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1. (a) We have

log(f(x)) = log

(
ex

1 + ex

)
= x− log(1 + ex) .

The first term is linear and hence concave. Since the function log(1 + ex) is strictly
convex, as it is the log-sum-exp function evaluated at x1 = 0, x2 = x, the second term
above is strictly concave. Hence, f(x) = ex

1+ex is strictly log-concave.

(b) Note that the first and second partial derivatives of

h(x) , log(f(x)) = − log

(
1

x1
+ · · ·+ 1

xn

)
are given by the following:

∂h(x)

∂xk
=

1
x2
k

1
x1

+ · · ·+ 1
xn

,

∂2h(x)

∂xk∂x`
=



− 2
x3
k

1
x1

+ · · ·+ 1
xn

+

1
x4
k(

1
x1

+ · · ·+ 1
xn

)2 , k = `

1
x2
kx

2
`(

1
x1

+ · · ·+ 1
xn

)2 , k 6= `

.

To show that f(x) is log-concave, we must show that h(x) is concave, which is
equivalent to proving that the Hessian of h(x) is negative semidefinite, i.e.,
∇2h(x) � 0. This is equivalent to proving that yT

(
∇2h(x)

)
y ≤ 0 for all y, which in

turn is equivalent to proving(
n∑

`=1

1

x`

)(
n∑

k=1

(
−

2y2k
x3k

))
+

(
n∑

k=1

yk
x2k

)(
n∑

`=1

y`
x2`

)
≤ 0 ,

in light of the domain of f(x). The above condition can be simplified to the following:(
n∑

k=1

yk
x2k

)2

≤ 2

(
n∑

k=1

1

xk

)(
n∑

k=1

y2k
x3k

)
. (1)

But recall that for the standard inner product over Rn, we have
(
aTb

)2 ≤ ||a||22 ||b||22
by the Cauchy-Schwarz inequality. By choosing

ak =
1
√
xk

, bk =
yk

xk
√
xk

,

we get (
n∑

k=1

yk
x2k

)2

≤

(
n∑

k=1

1

xk

)(
n∑

k=1

y2k
x3k

)
, (2)



with equality if and only if yk = xk. On account of the domain of f(x) and (2), it
follows that for y 6= 0, we have the strict inequality

n∑
k=1

(
yk
x2k

)2

< 2

(
n∑

k=1

1

xk

)(
n∑

k=1

y2k
x3k

)
.

When this is compared to the condition given in (1), this proves that
yT
(
∇2h(x)

)
y < 0 for all y 6= 0, which means that h(x) = log(f(x)) is strictly concave

over its domain. Thus, the function f(x) is strictly log-concave over its domain.

(c) We show that the function

g(x) , log(f(x)) =

n∑
k=1

log(xk)− log

(
n∑

k=1

xk

)

is strictly concave over the domain of f(x). Taking partial derivatives yields the
following:

∂g(x)

∂xk
=

1

xk
− 1

(1Tx)
,

∂2g(x)

∂xk∂x`
=


− 1

x2k
+

1

(1Tx)2
, k = `

1

(1Tx)2
, k 6= `

From this, the Hessian of g(x) can be expressed as follows:

∇2g(x) = − (diag(x))−2 +
1

(1Tx)2
11T = (diag(x))−1

(
−I +

1

(1Tx)2
xxT

)
(diag(x))−1

In light of the domain of f(x), to prove that ∇2g(x) � 0, it is equivalent to show that(
−I + wwT

)
� 0, where w , 1

(1Tx)
x. Equivalently, we need to show that

vT
(
−I + wwT

)
v ≤ 0⇐⇒

(
vTw

)2 ≤ ||v||22 , (3)

for any v. Prior to proving (3), we will show that ||w||2 < ||w||1 = 1 here. Note that as
w = 1

(1Tx)
x, we have w � 0 on account of the domain of f(x) and

||w||1 = 1Tw =
(1Tx)
(1Tx)

= 1. Also, we have

1 = ||w||21 =

(
n∑

k=1

wk

)2

=

n∑
k=1

n∑
`=1

wkw` =

n∑
k=1

w2
k︸ ︷︷ ︸

||w||22

+

n∑
k=1

∑
`6=k

wkw`︸ ︷︷ ︸
>0 as w�0

.

This proves that ||w||2 < 1 here. Returning to (3), we will assume that v 6= 0, since the
condition trivially holds for v 6= 0. Recall that from the Cauchy-Schwarz inequality, we
have (

vTw
)2 ≤ ||v||22 ||w||22 ,



for any v,w with equality if and only if v and w are linearly dependent. However, as
||w||2 < 1, it follows that

(
vTw

)2
< ||v||22 for any v 6= 0. Hence, we have shown that

for any v 6= 0, we have(
vTw

)2
< ||v||22 ⇐⇒ vT

(
−I + wwT

)
v < 0⇐⇒

(
−I + wwT

)
≺ 0⇐⇒ ∇2g(x) ≺ 0 .

Thus, g(x) = log(f(x)) is strictly concave, which proves that f(x) is strictly
log-concave.

(d) We prove that
h(X) , log(f(X)) = log(det(X))− log(tr(X))

is strictly concave over the domain of f(X). Consider the restriction to a line
X = Z + tV, where Z � 0 and V ∈ Sn, and use the eigenvalue decomposition

Z−
1
2 VZ−

1
2 = QΛQT =

n∑
k=1

λkqkq
T
k .

Then, we have

h(Z + tV) = log(det(Z + tV))− log(tr(Z + tV)) ,

= log(det(Z)) + log
(

det
(
I + tZ−

1
2 VZ−

1
2

))
− log

(
tr
(
Z
(
I + tZ−

1
2 VZ−

1
2

)))
,

= log(det(Z)) +
n∑

k=1

log(1 + tλk)− log

(
n∑

k=1

(
qT
k Zqk

)
(1 + tλk)

)
,

= log(det(Z))−
n∑

k=1

log
(
qT
k Zqk

)
+

n∑
k=1

log
((

qT
k Zqk

)
(1 + tλk)

)
− log

(
n∑

k=1

(
qT
k Zqk

)
(1 + tλk)

)
.

From this last expression for h(Z + tV), note that it is a constant, plus the function

g(y) ,
n∑

k=1

log(yk)− log

(
n∑

k=1

yk

)
,

evaluated at yk =
(
qT
k Zqk

)
(1 + tλk). But we showed in part (c) that g(y) was strictly

concave. Hence, it follows that h(X) is strictly concave, which means that f(X) is
strictly log-concave.

2. (a) i. The domain of the objective is convex, because f0(x) is convex. The sublevel sets

are convex because f0(x)
cTx+d

≤ α if and only if cTx + d > 0 and

f0(x)− α
(
cTx + d

)
≤ 0, which is always a convex inequality for any α. Hence, the

problem is a quasiconvex optimization problem.

ii. Suppose x is feasible in the original problem. Define t , 1
cTx+d

and y , x
cTx+d

.
Then t > 0 and it is easily verified that t and y are feasible in the transformed
problem, with the objective value g0(y, t) = f0(x)

cTx+d
.

Conversely, suppose y and t are feasible for the transformed problem. We must
have t > 0, by definition of the domain of the perspective function. Define



x , y/t. We have x ∈ dom(fk(x)) for k = 0, 1, . . . ,m (again, by definition of the
perspective function). Note that x is feasible in the original problem, because

fk(x) = gk(y, t) /t ≤ 0 , k = 1, . . . ,m , Ax = A (y/t) = b .

From the last equality, cTx + d =
(
cTy + td

)
/t = 1/t, and hence,

t =
1

cTx + d
,

f0(x)

cTx + d
= tf0(x) = g0(y, t) .

Therefore, x is feasible in the original problem, with the objective value g0(y, t). In
conclusion, from any feasible point of one problem, we can derive a feasible point
of the other problem with the same objective value.
Clearly the transformed problem is convex as the domain is a convex set, the
objective and inequality constraint functions are convex, and the equality
constraints are affine.

(b) i. The domain of the objective function is convex, and its sublevel sets are convex

because for α ≥ 0, we have f0(x)
h(x) ≤ α if and only if f0(x)− αh(x) ≤ 0, which is a

convex inequality. For α < 0, the sublevel sets are empty. Combining both results,
we find that the problem is a quasiconvex optimization problem.

ii. To verify the equivalence, assume first that x is feasible in the original problem.
Define t , 1

h(x) and y , x
h(x) . Then, t > 0 and

gk(y, t) = tfk(y/t) = tfk(x) ≤ 0 , k = 1, . . . ,m , Ay = A

(
x

h(x)

)
= bt .

Moreover, h̃(y, t) = th(y/t) = h(x)
h(x) = 1 and g0(y, t) = tf0(y/t) = f0(x)

h(x) . We see
that for every feasible point in the original problem, we can find a feasible point in
the transformed problem with the same objective value.
Conversely, assume y and t are feasible in the transformed problem. By definition
of the perspective function, t > 0. Define x , y/t. We have

fk(x) = fk(y/t) = gk(y, t) /t ≤ 0 , k = 1, . . . ,m , Ax = A (y/t) = b .

From the last inequality, we have

h̃(y, t) = −th(y/t) = −th(x) ≤ −1 .

This implies that h(x) > 0 and th(x) ≥ 1. Finally, the objective is

f0(x)

h(x)
=
g0(y, t)

th(x)
≤ g0(y, t) .

We conclude that with every feasible point in the transformed problem, there is a
corresponding feasible point in the original problem with the same or lower
objective value.
Putting the two parts together, we can conclude that the two problems have the
same optimal value, and that optimal solutions for one problem are optimal for the
other (if both are solvable).
Clearly the transformed problem is convex as the domain is a convex set, the
objective and inequality constraint functions are convex, and the equality
constraints are affine.



iii. Exploiting the fact that αtr(A) = tr(αA) and det(αA) = αm det(A) for any scalar
α and m×m matrix A, we get the following after some algebraic manipulations:

minimize
1

m
tr(tF0 + y1F1 + · · ·+ ynFn)

subject to (det(tF0 + y1F1 + · · ·+ ynFn))
1
m

,

with domain
{(y, t) : t > 0 , tF0 + y1F1 + · · ·+ ynFn � 0} .

3. – (Complex `1-norm:)
For simplicity, let us express A in terms of its rows as

A =


aT
1

...

aT
m

 ,
where ak ∈ Cn for k = 1, . . . ,m. Then, note that the problem

minimize ||Ax− b||1 =
m∑
k=1

∣∣aT
k x− bk

∣∣ ,
is equivalent to the following one:

minimize
m∑
k=1

tk

subject to
∣∣aT

k x− bk
∣∣ ≤ tk , k = 1, . . . ,m

. (4)

Here, we have introduced new optimization variables t1, . . . , tm. To simplify∣∣aT
k x− bk

∣∣, note that we have∣∣aT
k x− bk

∣∣2 =
(
Re
[
aT
k x− bk

])2
+
(
Im
[
aT
k x− bk

])2
.

But we have

aT
k x− bk =

(
Re
[
aT
k

]
+ jIm

[
aT
k

])
(Re[x] + jIm[x])− (Re[bk] + jIm[bk]) ,

=
(
Re
[
aT
k

]
Re[x]− Im

[
aT
k

]
Im[x]− Re[bk]

)︸ ︷︷ ︸
Re[aT

k x−bk]

+ j
(
Im
[
aT
k

]
Re[x] + Re

[
aT
k

]
Im[x]− Im[bk]

)︸ ︷︷ ︸
Im[aT

k x−bk]

.

Substituting this into the expression above yields∣∣aT
k x− bk

∣∣2 =
((

Re
[
aT
k

]
Re[x]− Im

[
aT
k

]
Im[x]− Re[bk]

))2
+
((

Im
[
aT
k

]
Re[x] + Re

[
aT
k

]
Im[x]− Im[bk]

))2 (5)

If we define the following real quantities:

Ãk ,

[
Re
[
aT
k

]
−Im

[
aT
k

]
Im
[
aT
k

]
Re
[
aT
k

] ]
, x̃ ,

[
Re[x]

Im[x]

]
, b̃k ,

[
Re[bk]

Im[bk]

]
, k = 1, . . . ,m ,



then from (5), it can be shown that we have∣∣aT
k x− bk

∣∣2 =
∣∣∣∣∣∣Ãkx̃− b̃k

∣∣∣∣∣∣2
2
⇐⇒

∣∣aT
k x− bk

∣∣ =
∣∣∣∣∣∣Ãkx̃− b̃k

∣∣∣∣∣∣
2
.

Hence, from (4), the complex `1-norm approximation problem can be equivalently
expressed as

minimize
m∑
k=1

tk

subject to
∣∣∣∣∣∣Ãkx̃− b̃k

∣∣∣∣∣∣
2
≤ tk , k = 1, . . . ,m

,

where Ãk ∈ R2×2n and b̃k ∈ R2 for k = 1, . . . ,m are the real problem data and tk ∈ R
for k = 1, . . . ,m and x̃ ∈ R2n are the real variables. But this is just an SOCP.

– (Complex `2-norm:)
Minimizing ||Ax− b||2 is equivalent to minimizing its square. So, let us expand
||Ax− b||22 around the real and imaginary parts of Ax− b. We get

||Ax− b||22 = ||Re[Ax− b]||22 + ||Im[Ax− b]||22 .

But we have

Ax− b = (Re[A] + jIm[A]) (Re[x] + jIm[x])− (Re[b] + jIm[b]) ,

= (Re[A] Re[x]− Im[A] Im[x]− Re[b])︸ ︷︷ ︸
Re[Ax−b]

+ j (Im[A] Re[x] + Re[A] Im[x]− Im[b])︸ ︷︷ ︸
Im[Ax−b]

.

Substituting this into the expression above yields

||Ax− b||22 = ||(Re[A] Re[x]− Im[A] Im[x]− Re[b])||22
+ ||(Im[A] Re[x] + Re[A] Im[x]− Im[b])||22 .

(6)

If we define the following real quantities:

Ã ,

[
Re[A] −Im[A]

Im[A] Re[A]

]
, x̃ ,

[
Re[x]

Im[x]

]
, b̃ ,

[
Re[b]

Im[b]

]
,

then from (6), it can be shown that we have

||Ax− b||22 =
∣∣∣∣∣∣Ãx̃− b̃

∣∣∣∣∣∣2
2

= x̃T ÃT Ãx̃− 2b̃T Ãx̃ + b̃T b̃ .

Hence, the complex `2-norm approximation problem can be equivalently expressed as

minimize x̃T ÃT Ãx̃− 2b̃T Ãx̃ + b̃T b̃ ,

where Ã ∈ R2m×2n and b̃ ∈ R2m are the real problem data and x̃ ∈ R2n is the real
variable. But this is just a QCQP.



– (Complex `∞-norm:)
For simplicity, let us express A in terms of its rows as

A =


aT
1

...

aT
m

 ,
where ak ∈ Cn for k = 1, . . . ,m. Then, note that the problem

minimize ||Ax− b||∞ = max
k=1,...,m

∣∣aT
k x− bk

∣∣
,

is equivalent to the following one:

minimize t

subject to
∣∣aT

k x− bk
∣∣ ≤ t , k = 1, . . . ,m

. (7)

Here, we have introduced a new optimization variable t. To simplify
∣∣aT

k x− bk
∣∣, note

that we have ∣∣aT
k x− bk

∣∣2 =
(
Re
[
aT
k x− bk

])2
+
(
Im
[
aT
k x− bk

])2
.

But we have

aT
k x− bk =

(
Re
[
aT
k

]
+ jIm

[
aT
k

])
(Re[x] + jIm[x])− (Re[bk] + jIm[bk]) ,

=
(
Re
[
aT
k

]
Re[x]− Im

[
aT
k

]
Im[x]− Re[bk]

)︸ ︷︷ ︸
Re[aT

k x−bk]

+ j
(
Im
[
aT
k

]
Re[x] + Re

[
aT
k

]
Im[x]− Im[bk]

)︸ ︷︷ ︸
Im[aT

k x−bk]

.

Substituting this into the expression above yields∣∣aT
k x− bk

∣∣2 =
((

Re
[
aT
k

]
Re[x]− Im

[
aT
k

]
Im[x]− Re[bk]

))2
+
((

Im
[
aT
k

]
Re[x] + Re

[
aT
k

]
Im[x]− Im[bk]

))2 (8)

If we define the following real quantities:

Ãk ,

[
Re
[
aT
k

]
−Im

[
aT
k

]
Im
[
aT
k

]
Re
[
aT
k

] ]
, x̃ ,

[
Re[x]

Im[x]

]
, b̃k ,

[
Re[bk]

Im[bk]

]
, k = 1, . . . ,m ,

then from (8), it can be shown that we have∣∣aT
k x− bk

∣∣2 =
∣∣∣∣∣∣Ãkx̃− b̃k

∣∣∣∣∣∣2
2
⇐⇒

∣∣aT
k x− bk

∣∣ =
∣∣∣∣∣∣Ãkx̃− b̃k

∣∣∣∣∣∣
2
.

Hence, from (7), the complex `∞-norm approximation problem can be equivalently
expressed as

minimize t

subject to
∣∣∣∣∣∣Ãkx̃− b̃k

∣∣∣∣∣∣
2
≤ t , k = 1, . . . ,m

,



where Ãk ∈ R2×2n and b̃k ∈ R2 for k = 1, . . . ,m are the real problem data and t ∈ R
and x̃ ∈ R2n are the real variables. But this is just an SOCP. By squaring both sides of
each constraint and defining λ , t2, this problem can be converted into the following
QCQP:

minimize λ

subject to
∣∣∣∣∣∣Ãkx̃− b̃k

∣∣∣∣∣∣2
2
≤ λ , k = 1, . . . ,m

.

4. (a) Note that the problem can be equivalently expressed as

minimize t

subject to cT (F(x))−1 c ≤ t
⇐⇒

minimize t

subject to t− cT (F(x))−1 c ≥ 0
.

As F(x) � 0 in the domain of f(x), we can express the constraint above as an LMI by
recognizing the left-hand side as an appropriate Schur complement. This yields the
following equivalent representation of the problem as an SDP:

minimize t

subject to

[
F(x) c

cT t

]
� 0

.

(b) Note that the problem can be equivalently expressed as

minimize t

subject to cTk (F(x))−1 ck ≤ t , k = 1, . . . ,K
.

Using the same argument from the previous part, we can express this problem as the
following SDP:

minimize t

subject to

[
F(x) ck

cTk t

]
� 0 , k = 1, . . . ,K

.

(c) Note that by the Courant-Fischer-Weyl min-max principle, it can be shown that

f(x) = λmax

(
(F(x))−1

)
, and so f(x) ≤ t if and only if (F(x))−1 � tI, which is

equivalent to tI− (F(x))−1 � 0. Using a Schur complement, we get the following SDP
formulation of the given problem:

minimize t

subject to

[
F(x) I

I t

]
� 0

.

(d) Let us first simplify the expression for f(x). Note that we have the following:

f(x) = tr
(
E
[
cT (F(x))−1 c

])
= E

[
tr
(
cT (F(x))−1 c

)]
,

= E
[
tr
(
ccT (F(x))−1

)]
= tr

(
E
[
ccT

]
(F(x))−1

)
. (9)



To simplify E
[
ccT

]
, note that we have:

S = E
[
(c− c) (c− c)T

]
= E

[
ccT − ccT − ccT + ccT

]
,

= E
[
ccT

]
− (E[c]) cT − c (E[c])T + ccT ,

= E
[
ccT

]
− ccT − ccT + ccT = E

[
ccT

]
− ccT .

Hence, E
[
ccT

]
= S + ccT . Substituting this into (9) yields the following:

f(x) = cT (F(x))−1 c + tr
(
S (F(x))−1

)
= cT (F(x))−1 c +

m∑
k=1

sTk (F(x))−1 sk .

Hence, the problem of minimizing f(x) can be equivalently expressed as follows:

minimize t0 +

m∑
k=1

tk

subject to cT (F(x))−1 c ≤ t0
sTk (F(x))−1 sk ≤ tk , k = 1, . . . ,m

.

Using appropriate Schur complements, this can be recast as the following SDP:

minimize t0 +
m∑
k=1

tk

subject to

[
F(x) c

cT t0

]
� 0[

F(x) sk

sTk tk

]
� 0 , k = 1, . . . ,m

.

*5. (a) Note that we have x = Py and so

xk =
n∑

`=1

Pk,`y` , where Pk,` ≥ 0 , and

n∑
`=1

Pk,` = 1 , k = 1, . . . , n .

Hence, by Jensen’s inequality, we have

f(xk) = f

(
n∑

`=1

Pk,`y`

)
≤

n∑
`=1

Pk,`f(y`) , k = 1, . . . , n .

Summing the above inequality over k yields the following:

n∑
k=1

f(xk) ≤
n∑

k=1

n∑
`=1

Pk,`f(y`) =

n∑
`=1

f(y`)

n∑
k=1

Pk,` =

n∑
`=1

f(y`) .

Here, we used the fact that
∑n

k=1 Pk,` = 1 for all `. Thus, we have

n∑
k=1

f(yk) ≥
n∑

k=1

f(xk) ,



as desired. Using a more compact matrix notation, if we define the vector function

f(z) ,
[
f(z1) · · · f(zn)

]T
, then we have

1T f(x) = 1T f(Py) ≤ 1TPf(y) = 1T f(y) .

This yields 1T f(y) ≥ 1T f(x), which was the same result we intended to prove.

(b) Consider the optimization problem

maximize tr(XY)

subject to tr(Y) = r

0 � Y � I

, (10)

with variable Y ∈ Sn. Let X = QΛQT be the eigenvalue decomposition of X and
make a change of variables Ŷ = QTYQ. Then, we have

tr(XY) = tr
(
QΛQTY

)
= tr

(
ΛŶ

)
=

n∑
k=1

λkŶk,k .

Also, tr(widehatY) = tr(Y) and 0 � Y � I if and only if 0 � Ŷ � I. Thus, the
problem reduces to the following equivalent one:

maximize
n∑

k=1

λkŶk,k

subject to
n∑

k=1

Ŷk,k = r

0 � Ŷ � I

.

Next, we note that we can restrict Ŷ to being diagonal without loss of generality. The
reason for this is that if Ŷ is feasible, then the diagonal matrix with diagonal elements

Ŷk,k, namely diag
(

diag
(
Ŷ
))

, is also feasible, and has the same cost function value as

Ŷ. The problem then simplifies to

maximize
n∑

k=1

λkŶk,k

subject to

n∑
k=1

Ŷk,k = r

0 ≤ Ŷk,k ≤ 1 , k = 1, . . . , n

.

The inequality constraints limit the diagonal elements of Ŷ to the interval [0, 1]. So,
intuitively, to get the largest contribution from the objective function, the largest
eigenvalue λ1 must have a weight of one, i.e., Ŷ1,1 = 1, the second eigenvalue λ2 must

also have a weight of one (if possible), i.e., Ŷ2,2 = 1, and so forth until the constraint∑n
k=1 Ŷk,k = r is met. Hence, the optimizating Ŷk,k are given by

Ŷ ?
k,k =

{
1 , k = 1, . . . , r

0 , k = r + 1, . . . , n
.



From this, we conclude that the solution to the problem above, which is also the
solution to (10), is simply

r∑
k=1

λk .

Thus, we have

gr(X) = λ1(X) + · · ·+ λr(X) = sup {tr(XZ) : Z ∈ Sn , 0 � Z � I , tr(Z) = r} .

Since tr(XZ) is a convex function of Z, the above result shows that the function gr(X)
is convex for any r ∈ {1, . . . , n}.

(c) As we showed in the previous part that the function gr(X) is convex for any
r ∈ {1, . . . , n}, we have

gr(X) = gr(θU + (1− θ) V) ≤ θgr(U) + (1− θ) gr(V) , r = 1, . . . , n .

But note that we also have

θgr(U) + (1− θ) gr(V) =
r∑

k=1

ak , gr(X) =
r∑

k=1

bk .

Hence, we have
r∑

k=1

ak ≥
r∑

k=1

bk , r = 1, . . . , n .

For the special case r = n, we have a stronger result, since in this case gn(X) = tr(X).
As X = θU + (1− θ) V, we have gn(X) = θgn(U) + (1− θ) gn(V). Thus∑n

k=1 ak =
∑n

k=1 bk. Combining all of these results, we find that we have

r∑
k=1

ak ≥
r∑

k=1

bk , r = 1, . . . , n− 1

n∑
k=1

ak =

n∑
k=1

bk

,

and so a majorizes b.

(d) Let X = θU + (1− θ) V. Then, we have the following chain of equalities and
inequalities:

h(θU + (1− θ) V) =

n∑
k=1

f(λk(θU + (1− θ) V)) ,

≤
n∑

k=1

f(θλk(U) + (1− θ)λk(V)) , (11)

≤ θ
n∑

k=1

f(λk(U)) + (1− θ)
n∑

k=1

f(λk(V)) , (12)

= θh(U) + (1− θ)h(V) . (13)



Here, (11) follows from the fact that
λ1(θU + (1− θ) V)

...

λn(θU + (1− θ) V)

 is majorized by θ


λ1(U)

...

λn(U)

+ (1− θ)


λ1(V)

...

λn(V)

 ,
as proved in part (c), along with the results from part (a). Also, (12) follows from the
fact that f(x) is convex. Thus, from (13), we have

h(θU + (1− θ) V) ≤ θh(U) + (1− θ)h(V) ,

and so h(X) is convex.


