence, we conclude

dmp(p,q) =
1

2
||p− q||1 .

From this, it is very clear that dmp(p,q) is convex.
The best way to interpret this result is as an interpretation of the `1-norm for probability
distributions. It states that the `1-distance between two probability distributions is twice
the maximum difference in probability, over all events, of the distributions.


