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1. The first thing to note is that maximizing the minimum SINR is equivalent to minimizing
the maximum of the reciprocal of the SINR. Then, from the description of the optimization
problem and constraints mentioned, the SINR maximization problem is as follows:

minimize max
i=1,...,n

∑
k 6=i

Gi,kpk +Ni

Gi,ipi

subject to 0 ≤ pi ≤ Pmax
i∑

k∈Kl

pk ≤ P gp
l , l = 1, . . . ,m

n∑
k=1

Gi,kpk ≤ P rc
i , i = 1, . . . , n

.

To simplify this into the desired generalized linear-fractional program form, let us first

define p ,
[
p1 · · · pn

]T
to be the optimization variable. Clearly we have p ∈ Rn. For

the objective, let us define the following quantities for i = 1, . . . , n.

[ci]k ,

{
Gi,k , k 6= i

0 , k = i
,

di , Ni ,

[ei]k ,

{
0 , k 6= i

Gi,i , k = i
,

fi , 0 .

Here, ci ∈ Rn, di ∈ R, ei ∈ Rn, and fi ∈ R. For the constraints, let us first define the
following vectors.

pmax ,
[
Pmax

1 · · · Pmax
n

]T
,

pgp ,
[
P gp

1 · · · P gp
m

]T
,

prc ,
[
P rc

1 · · · P rc
n

]T
.

Here, Pmax ∈ Rn, Pgp ∈ Rm, and Prc ∈ Rn. To address the group transmitter power
constraints, let us define the matrix K ∈ Rm×n as follows:

[K]l,k =

{
1 , k ∈ Kl
0 , k 6∈ Kl

, l = 1, . . . ,m , k = 1, . . . , n .



Then, we can express the SINR maximization problem in the following form.

minimize max
i=1,...,n

cTi x + di

eTi x + fi

subject to


−In
In

K

G

p �


0n×1

pmax

pgp

prc


.

Note that this is a generalized linear-fractional program.

2. (a) Here, we have

minimize max
i=1,...,K

{
(1/2)xTPix + qTx + r

}
subject to Ax � b

.

Note that the objective is the pointwise maximum of a set of convex functions and as
such is convex as well. Starting with an epigraph form of the problem, we can express
the above problem as

minimize t

subject to (1/2)xTPix + qTx + r ≤ t , i = 1, . . . ,K

Ax � b

.

which is a QCQP in the joint variable (x, t).

(b) Note that we can express the problem in the form

minimize sup
P∈E

{
(1/2)xT (P−P0)x + (1/2)xTP0x + qTx + r

}
subject to Ax � b

,

which is equivalent to

minimize (1/2)xTP0x + qTx + r + (1/2) sup
P∈E

{
xT (P−P0)x

}
subject to Ax � b

.

Defining ∆P , P−P0, we have P ∈ E if and only if −γI � ∆P � γI. Thus, the
problem is equivalent to the following:

minimize (1/2)xTP0x + qTx + r + (1/2) sup
−γI�∆P�γI

{
xT (∆P)x

}
subject to Ax � b

.

For given x, it is clear that we have

sup
−γI�∆P�γI

{
xT (∆P)x

}
= γxTx .

Hence, the robust QP can be expressed as

minimize (1/2)xT (P0 + γI)x + qTx + r

subject to Ax � b
.

which is itself a QP.



(c) Note that we can express the problem in the form

minimize (1/2)xTP0x + (1/2)

(
sup
||u||2≤1

{
K∑
i=1

ui
(
xTPix

)})
+ qTx + r

subject to Ax � b

.

But recall from our knowledge of dual norms that

||x||� = sup
||y||≤1

{Re [〈x,y〉]} .

For the standard inner product and the `2-norm, we have

||x||2 = sup
||y||≤1

{
yTx

}
.

Thus, we have

sup
||u||2≤1

{
K∑
i=1

ui
(
xTPix

)}
=

∣∣∣∣∣∣∣∣
∣∣∣∣∣∣∣∣


xTP1x

...

xTPKx


∣∣∣∣∣∣∣∣
∣∣∣∣∣∣∣∣
2

=

√√√√ K∑
k=1

(xTPkx)2 .

Hence, the robust QP has the following form:

minimize (1/2)xTP0x + (1/2)

√√√√ K∑
k=1

(xTPkx)2 + qTx + r

subject to Ax � b

.

Note that the objective is a convex function of x for the following reasons. First, each
of the functions xTPix is convex since Pi � 0. Then, note that the second term of the
objective is a composition h(g1(x) , . . . , gK(x)) of h(y) = ||y||2 with gi(x) = xTPix. As
the functions gi are convex and nonnegative, and the function h is convex and
nondecreasing in its arguments for y ∈ RK+ , the composition is convex. Thus, the
second term of the objective and hence the objective function itself are convex.
The resulting problem can be expressed as

minimize (1/2)xTP0x + ||y||2 + qTx + r

subject to (1/2)xTPix ≤ yi , i = 1, . . . ,K

Ax � b

.

This can be further simplified to be expressed as an SOCP. To show this, first note
that by using an epigraph form of the problem, we can express it as

minimize u+ t+ qTx + r

subject to (1/2)xTP0x ≤ u , i = 1, . . . ,K

(1/2)xTPix ≤ yi , i = 1, . . . ,K

||y||2 ≤ t
Ax � b

.



In turn, this can be expressed as follows:

minimize u+ t+ qTx + r

subject to

∣∣∣∣∣∣∣∣12P1/2
0 x

∣∣∣∣∣∣∣∣2
2

≤ u

2∣∣∣∣∣∣∣∣12P1/2
i x

∣∣∣∣∣∣∣∣2
2

≤ yi
2
, i = 1, . . . ,K

||y||2 ≤ t
Ax � b

,

which is possible since Pi � 0 for all i. Now, using the hint, note that we have∣∣∣∣∣∣∣∣12P1/2
0 x

∣∣∣∣∣∣∣∣2
2

≤ u

2
⇐⇒

∣∣∣∣∣
∣∣∣∣∣
[

P
1/2
0 x

u− 1
2

]∣∣∣∣∣
∣∣∣∣∣
2

≤ u+
1

2
.

Similarly, we have ∣∣∣∣∣∣∣∣12P1/2
i x

∣∣∣∣∣∣∣∣2
2

≤ yi
2
⇐⇒

∣∣∣∣∣
∣∣∣∣∣
[

P
1/2
i x

yi − 1
2

]∣∣∣∣∣
∣∣∣∣∣
2

≤ yi +
1

2
.

Therefore, the robust QP can be expressed as follows:

minimize u+ t+ qTx + r

subject to

∣∣∣∣∣
∣∣∣∣∣
[

P
1/2
0 x

u− 1
2

]∣∣∣∣∣
∣∣∣∣∣
2

≤ u+
1

2∣∣∣∣∣
∣∣∣∣∣
[

P
1/2
i x

yi − 1
2

]∣∣∣∣∣
∣∣∣∣∣
2

≤ yi +
1

2
, i = 1, . . . ,K

||y||2 ≤ t
Ax � b

,

which (once r is appropriately removed) is an SOCP in the joint variable
(t, u,x,y) ∈ R× R× Rn × RK .

3. (a) Let A ∈ Sk and R ∈ Rk×k with R nonsingular. Note that A � 0 if and only if
xTAx ≥ 0 for all x ∈ Rk. Hence, with x = Ry, we have yTRTARy ≥ 0 for all y ∈ Rk,
which means that RTAR � 0. Thus, A � 0 implies RTAR � 0. Similarly, if
RTAR � 0, then yTRTARy ≥ 0 for all y ∈ Rk. With y = R−1x, this yields
xTAx ≥ 0 for all x ∈ Rk. As such, RTAR � 0 implies A � 0. Combining both
results, it follows that A � 0 if and only if RTAR � 0. Setting A as

A , x1F1 + · · ·+ xnFn ,

yields the equivalence of the two SDPs.

(b) A diagonal matrix is negative semidefinite if and only if its diagonal elements are
nonpositive. As such, the constraint of the equivalent SDP becomes the following in
this case.

x1

[
F̃1

]
i,i

+ · · ·+ xn

[
F̃n

]
i,i

+
[
G̃
]
i,i
≤ 0 , i = 1, . . . , k .



Thus, if we define the matrix A ∈ Rk×n and vector b ∈ Rk as follows:

[A]i,j ,
[
F̃j

]
i,i
, i = 1, . . . , k , j = 1, . . . , n ,

[b]i , −
[
G̃
]
i,i
, i = 1 . . . , k ,

then the equivalent SDP can be expressed in the following form.

minimize cTx

subject to Ax � b
.

Note that this is an LP.

(c) If we define the matrix A ∈ R(k−1)×n and α ∈ Rn as

A ,
[
a1 · · · an

]
, α ,

[
α1 · · · αn

]T
,

then the SDP is equivalent to the following one.

minimize cTx

subject to

[ (
αTx + β

)
I (Ax + b)

(Ax + b)T
(
αTx + β

) ] � 0
.

The LMI in this SDP can be equivalently expressed as[ (
−αTx− β

)
I − (Ax + b)

− (Ax + b)T
(
−αTx− β

) ] � 0

Using what is known about block matrices and Schur complements, the above
condition is true if and only if(

−αTx− β
)
I � 0 ,

(
−αTx− β

)
− (Ax + b)T

(
−αTx− β

)−1
I (Ax + b) ≥ 0 .

Equivalently, this condition is true if and only if(
−αTx− β

)
≥ 0 ,

(
−αTx− β

)2 ≥ ||Ax + b||22 .

As the second condition above implies the first, the LMI from above is equivalent to
the following: (

−αTx− β
)2 ≥ ||Ax + b||22 ⇐⇒ ||Ax + b||2 ≤ −α

Tx− β .

But this condition is an SOC constraint. Thus, the SDP from above can be expressed
as

minimize cTx

subject to ||Ax + b||2 ≤ −α
Tx− β

,

which is an SOCP with a single SOC constraint.



4. We derive a dual of the problem

minimize −
m∑
i=1

log yi

subject to y = b−Ax

,

where A ∈ Rm×n has ai is its i-th row. The Lagrangian is

L(x,y,ν) = −
m∑
i=1

log yi + νT (y − b + Ax) ,

and the dual function is

g(ν) = inf
x,y

{
−

m∑
i=1

log yi + νT (y − b + Ax)

}
= inf

x,y

{(
ATν

)T
x−

m∑
i=1

log yi + νTy − νTb

}
.

The term
(
ATν

)T
x is unbounded below as a function of x unless ATν = 0. In addition,

the terms in y are unbounded below if ν 6� 0 and achieve their minimum for yi = 1
νi

otherwise. Thus, the dual function is given by

g(ν) =


m∑
i=1

log νi +m− bTν , ATν = 0 , ν � 0

−∞ , otherwise

.

Hence, the dual problem is given by

maximize

m∑
i=1

log νi − bTν +m

subject to ATν = 0

,

with domain {ν : ν � 0}.

*5. The capacity is the optimal value of the problem

maximize f0(x) ,
m∑
i=1

n∑
j=1

xjpi,j log
pi,j∑n

k=1 xkpi,k

subject to x � 0 , 1Tx = 1

,

with variable x. It is possible to argue directly that the objective f0 (which is the mutual
information between X and Y ) is concave in x. This can be done in several ways, including
starting from the convexity of the Kullback-Leibler divergence.
Another related approach is to follow the hint given, and introduce y = Px as another



variable. We can express the mutual information in terms of x and y as

I(X;Y ) =
∑
i

∑
j

xjpi,j log2

pi,j∑
k

xkpi,k︸ ︷︷ ︸
yi

,

=
∑
i

∑
j

xjpi,j log2 pi,j −
∑
i

∑
j

xjpi,j log2 yi ,

= −
∑
j

xj

(
−
∑
i

pi,j log2 pi,j

)
︸ ︷︷ ︸

cj

−
∑
i

∑
j

xjpi,j


︸ ︷︷ ︸

yi

log2 yi ,

= −cTx−
∑
i

yi log2 yi .

Therefore, the channel capacity problem can be expressed as

maximize I(X;Y ) = −cTx−
∑
i

yi log2 yi

subject to x � 0 , 1Tx = 1

y = Px

,

with variables x and y. The objective is an affine function of x (which is both convex and
concave in x) plus the entropy of y (which is concave in y). Thus, the objective function is
concave in (x,y), the inequality constraints are convex in (x,y), and the equality constraints
are affine in (x,y). As we are maximizing a concave objective over a convex set, this is a
convex optimization problem. By minimizing the negative of the objective, we obtain a
problem in standard form. Specifically, the channel capacity problem can be expressed as

minimize cTx +
∑
i

yi log2 yi

subject to x � 0 , 1Tx = 1

y = Px

,

which is a convex optimization problem in standard form.


