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Homework Set #6 - Solutions

1. (a) The feasible set is the interval [2,4]. The (unique) optimal point or solution is z* = 2,
and the optimal value is p* = 5.
(b) Here, we have fo(z) = 22 + 1 and fi(z) = (z — 2) (x — 4) = 22 — 62 + 8. Thus, the
Lagrangian L(z,\) is given by

L(z,\) = fo(z) + Mfi(xz) = A+ 1) 22 =6 z + (8A + 1) .

A plot of the objective function, the constraint function, the feasible set, the optimal

point and value, and the Lagrangian L(x, \) for several positive values of A is shown in
Figure 1. From the plot, it is clear that minimum value of L(z, A) over = (i.e., g()\)) is
always less than p*. It increases as A varies from 0 to 2, reaches its maximum at A = 2,

and then decreases again as A increases above 2. We have equality, namely p* = g()\)
for A = 2.

Figure 1: Plot of the objective function fy(z), the constraint function f;(z), the feasible set [2,4],
the optimal point and value (z*,p*) = (2,5), along with Lagrangian L(x, \) for several positive
values of .

For A > 1, the Lagrangian is a convex parabola and reaches its minimum at
Z =3X\/ (14 A). On the other hand, for A < —1, the Lagrangian is a concave parabola
and as such is unbounded below. Thus, the dual function g(\) is given by
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g =9 A+l
—00, A< -1

+8A+1, A>1



A plot of the dual function g(\) is shown in Figure 2.
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Figure 2: Plot of the dual function g(\) versus A.

We can verify that the dual function is concave, that its value is equal to p* = 5 for
A =2, and less than p* for other values of A. Specifically, by taking the derivative of
g(A) with respect to A and setting the result to zero leads to the condition

(A—2)(A+4) =0,

which for A > —1 can only be satisfied for A = 2. For A = 2, we have ¢g(2) =5 = p*
indeed.

(c) The Lagrange dual problem is
2

A+1
subject to A >0

maximize — +8A+1

A second derivative test on the objective g(A) yields

18
J'"N)=———5<0,VA>-1.
(A+1)

Thus, the objective is a concave function of A over the domain of the problem and so
the dual problem is indeed a concave maximization problem. Setting the derivative of
the objective with respect to A equal to zero yields the condition

(A—2)(A+4)=0,

which for A > 0 can only be satisfied for A = 2. We have ¢g(2) = d* = 5 here. Hence,
the dual optimal solution is A* = 2 and the dual optimal value is d* = 5. As p* =5, we
can verify that strong duality indeed holds for this example (as it must, since Slater’s
constraint qualification is satisfied).



(d) The perturbed problem is infeasible for v < —1, since the infimum of f;(z) about all
x € R is equal to —1. For u > —1, the feasible set is the interval

3= Vu+1,3+Vu+1],

given by the two roots of 22 — 6x + 8 = u. For —1 < u < 8, the optimum solution is
x*(u) = 3 — +/1 + u. On the other hand, for u > 8, the optimum is the unconstrained
minimum of fy, i.e., z*(u) = 0. In summary, we have the following.

undefined, wu < -1 0, u < —1
z¥(u)=¢ 3—+Vu+1l, -1<u<8 =p(u)=q¢ ll+u—6vVu+1, —1<u<8
0, u > 8 1, u > 8

A plot of the optimal value function p*(u) and its epigraph is shown in Figure 3. In
addition, a supporting hyperplane (or more appropriately, a line in this case) at u =0
is shown.
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Figure 3: Plot of the optimal value p*(u) as a function of the perturbation w. Included with
this is a plot of the epigraph of the optimal value, along with a supporting hyperplane at u = 0

(corresponding to the nominal optimal value).

From our expression for p*(u) above, it can be seen that it is a differentiable function
of u at u = 0. Note that we have

dp* 3
) Cfor —1<u<8.

du Vu+1

Thus, we have

2. (a) Consider the objective function of the LP, namely x’y. Note that we have the

following.
n n
k=1 k=1



where i for k =1,...,n is a permutation of the index set {1,...,n} corresponding to
the elements of x arranged in descending order. In other words, we have x;, = z for
all k. Under the constraints that 0 <y, < 1and > ,_; yx =7, it is clear that we have

XTy = Zx[k}yik + Z Tk Yiy, < Zm[k] = f(X) .
k=1 k=1

k=r+1

In other words, the upper bound on x”'y subject to the constraints on y is obtained by
extracting the r largest components of x and assigning the maximum possible weight
of one to each of these components. But this bound can be achieved by setting

Yi, = - =y, =land y;, ., = --=y;, =0. Hence, f(x) is equal to the optimal value
of the LP

maximize xTy
subject to 0 <y <1 .,
lTy =r
with y € R™ as the variable. This can be more compactly written as

f(x):sup{xTy:ijjl, 1Ty:r}.

First change the objective from maximization to minimization as follows:

minimize —xTy
subject to 0 <y <1 .
lTy =r

Let us introduce a Lagrange multiplier A for the lower bound on y (i.e., y *= 0), u for
the upper bound on y (i.e., y < 1), and ¢ for the equality constraint (namely 17y = r).
This yields the Lagrangian

Ly, ut) = —xly—ATy+ul (y—1)+t (lTy - 7‘) ,
= —rt—1Tu+(—x—A+u+t1)y.
Minimizing over y yields the dual function
—rt—1Tu, —x—A4+u+t1=0
—00, otherwise

g(Au,t) = {

The dual problem is to maximize g subject to A = 0 and u > 0. This yields the
problem

maximize —rt—17u
subject to A=tl4+u—x .
A0, u>0

By changing the objective to minimization (by minimizing the negative of the objective
above) and eliminating the slack variable A in the equality constraint, we obtain the
problem
minimize rt+ 17u
subject to t14+u>x ,
u>=0

as desired.



(¢) The constraint that no more than half of the total power is in any mg lamps is
equivalent to the condition

mo 1 m 1

<= =-17p.
P OITEE U
k=1 k=1

In other words, if n — m and r = mg, then the constraint is equivalent to

fp) <a,

where o £ %1Tp. But from the results of part (b), we know that this condition is true
if and only if there exist s € R and q € R™ such that

m05+1Tq§a, sl+q=p, q=0.
Thus, with this constraint in effect, the patch illumination problem becomes
minimize ¢
subject to afp < Igest, k=1,...,n

=3

St‘i’agpa k‘:l,...,n

_ a7
t—a,p ) ’
ijjpmaxl
L 7
a=-1
D) p

mos+17q<a, s1+q>=p, q=0

with variables t € R, p € R™, a € R, s € R, and q € R™. Eliminating the trivial
equality constraint oo = %lTp, we obtain

minimize ¢
subject to agp <lgest, k=1,...,n

=4

T
t—azp <t+4a,p, k=1,...,n

2

0 =P = Pmaxl
T L7
mes+1°q=<51'p, sl+qzp, qz0
with variables t € R, p € R™, s € R, and q € R™, as desired.
. Introducing A for the inequality constraint x > 0, v for the scalar equality constraint
17x =1, and z for the vector equality constraint Px =y, the Lagrangian becomes
m
L(x,y,\v,z) = c'x+ Zyl logy; — A'x+v (1Tx -1)+ z (Px—vy),
i=1

m
— (c—)\+y1+PTz)Tx+Zyilogy¢—zTy—z/.
1=1

The minimum over x is bounded below if and only if

c—A+v1i+Plz=0.



To minimize over y, we set the derivative with respect to y; equal to zero, which gives
L+logy — 2z =0y =e5 1,

Thus, the dual function is

m m

S s 1) - S o A1+ PTa—0
g()‘v I/,Z) = i=1 =1 ’

—00 otherwise

m
—Zezi_l—y, A=Plz4+vl+c
=1

—0 otherwise

Hence, the dual problem is
m
imize —) %~
maximize — e —v
=1

subject to PTz+1v1+c>=0

This can be simplified by introducing a new variable w = z 4 v1 and exploiting the fact
that 1 = PT1. Specifically, the dual problem becomes

m
maximize — E eWimv=l _
i=1

subject to PTw = —c

Finally, we can maximize the objective function with respect to v by setting the derivative

equal to zero. This yields
m
v* =log <Z ewi_1> .
i=1

From this, the objective function becomes

m m m
e—V* (_ Zewi—1> =1 log <Z ewi—l) = —log (Z euh‘) )
i=1 =1 =1

As such, the dual problem can be simplified to

m
maximize —log <Z ew">

i=1
subject to PTw = —c

which can be written as
m
minimize log <Z ewi>
i=1 ’
subject to —PTw < ¢
with variable w € R™. Note that this is a GP in convex form with linear inequality
constraints (i.e., monomial inequality constraints in the associated standard form GP).



4.

(a) Introducing A for the inequality constraint x = 0, and v for the equality constraint

17x = 1, it follows that the KKT conditions are as follows.

— Primal feasibility:
x* =0, 1Tx*=1.

— Dual feasibility:
A*-0.

— Complementary slackness:

A (=25) =0, k=1,...,n.

Stationarity:
Vix*) = A +v1=0.

Here, fo(x) = —log(a’x) — log(b”x), and so we have

of 1 1 1 1

o ap— by = - a- b,
Oz}, alx * " pTx * v fo(x) alx" blx

Thus, the stationarity condition becomes

1 1

A =01 — a—
aTx* bTX*

Combining the results so far, we have the following simplifed KKT conditions.

1 1
* T *x __ *
X >0, 1'x =1, 7aTx*+7bTx*ij 1,

1 1
kT T

(1)

xy [ v*

e s bk>:0,k:1,...,n.
We now show that x* = (1/2,0,...,0,1/2) and v* = 2 satisfy all of the conditions in
(1) and are hence primal and dual optimal, respectively.

The feasibility conditions x* = 0, 17x* = 1 obviously hold, and the complementary
slackness conditions are trivially satisfied for kK = 2,...,n — 2. Thus, from (1), it
remains to verify the inequalities

ag b -
T b =V k=1,...,n, (2)

and the complementary slackness conditions

1 1
x) (1/* ~ Tk bTx*bk) =0, k=1,n. (3)

For x* = (1/2,0,...,0,1/2) and v* = 2, the inequality (2) holds with equality for k =1
and k = n, since we have

al bl 2&1 2/@1 2a1 Qan
Tor T Dl - + =2
alx  blx* ay+a, 1/a1+1/a, a1+a, ap+ar
for k=1 and
an b, _ 2a,, n 2/ay, _ 2a,, n 2a1 _9.

aTx*+bTx* a+a, 1/ay+1/a, a14a, an+a;



for k = n. Therefore also (3) is satisfied for k£ = 1,n as desired. The remaining
inequalities in (2) reduce to

ag b 2a; 2/ak B 2ak + alan/ak

alx* + bTx* a1 +a, 1/ai+1/a, a1+ an

<2, k=2,...,n—1,

which is equivalent to

U@/ o @)
air +an

To show that (4) is valid, note that the function g(t) £ tt?fa"n/ Lis convex for t € Ry 4.

Since the inequality in (4) holds with equality for k = 1 and k = n, it follows that

t+ara,/t
ar +an

Hence, x* = (1/2,0,...,0,1/2) and v* satisfy all of the KKT conditions of (1) and are
thus primal and dual optimal, respectively.

<1,Vtelan, a1] .

Express A in terms of its eigenvalue decomposition as A = QAQ’, and define
ap = A\, b, 2 1/, and , = [QTu]i. Note that we clearly have x; > 0 for all k.
Also, as ||u]|, = 1, we have

17 =3 [Q"u]} = [|Q"u[; = v"QQ u = u"u=1.

k=1

Thus, the choice of zp = [QTu]i is indeed feasible. Continuing further, note that

alx = Z Ak [QTu]i —ulAu,
k=1

and that

n

b'x = Z (/i) [QTu]z =u’A .
k=1
Hence, from the result proven in part (a), we have

—log(u’Au) —log(u" A7 u) > —log(A\1/2 + A\ /2) —log(1/ (2M1) + 1/ (2\)) -

After some algebraic manipulation, this becomes

_ A An 1 1 1 _ -
(uAu) (u'A ™M) < (21 + 2) <2A1 + 2An> =7 (a2 (A L.

This can be further simplified to

2
T TA-1y) < 1 A L A A
(u Au) (u A u) < 1 <)\1/)\n+2+)\1> —4< )\nJr N .

Taking square roots of both sides of the above inequality yields

2 (uTAu)l/2 (uTA_lu)l/2 < \/% + \/¥ ,
n 1

for all u with ||u||, = 1, which is Kantorovich’s inequality.



*5. Define the following quantities.
~2y{ 1 di [y ll3
A= b £ :

2y, 1

(o= L.

2
d%n_ |b’m||2

0n><1 f A 0n><1
O1xn O ’ -1/2 |
Also, define z £ (x,t). Then, with this notation, the problem becomes

minimize  ||Ax — b|[3
subject to 2z Cz + 2fTz =0
Introducing v for the equality constraint, we obtain the following for the Lagrangian.
L(z,v) = ||Az— b||§ +v (ZTCZ + 2sz) ,
2’ ATAz — 2b7Az +b'b + 27 (vC)z + 2vf 7,

2" (ATA +vC)z—2(ATb —vf) 2z +||b|2 .
Note that this is bounded below as a function of z if and only if

ATA+vC =0, ATb—vf e R(ATA +1C) .
Therefore, the KKT conditions are as follows.

— Primal feasibility:

2/ Cz+2fTz=0.
— Dual feasibility:

ATA +vC =0, ATb —vf e R(ATA +1C) .
— Stationarity:

(ATA+vC)z=A"b—uf.
(Note that this implies the range condition for dual feasibility.)

Method 1: We derive the dual problem. If v is feasible, then the dual function is given by

g(v) = — (ATb —vf)" (ATA 4+ vC)" (ATb — vf) + ||| 2
So, the dual problem can be expressed as the SDP

maximize —s+ ||b||§
ATA +vC ATb—uf ,
subject to T =0
(ATb — vf) E
which is equivalent to the following SDP
minimize s — ||b||3

ATA+vC ATb—uf
subject to

(ATb — vf)" ]

=0’

S



Solving this in cvx gives v* = 0.5898. Using v* in the stationarity condition, we get
2" = (ATA +°C) " (ATb — v*f) = (1.3269,0.6446, 2.1765) .
Hence, x* = (1.3269, 0.6446).

Method 2: Alternatively, we can solve the KKT conditions directly. To simplify the
equations, we make a change of variables

w=Q"L"z,

where L is the lower triangular matrix obtained from the Cholesky decomposition of AT A,
ie., ATA = LL”, and Q is the matrix of eigenvectors of L™'CL™7 i.e.,
L7 !CL™T = QAQ". This transforms the KKT conditions to

wiAw+2gTw =0, I+vA >0, I+vA)w=h—vg,

where we have
g=Q'L™'f, h=Q'L'ATp.
From the last equation of the KKT conditions, we find

hi — vy
= -2 k=1, ... 1,.
wk 1+VAI€7 ) 7n+ b

Substituting this into the first equation of the KK'T conditions, we get the following
nonlinear equation in v.

n+1 2

M. (he — 2 hi —

T(V):Z k (P Vgg) N ar (hi, — vgi) _ 0.
=\ (T+wvi) L+ vAp

In our example, the eigenvalues are
A1 =0.5104, Ay =0.2735, A3 =0.

Plots of the function r(v) for this example are shown in Figures 4(a) and (b). In Figure
4(a), we have a zoomed out plot showing all three solutions to r(v) = 0, whereas in Figure
4(b), we have a zoomed out plot showing the correct solution.

The correct solution of r(v) = 0 is the one that satisfies 1 + v \y >0 for k=1,...,n+1,
i.e., the solution to the right of the two singularities in this case. This solution can be
determined by using Newton’s method by repeating the iteration

a few times, starting at a value close to the desired solution. This gives v* = 0.5896, which is
very close to the value obtained from cvx. From v*, we determine x* as in the first method.

A contour plot of the objective fy for the given problem data, along with the sensor position
vectors y; and optimal source position vector x* is shown in Figure 5.
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Figure 4: Plots of the nonlinear function r(v) used to determine the optimal v which satisfies the
KKT conditions: (a) zoomed out plot showing all three solutions to r(v) = 0 and (b) zoomed in
plot showing a close-up of the correct solution to r(v) = 0.
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Figure 5: Contour plot of the objective fy(x1,22) for the given problem data, with the sensor
position vectors y and optimal source position vector x* indicated by circles.



