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Homework Set #6 - Solutions
1. (a) The feasible set is the interval [2, 4]. The (unique) optimal point or solution is x? = 2,

and the optimal value is p? = 5.

(b) Here, we have f0(x) = x2 + 1 and f1(x) = (x− 2) (x− 4) = x2 − 6x+ 8. Thus, the
Lagrangian L(x, λ) is given by

L(x, λ) = f0(x) + λf1(x) = (λ+ 1)x2 − 6λx+ (8λ+ 1) .

A plot of the objective function, the constraint function, the feasible set, the optimal
point and value, and the Lagrangian L(x, λ) for several positive values of λ is shown in
Figure 1. From the plot, it is clear that minimum value of L(x, λ) over x (i.e., g(λ)) is
always less than p?. It increases as λ varies from 0 to 2, reaches its maximum at λ = 2,
and then decreases again as λ increases above 2. We have equality, namely p? = g(λ)
for λ = 2.
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Figure 1: Plot of the objective function f0(x), the constraint function f1(x), the feasible set [2, 4],
the optimal point and value (x?, p?) = (2, 5), along with Lagrangian L(x, λ) for several positive
values of λ.

For λ > 1, the Lagrangian is a convex parabola and reaches its minimum at
x̃ = 3λ/ (1 + λ). On the other hand, for λ ≤ −1, the Lagrangian is a concave parabola
and as such is unbounded below. Thus, the dual function g(λ) is given by

g(λ) =

 −
9λ2

λ+ 1
+ 8λ+ 1 , λ > 1

−∞ , λ ≤ −1



A plot of the dual function g(λ) is shown in Figure 2.
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Figure 2: Plot of the dual function g(λ) versus λ.

We can verify that the dual function is concave, that its value is equal to p? = 5 for
λ = 2, and less than p? for other values of λ. Specifically, by taking the derivative of
g(λ) with respect to λ and setting the result to zero leads to the condition

(λ− 2) (λ+ 4) = 0 ,

which for λ > −1 can only be satisfied for λ = 2. For λ = 2, we have g(2) = 5 = p?

indeed.

(c) The Lagrange dual problem is

maximize − 9λ2

λ+ 1
+ 8λ+ 1

subject to λ ≥ 0

.

A second derivative test on the objective g(λ) yields

g′′(λ) = − 18

(λ+ 1)3
< 0 , ∀ λ > −1 .

Thus, the objective is a concave function of λ over the domain of the problem and so
the dual problem is indeed a concave maximization problem. Setting the derivative of
the objective with respect to λ equal to zero yields the condition

(λ− 2) (λ+ 4) = 0 ,

which for λ ≥ 0 can only be satisfied for λ = 2. We have g(2) = d? = 5 here. Hence,
the dual optimal solution is λ? = 2 and the dual optimal value is d? = 5. As p? = 5, we
can verify that strong duality indeed holds for this example (as it must, since Slater’s
constraint qualification is satisfied).



(d) The perturbed problem is infeasible for u < −1, since the infimum of f1(x) about all
x ∈ R is equal to −1. For u ≥ −1, the feasible set is the interval[

3−
√
u+ 1, 3 +

√
u+ 1

]
,

given by the two roots of x2 − 6x+ 8 = u. For −1 ≤ u ≤ 8, the optimum solution is
x?(u) = 3−

√
1 + u. On the other hand, for u > 8, the optimum is the unconstrained

minimum of f0, i.e., x?(u) = 0. In summary, we have the following.

x?(u) =


undefined , u < −1

3−
√
u+ 1 , −1 ≤ u ≤ 8

0 , u > 8

=⇒ p?(u) =


∞ , u < −1

11 + u− 6
√
u+ 1 , −1 ≤ u ≤ 8

1 , u > 8

.

A plot of the optimal value function p?(u) and its epigraph is shown in Figure 3. In
addition, a supporting hyperplane (or more appropriately, a line in this case) at u = 0
is shown.
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Figure 3: Plot of the optimal value p?(u) as a function of the perturbation u. Included with
this is a plot of the epigraph of the optimal value, along with a supporting hyperplane at u = 0
(corresponding to the nominal optimal value).

From our expression for p?(u) above, it can be seen that it is a differentiable function
of u at u = 0. Note that we have

dp?(u)

du
= 1− 3√

u+ 1
, for − 1 ≤ u ≤ 8 .

Thus, we have
dp?(0)

du
= −2 = −λ? .

2. (a) Consider the objective function of the LP, namely xTy. Note that we have the
following.

xTy =

n∑
k=1

xkyk =

n∑
k=1

x[k]yik ,



where ik for k = 1, . . . , n is a permutation of the index set {1, . . . , n} corresponding to
the elements of x arranged in descending order. In other words, we have xik = x[k] for
all k. Under the constraints that 0 ≤ yk ≤ 1 and

∑n
k=1 yk = r, it is clear that we have

xTy =
r∑

k=1

x[k]yik +
n∑

k=r+1

x[k]yik ≤
r∑

k=1

x[k] = f(x) .

In other words, the upper bound on xTy subject to the constraints on y is obtained by
extracting the r largest components of x and assigning the maximum possible weight
of one to each of these components. But this bound can be achieved by setting
yi1 = · · · = yir = 1 and yir+1 = · · · = yin = 0. Hence, f(x) is equal to the optimal value
of the LP

maximize xTy

subject to 0 � y � 1

1Ty = r

,

with y ∈ Rn as the variable. This can be more compactly written as

f(x) = sup
{
xTy : 0 � y � 1 , 1Ty = r

}
.

(b) First change the objective from maximization to minimization as follows:

minimize −xTy

subject to 0 � y � 1

1Ty = r

.

Let us introduce a Lagrange multiplier λ for the lower bound on y (i.e., y � 0), u for
the upper bound on y (i.e., y � 1), and t for the equality constraint (namely 1Ty = r).
This yields the Lagrangian

L(y,λ,u, t) = −xTy − λTy + uT (y − 1) + t
(
1Ty − r

)
,

= −rt− 1Tu + (−x− λ + u + t1)T y .

Minimizing over y yields the dual function

g(λ,u, t) =

{
−rt− 1Tu , −x− λ + u + t1 = 0

−∞ , otherwise
.

The dual problem is to maximize g subject to λ � 0 and u � 0. This yields the
problem

maximize −rt− 1Tu

subject to λ = t1 + u− x

λ � 0 , u � 0

.

By changing the objective to minimization (by minimizing the negative of the objective
above) and eliminating the slack variable λ in the equality constraint, we obtain the
problem

minimize rt+ 1Tu

subject to t1 + u � x

u � 0

,

as desired.



(c) The constraint that no more than half of the total power is in any m0 lamps is
equivalent to the condition

m0∑
k=1

p[k] ≤
1

2

m∑
k=1

pk =
1

2
1Tp .

In other words, if n→ m and r = m0, then the constraint is equivalent to

f(p) ≤ α ,

where α , 1
21Tp. But from the results of part (b), we know that this condition is true

if and only if there exist s ∈ R and q ∈ Rm such that

m0s+ 1Tq ≤ α , s1 + q � p , q � 0 .

Thus, with this constraint in effect, the patch illumination problem becomes

minimize t

subject to aTk p ≤ Idest , k = 1, . . . , n∣∣∣∣∣
∣∣∣∣∣
[

2
√
Ides

t− aTk p

]∣∣∣∣∣
∣∣∣∣∣
2

≤ t+ aTk p , k = 1, . . . , n

0 � p � pmax1

α =
1

2
1Tp

m0s+ 1Tq ≤ α , s1 + q � p , q � 0

,

with variables t ∈ R, p ∈ Rm, α ∈ R, s ∈ R, and q ∈ Rm. Eliminating the trivial
equality constraint α = 1

21Tp, we obtain

minimize t

subject to aTk p ≤ Idest , k = 1, . . . , n∣∣∣∣∣
∣∣∣∣∣
[

2
√
Ides

t− aTk p

]∣∣∣∣∣
∣∣∣∣∣
2

≤ t+ aTk p , k = 1, . . . , n

0 � p � pmax1

m0s+ 1Tq ≤ 1

2
1Tp , s1 + q � p , q � 0

,

with variables t ∈ R, p ∈ Rm, s ∈ R, and q ∈ Rm, as desired.

3. Introducing λ for the inequality constraint x � 0, ν for the scalar equality constraint
1Tx = 1, and z for the vector equality constraint Px = y, the Lagrangian becomes

L(x,y,λ, ν, z) = cTx +
m∑
i=1

yi log yi − λTx + ν
(
1Tx− 1

)
+ zT (Px− y) ,

=
(
c− λ + ν1 + PT z

)T
x +

m∑
i=1

yi log yi − zTy − ν .

The minimum over x is bounded below if and only if

c− λ + ν1 + PT z = 0 .



To minimize over y, we set the derivative with respect to yi equal to zero, which gives

1 + log y?i − zi = 0⇐⇒ y?i = ezi−1 .

Thus, the dual function is

g(λ, ν, z) =


m∑
i=1

ezi−1 (zi − 1)−
m∑
i=1

zie
zi−1 − ν , c− λ + ν1 + PT z = 0

−∞ otherwise

,

=

 −
m∑
i=1

ezi−1 − ν , λ = PT z + ν1 + c

−∞ otherwise

.

Hence, the dual problem is

maximize −
m∑
i=1

ezi−1 − ν

subject to PT z + ν1 + c � 0

.

This can be simplified by introducing a new variable w = z + ν1 and exploiting the fact
that 1 = PT1. Specifically, the dual problem becomes

maximize −
m∑
i=1

ewi−ν−1 − ν

subject to PTw � −c

.

Finally, we can maximize the objective function with respect to ν by setting the derivative
equal to zero. This yields

ν? = log

(
m∑
i=1

ewi−1

)
.

From this, the objective function becomes

e−ν
?

(
−

m∑
i=1

ewi−1

)
− ν? = −1− log

(
m∑
i=1

ewi−1

)
= − log

(
m∑
i=1

ewi

)
.

As such, the dual problem can be simplified to

maximize − log

(
m∑
i=1

ewi

)
subject to PTw � −c

,

which can be written as

minimize log

(
m∑
i=1

ewi

)
subject to −PTw � c

,

with variable w ∈ Rm. Note that this is a GP in convex form with linear inequality
constraints (i.e., monomial inequality constraints in the associated standard form GP).



4. (a) Introducing λ for the inequality constraint x � 0, and ν for the equality constraint
1Tx = 1, it follows that the KKT conditions are as follows.

– Primal feasibility:
x? � 0 , 1Tx? = 1 .

– Dual feasibility:
λ? � 0 .

– Complementary slackness:

λ?k (−x?k) = 0 , k = 1, . . . , n .

– Stationarity:
∇f0(x?)− λ? + ν?1 = 0 .

Here, f0(x) = − log
(
aTx

)
− log

(
bTx

)
, and so we have

∂f0
∂xk

= − 1

aTx
ak −

1

bTx
bk ⇐⇒ ∇f0(x) = − 1

aTx
a− 1

bTx
b .

Thus, the stationarity condition becomes

λ? = ν?1− 1

aTx?
a− 1

bTx?
b .

Combining the results so far, we have the following simplifed KKT conditions.

x? � 0 , 1Tx? = 1 ,
1

aTx?
+

1

bTx?
b � ν?1 ,

x?k

(
ν? − 1

aTx?
ak −

1

bTx?
bk

)
= 0 , k = 1, . . . , n .

(1)

We now show that x? = (1/2, 0, . . . , 0, 1/2) and ν? = 2 satisfy all of the conditions in
(1) and are hence primal and dual optimal, respectively.
The feasibility conditions x? � 0, 1Tx? = 1 obviously hold, and the complementary
slackness conditions are trivially satisfied for k = 2, . . . , n− 2. Thus, from (1), it
remains to verify the inequalities

ak
aTx?

+
bk

bTx?
≤ ν? , k = 1, . . . , n , (2)

and the complementary slackness conditions

x?k

(
ν? − 1

aTx?
ak −

1

bTx?
bk

)
= 0 , k = 1, n . (3)

For x? = (1/2, 0, . . . , 0, 1/2) and ν? = 2, the inequality (2) holds with equality for k = 1
and k = n, since we have

a1
aTx?

+
b1

bTx?
=

2a1
a1 + an

+
2/a1

1/a1 + 1/an
=

2a1
a1 + an

+
2an

an + a1
= 2 ,

for k = 1 and

an
aTx?

+
bn

bTx?
=

2an
a1 + an

+
2/an

1/a1 + 1/an
=

2an
a1 + an

+
2a1

an + a1
= 2 ,



for k = n. Therefore also (3) is satisfied for k = 1, n as desired. The remaining
inequalities in (2) reduce to

ak
aTx?

+
bk

bTx?
=

2ak
a1 + an

+
2/ak

1/a1 + 1/an
= 2

ak + a1an/ak
a1 + an

≤ 2 , k = 2, . . . , n− 1 ,

which is equivalent to

ak + a1an/ak
a1 + an

≤ 1 , k = 2, . . . , n− 1 . (4)

To show that (4) is valid, note that the function g(t) , t+a1an/t
a1+an

is convex for t ∈ R++.
Since the inequality in (4) holds with equality for k = 1 and k = n, it follows that

t+ a1an/t

a1 + an
≤ 1 , ∀ t ∈ [an, a1] .

Hence, x? = (1/2, 0, . . . , 0, 1/2) and ν? satisfy all of the KKT conditions of (1) and are
thus primal and dual optimal, respectively.

(b) Express A in terms of its eigenvalue decomposition as A = QΛQT , and define

ak , λk, bk , 1/λk, and xk =
[
QTu

]2
k
. Note that we clearly have xk ≥ 0 for all k.

Also, as ||u||2 = 1, we have

1Tx =
n∑
k=1

[
QTu

]2
k

=
∣∣∣∣QTu

∣∣∣∣2
2

= uTQQTu = uTu = 1 .

Thus, the choice of xk =
[
QTu

]2
k

is indeed feasible. Continuing further, note that

aTx =

n∑
k=1

λk
[
QTu

]2
k

= uTAu ,

and that

bTx =
n∑
k=1

(1/λk)
[
QTu

]2
k

= uTA−1u .

Hence, from the result proven in part (a), we have

− log
(
uTAu

)
− log

(
uTA−1u

)
≥ − log(λ1/2 + λn/2)− log(1/ (2λ1) + 1/ (2λn)) .

After some algebraic manipulation, this becomes(
uTAu

) (
uTA−1u

)
≤
(
λ1
2

+
λn
2

)(
1

2λ1
+

1

2λn

)
=

1

4
(λ1 + λn)

(
λ−11 + λ−1n

)
.

This can be further simplified to

(
uTAu

) (
uTA−1u

)
≤ 1

4

(
λ1/λn + 2 +

λn
λ1

)
=

1

4

(√
λ1
λn

+

√
λn
λ1

)2

.

Taking square roots of both sides of the above inequality yields

2
(
uTAu

)1/2 (
uTA−1u

)1/2 ≤√λ1
λn

+

√
λn
λ1

,

for all u with ||u||2 = 1, which is Kantorovich’s inequality.



*5. Define the following quantities.

A ,


−2yT1 1

...
...

−2yTm 1

 ,b ,


d21 − ||y1||22

...

d2m − ||ym||
2
2

 , C ,

[
In 0n×1

01×n 0

]
, f ,

[
0n×1

−1/2

]
.

Also, define z , (x, t). Then, with this notation, the problem becomes

minimize ||Ax− b||22
subject to zTCz + 2fT z = 0

.

Introducing ν for the equality constraint, we obtain the following for the Lagrangian.

L(z, ν) = ||Az− b||22 + ν
(
zTCz + 2fT z

)
,

= zTATAz− 2bTAz + bTb + zT (νC) z + 2νfT z ,

= zT
(
ATA + νC

)
z− 2

(
ATb− νf

)T
z + ||b||22 .

Note that this is bounded below as a function of z if and only if

ATA + νC � 0 , ATb− νf ∈ R
(
ATA + νC

)
.

Therefore, the KKT conditions are as follows.

– Primal feasibility:
zTCz + 2fT z = 0 .

– Dual feasibility:

ATA + νC � 0 , ATb− νf ∈ R
(
ATA + νC

)
.

– Stationarity: (
ATA + νC

)
z = ATb− νf .

(Note that this implies the range condition for dual feasibility.)

Method 1: We derive the dual problem. If ν is feasible, then the dual function is given by

g(ν) = −
(
ATb− νf

)T (
ATA + νC

)# (
ATb− νf

)
+ ||b||22 .

So, the dual problem can be expressed as the SDP

maximize −s+ ||b||22

subject to

[
ATA + νC ATb− νf(
ATb− νf

)T
s

]
� 0

,

which is equivalent to the following SDP

minimize s− ||b||22

subject to

[
ATA + νC ATb− νf(
ATb− νf

)T
s

]
� 0

,



Solving this in cvx gives ν? = 0.5898. Using ν? in the stationarity condition, we get

z? =
(
ATA + ν?C

)−1 (
ATb− ν?f

)
= (1.3269, 0.6446, 2.1765) .

Hence, x? = (1.3269, 0.6446).

Method 2: Alternatively, we can solve the KKT conditions directly. To simplify the
equations, we make a change of variables

w = QTLT z ,

where L is the lower triangular matrix obtained from the Cholesky decomposition of ATA,
i.e., ATA = LLT , and Q is the matrix of eigenvectors of L−1CL−T , i.e.,
L−1CL−T = QΛQT . This transforms the KKT conditions to

wTΛw + 2gTw = 0 , I + νΛ � 0 , (I + νΛ) w = h− νg ,

where we have
g = QTL−1f , h = QTL−1ATb .

From the last equation of the KKT conditions, we find

wk =
hk − νgk
1 + νλk

, k = 1, . . . , n+ 1, .

Substituting this into the first equation of the KKT conditions, we get the following
nonlinear equation in ν.

r(ν) =
n+1∑
k=1

(
λk (hk − νgk)2

(1 + νλk)
2 +

2gk (hk − νgk)
1 + νλk

)
= 0 .

In our example, the eigenvalues are

λ1 = 0.5104 , λ2 = 0.2735 , λ3 = 0 .

Plots of the function r(ν) for this example are shown in Figures 4(a) and (b). In Figure
4(a), we have a zoomed out plot showing all three solutions to r(ν) = 0, whereas in Figure
4(b), we have a zoomed out plot showing the correct solution.

The correct solution of r(ν) = 0 is the one that satisfies 1 + νλk ≥ 0 for k = 1, . . . , n+ 1,
i.e., the solution to the right of the two singularities in this case. This solution can be
determined by using Newton’s method by repeating the iteration

ν := ν − r(ν)

r′(ν)

a few times, starting at a value close to the desired solution. This gives ν? = 0.5896, which is
very close to the value obtained from cvx. From ν?, we determine x? as in the first method.

A contour plot of the objective f0 for the given problem data, along with the sensor position
vectors yk and optimal source position vector x? is shown in Figure 5.
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Figure 4: Plots of the nonlinear function r(ν) used to determine the optimal ν which satisfies the
KKT conditions: (a) zoomed out plot showing all three solutions to r(ν) = 0 and (b) zoomed in
plot showing a close-up of the correct solution to r(ν) = 0.
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Figure 5: Contour plot of the objective f0(x1, x2) for the given problem data, with the sensor
position vectors yk and optimal source position vector x? indicated by circles.


