EE 150 - Applications of Convex Optimization in Signal Processing and Communications Dr. Andre Tkacenko, JPL Third Term 2011-2012

Homework Set \#6 - Solutions

1. (a) The feasible set is the interval $[2,4]$. The (unique) optimal point or solution is $x^{\star}=2$, and the optimal value is $p^{\star}=5$.
(b) Here, we have $f_{0}(x)=x^{2}+1$ and $f_{1}(x)=(x-2)(x-4)=x^{2}-6 x+8$. Thus, the Lagrangian $L(x, \lambda)$ is given by

$$
L(x, \lambda)=f_{0}(x)+\lambda f_{1}(x)=(\lambda+1) x^{2}-6 \lambda x+(8 \lambda+1) .
$$

A plot of the objective function, the constraint function, the feasible set, the optimal point and value, and the Lagrangian $L(x, \lambda)$ for several positive values of λ is shown in Figure 1. From the plot, it is clear that minimum value of $L(x, \lambda)$ over x (i.e., $g(\lambda)$) is always less than p^{\star}. It increases as λ varies from 0 to 2 , reaches its maximum at $\lambda=2$, and then decreases again as λ increases above 2 . We have equality, namely $p^{\star}=g(\lambda)$ for $\lambda=2$.

Figure 1: Plot of the objective function $f_{0}(x)$, the constraint function $f_{1}(x)$, the feasible set $[2,4]$, the optimal point and value $\left(x^{\star}, p^{\star}\right)=(2,5)$, along with Lagrangian $L(x, \lambda)$ for several positive values of λ.

For $\lambda>1$, the Lagrangian is a convex parabola and reaches its minimum at $\widetilde{x}=3 \lambda /(1+\lambda)$. On the other hand, for $\lambda \leq-1$, the Lagrangian is a concave parabola and as such is unbounded below. Thus, the dual function $g(\lambda)$ is given by

$$
g(\lambda)= \begin{cases}-\frac{9 \lambda^{2}}{\lambda+1}+8 \lambda+1, & \lambda>1 \\ -\infty, & \lambda \leq-1\end{cases}
$$

A plot of the dual function $g(\lambda)$ is shown in Figure 2.

Figure 2: Plot of the dual function $g(\lambda)$ versus λ.
We can verify that the dual function is concave, that its value is equal to $p^{\star}=5$ for $\lambda=2$, and less than p^{\star} for other values of λ. Specifically, by taking the derivative of $g(\lambda)$ with respect to λ and setting the result to zero leads to the condition

$$
(\lambda-2)(\lambda+4)=0
$$

which for $\lambda>-1$ can only be satisfied for $\lambda=2$. For $\lambda=2$, we have $g(2)=5=p^{\star}$ indeed.
(c) The Lagrange dual problem is

$$
\begin{array}{ll}
\text { maximize } & -\frac{9 \lambda^{2}}{\lambda+1}+8 \lambda+1 \\
\text { subject to } & \lambda \geq 0
\end{array}
$$

A second derivative test on the objective $g(\lambda)$ yields

$$
g^{\prime \prime}(\lambda)=-\frac{18}{(\lambda+1)^{3}}<0, \forall \lambda>-1
$$

Thus, the objective is a concave function of λ over the domain of the problem and so the dual problem is indeed a concave maximization problem. Setting the derivative of the objective with respect to λ equal to zero yields the condition

$$
(\lambda-2)(\lambda+4)=0
$$

which for $\lambda \geq 0$ can only be satisfied for $\lambda=2$. We have $g(2)=d^{\star}=5$ here. Hence, the dual optimal solution is $\lambda^{\star}=2$ and the dual optimal value is $d^{\star}=5$. As $p^{\star}=5$, we can verify that strong duality indeed holds for this example (as it must, since Slater's constraint qualification is satisfied).
(d) The perturbed problem is infeasible for $u<-1$, since the infimum of $f_{1}(x)$ about all $x \in \mathbb{R}$ is equal to -1 . For $u \geq-1$, the feasible set is the interval

$$
[3-\sqrt{u+1}, 3+\sqrt{u+1}],
$$

given by the two roots of $x^{2}-6 x+8=u$. For $-1 \leq u \leq 8$, the optimum solution is $x^{\star}(u)=3-\sqrt{1+u}$. On the other hand, for $u>8$, the optimum is the unconstrained minimum of f_{0}, i.e., $x^{\star}(u)=0$. In summary, we have the following.
$x^{\star}(u)=\left\{\begin{array}{ll}\text { undefined, } & u<-1 \\ 3-\sqrt{u+1}, & -1 \leq u \leq 8 \\ 0, & u>8\end{array} \Longrightarrow p^{\star}(u)=\left\{\begin{array}{ll}\infty, & u<-1 \\ 11+u-6 \sqrt{u+1}, & -1 \leq u \leq 8 \\ 1, & u>8\end{array}\right.\right.$.
A plot of the optimal value function $p^{\star}(u)$ and its epigraph is shown in Figure 3. In addition, a supporting hyperplane (or more appropriately, a line in this case) at $u=0$ is shown.

Figure 3: Plot of the optimal value $p^{\star}(u)$ as a function of the perturbation u. Included with this is a plot of the epigraph of the optimal value, along with a supporting hyperplane at $u=0$ (corresponding to the nominal optimal value).

From our expression for $p^{\star}(u)$ above, it can be seen that it is a differentiable function of u at $u=0$. Note that we have

$$
\frac{d p^{\star}(u)}{d u}=1-\frac{3}{\sqrt{u+1}}, \text { for }-1 \leq u \leq 8
$$

Thus, we have

$$
\frac{d p^{\star}(0)}{d u}=-2=-\lambda^{\star} .
$$

2. (a) Consider the objective function of the LP, namely $\mathbf{x}^{T} \mathbf{y}$. Note that we have the following.

$$
\mathbf{x}^{T} \mathbf{y}=\sum_{k=1}^{n} x_{k} y_{k}=\sum_{k=1}^{n} x_{[k]} y_{i_{k}}
$$

where i_{k} for $k=1, \ldots, n$ is a permutation of the index set $\{1, \ldots, n\}$ corresponding to the elements of \mathbf{x} arranged in descending order. In other words, we have $x_{i_{k}}=x_{[k]}$ for all k. Under the constraints that $0 \leq y_{k} \leq 1$ and $\sum_{k=1}^{n} y_{k}=r$, it is clear that we have

$$
\mathbf{x}^{T} \mathbf{y}=\sum_{k=1}^{r} x_{[k]} y_{i_{k}}+\sum_{k=r+1}^{n} x_{[k]} y_{i_{k}} \leq \sum_{k=1}^{r} x_{[k]}=f(\mathbf{x})
$$

In other words, the upper bound on $\mathbf{x}^{T} \mathbf{y}$ subject to the constraints on \mathbf{y} is obtained by extracting the r largest components of \mathbf{x} and assigning the maximum possible weight of one to each of these components. But this bound can be achieved by setting $y_{i_{1}}=\cdots=y_{i_{r}}=1$ and $y_{i_{r+1}}=\cdots=y_{i_{n}}=0$. Hence, $f(\mathbf{x})$ is equal to the optimal value of the LP

$$
\begin{array}{ll}
\operatorname{maximize} & \mathbf{x}^{T} \mathbf{y} \\
\text { subject to } & \mathbf{0} \preceq \mathbf{y} \preceq \mathbf{1}, \\
& \mathbf{1}^{T} \mathbf{y}=r
\end{array}
$$

with $\mathbf{y} \in \mathbb{R}^{n}$ as the variable. This can be more compactly written as

$$
f(\mathbf{x})=\sup \left\{\mathbf{x}^{T} \mathbf{y}: \mathbf{0} \preceq \mathbf{y} \preceq \mathbf{1}, \mathbf{1}^{T} \mathbf{y}=r\right\} .
$$

(b) First change the objective from maximization to minimization as follows:

$$
\begin{array}{ll}
\operatorname{minimize} & -\mathbf{x}^{T} \mathbf{y} \\
\text { subject to } & \mathbf{0} \preceq \mathbf{y} \preceq \mathbf{1} \\
& \mathbf{1}^{T} \mathbf{y}=r
\end{array}
$$

Let us introduce a Lagrange multiplier $\boldsymbol{\lambda}$ for the lower bound on \mathbf{y} (i.e., $\mathbf{y} \succeq \mathbf{0}$), \mathbf{u} for the upper bound on \mathbf{y} (i.e., $\mathbf{y} \preceq \mathbf{1}$), and t for the equality constraint (namely $\mathbf{1}^{T} \mathbf{y}=r$). This yields the Lagrangian

$$
\begin{aligned}
L(\mathbf{y}, \boldsymbol{\lambda}, \mathbf{u}, t) & =-\mathbf{x}^{T} \mathbf{y}-\boldsymbol{\lambda}^{T} \mathbf{y}+\mathbf{u}^{T}(\mathbf{y}-\mathbf{1})+t\left(\mathbf{1}^{T} \mathbf{y}-r\right), \\
& =-r t-\mathbf{1}^{T} \mathbf{u}+(-\mathbf{x}-\boldsymbol{\lambda}+\mathbf{u}+t \mathbf{1})^{T} \mathbf{y}
\end{aligned}
$$

Minimizing over \mathbf{y} yields the dual function

$$
g(\boldsymbol{\lambda}, \mathbf{u}, t)=\left\{\begin{array}{ll}
-r t-\mathbf{1}^{T} \mathbf{u}, & -\mathbf{x}-\boldsymbol{\lambda}+\mathbf{u}+t \mathbf{1}=\mathbf{0} \\
-\infty, & \text { otherwise }
\end{array} .\right.
$$

The dual problem is to maximize g subject to $\boldsymbol{\lambda} \succeq \mathbf{0}$ and $\mathbf{u} \succeq \mathbf{0}$. This yields the problem

$$
\begin{array}{ll}
\operatorname{maximize} & -r t-\mathbf{1}^{T} \mathbf{u} \\
\text { subject to } & \boldsymbol{\lambda}=t \mathbf{1}+\mathbf{u}-\mathbf{x} . \\
& \boldsymbol{\lambda} \succeq \mathbf{0}, \mathbf{u} \succeq \mathbf{0}
\end{array}
$$

By changing the objective to minimization (by minimizing the negative of the objective above) and eliminating the slack variable $\boldsymbol{\lambda}$ in the equality constraint, we obtain the problem

$$
\begin{array}{ll}
\operatorname{minimize} & r t+\mathbf{1}^{T} \mathbf{u} \\
\text { subject to } & t \mathbf{1}+\mathbf{u} \succeq \mathbf{x}, \\
& \mathbf{u} \succeq \mathbf{0}
\end{array}
$$

as desired.
(c) The constraint that no more than half of the total power is in any m_{0} lamps is equivalent to the condition

$$
\sum_{k=1}^{m_{0}} p_{[k]} \leq \frac{1}{2} \sum_{k=1}^{m} p_{k}=\frac{1}{2} \mathbf{1}^{T} \mathbf{p} .
$$

In other words, if $n \rightarrow m$ and $r=m_{0}$, then the constraint is equivalent to

$$
f(\mathbf{p}) \leq \alpha,
$$

where $\alpha \triangleq \frac{1}{2} \mathbf{1}^{T} \mathbf{p}$. But from the results of part (b), we know that this condition is true if and only if there exist $s \in \mathbb{R}$ and $\mathbf{q} \in \mathbb{R}^{m}$ such that

$$
m_{0} s+\mathbf{1}^{T} \mathbf{q} \leq \alpha, s \mathbf{1}+\mathbf{q} \succeq \mathbf{p}, \mathbf{q} \succeq \mathbf{0}
$$

Thus, with this constraint in effect, the patch illumination problem becomes

$$
\begin{array}{ll}
\operatorname{minimize} & t \\
\text { subject to } & \mathbf{a}_{k}^{T} \mathbf{p} \leq I_{\text {des }} t, k=1, \ldots, n \\
& \left\|\left[\begin{array}{c}
2 \sqrt{I_{\text {des }}} \\
t-\mathbf{a}_{k}^{T} \mathbf{p}
\end{array}\right]\right\|_{2} \leq t+\mathbf{a}_{k}^{T} \mathbf{p}, k=1, \ldots, n \\
& \mathbf{0} \preceq \mathbf{p} \preceq p_{\max } \mathbf{1} \\
& \alpha=\frac{1}{2} \mathbf{1}^{T} \mathbf{p} \\
& m_{0} s+\mathbf{1}^{T} \mathbf{q} \leq \alpha, s \mathbf{1}+\mathbf{q} \succeq \mathbf{p}, \mathbf{q} \succeq \mathbf{0}
\end{array}
$$

with variables $\mathbf{t} \in \mathbb{R}, \mathbf{p} \in \mathbb{R}^{m}, \alpha \in \mathbb{R}, s \in \mathbb{R}$, and $\mathbf{q} \in \mathbb{R}^{m}$. Eliminating the trivial equality constraint $\alpha=\frac{1}{2} \mathbf{1}^{T} \mathbf{p}$, we obtain

$$
\begin{array}{ll}
\operatorname{minimize} & t \\
\text { subject to } & \mathbf{a}_{k}^{T} \mathbf{p} \leq I_{\text {des }} t, k=1, \ldots, n \\
& \left\|\left[\begin{array}{c}
2 \sqrt{I_{\text {des }}} \\
t-\mathbf{a}_{k}^{T} \mathbf{p}
\end{array}\right]\right\|_{2} \leq t+\mathbf{a}_{k}^{T} \mathbf{p}, k=1, \ldots, n, \\
& \mathbf{0} \preceq \mathbf{p} \preceq p_{\max } \mathbf{1} \\
& m_{0} s+\mathbf{1}^{T} \mathbf{q} \leq \frac{1}{2} \mathbf{1}^{T} \mathbf{p}, s \mathbf{1}+\mathbf{q} \succeq \mathbf{p}, \mathbf{q} \succeq \mathbf{0}
\end{array}
$$

with variables $\mathbf{t} \in \mathbb{R}, \mathbf{p} \in \mathbb{R}^{m}, s \in \mathbb{R}$, and $\mathbf{q} \in \mathbb{R}^{m}$, as desired.
3. Introducing $\boldsymbol{\lambda}$ for the inequality constraint $\mathbf{x} \succeq \mathbf{0}, \nu$ for the scalar equality constraint $\mathbf{1}^{T} \mathbf{x}=1$, and \mathbf{z} for the vector equality constraint $\mathbf{P} \mathbf{x}=\mathbf{y}$, the Lagrangian becomes

$$
\begin{aligned}
L(\mathbf{x}, \mathbf{y}, \boldsymbol{\lambda}, \nu, \mathbf{z}) & =\mathbf{c}^{T} \mathbf{x}+\sum_{i=1}^{m} y_{i} \log y_{i}-\boldsymbol{\lambda}^{T} \mathbf{x}+\nu\left(\mathbf{1}^{T} \mathbf{x}-1\right)+\mathbf{z}^{T}(\mathbf{P} \mathbf{x}-\mathbf{y}), \\
& =\left(\mathbf{c}-\boldsymbol{\lambda}+\nu \mathbf{1}+\mathbf{P}^{T} \mathbf{z}\right)^{T} \mathbf{x}+\sum_{i=1}^{m} y_{i} \log y_{i}-\mathbf{z}^{T} \mathbf{y}-\nu
\end{aligned}
$$

The minimum over \mathbf{x} is bounded below if and only if

$$
\mathbf{c}-\boldsymbol{\lambda}+\nu \mathbf{1}+\mathbf{P}^{T} \mathbf{z}=\mathbf{0} .
$$

To minimize over \mathbf{y}, we set the derivative with respect to y_{i} equal to zero, which gives

$$
1+\log y_{i}^{\star}-z_{i}=0 \Longleftrightarrow y_{i}^{\star}=e^{z_{i}-1}
$$

Thus, the dual function is

$$
\begin{aligned}
g(\boldsymbol{\lambda}, \nu, \mathbf{z}) & = \begin{cases}\sum_{i=1}^{m} e^{z_{i}-1}\left(z_{i}-1\right)-\sum_{i=1}^{m} z_{i} e^{z_{i}-1}-\nu, & \mathbf{c}-\boldsymbol{\lambda}+\nu \mathbf{1}+\mathbf{P}^{T} \mathbf{z}=\mathbf{0} \\
-\infty & \text { otherwise }\end{cases} \\
& = \begin{cases}-\sum_{i=1}^{m} e^{z_{i}-1}-\nu, & \boldsymbol{\lambda}=\mathbf{P}^{T} \mathbf{z}+\nu \mathbf{1}+\mathbf{c} \\
-\infty & \text { otherwise }\end{cases}
\end{aligned}
$$

Hence, the dual problem is

$$
\begin{array}{ll}
\operatorname{maximize} & -\sum_{i=1}^{m} e^{z_{i}-1}-\nu \\
\text { subject to } & \mathbf{P}^{T} \mathbf{z}+\nu \mathbf{1}+\mathbf{c} \succeq \mathbf{0}
\end{array}
$$

This can be simplified by introducing a new variable $\mathbf{w}=\mathbf{z}+\nu \mathbf{1}$ and exploiting the fact that $\mathbf{1}=\mathbf{P}^{T} \mathbf{1}$. Specifically, the dual problem becomes

$$
\begin{array}{ll}
\text { maximize } & -\sum_{i=1}^{m} e^{w_{i}-\nu-1}-\nu \\
\text { subject to } & \mathbf{P}^{T} \mathbf{w} \succeq-\mathbf{c}
\end{array}
$$

Finally, we can maximize the objective function with respect to ν by setting the derivative equal to zero. This yields

$$
\nu^{\star}=\log \left(\sum_{i=1}^{m} e^{w_{i}-1}\right) .
$$

From this, the objective function becomes

$$
e^{-\nu^{\star}}\left(-\sum_{i=1}^{m} e^{w_{i}-1}\right)-\nu^{\star}=-1-\log \left(\sum_{i=1}^{m} e^{w_{i}-1}\right)=-\log \left(\sum_{i=1}^{m} e^{w_{i}}\right) .
$$

As such, the dual problem can be simplified to

$$
\begin{array}{ll}
\text { maximize } & -\log \left(\sum_{i=1}^{m} e^{w_{i}}\right), \\
\text { subject to } & \mathbf{P}^{T} \mathbf{w} \succeq-\mathbf{c}
\end{array}
$$

which can be written as

$$
\begin{array}{ll}
\text { minimize } & \log \left(\sum_{i=1}^{m} e^{w_{i}}\right) \\
\text { subject to } & -\mathbf{P}^{T} \mathbf{w} \preceq \mathbf{c}
\end{array}
$$

with variable $\mathbf{w} \in \mathbb{R}^{m}$. Note that this is a GP in convex form with linear inequality constraints (i.e., monomial inequality constraints in the associated standard form GP).
4. (a) Introducing $\boldsymbol{\lambda}$ for the inequality constraint $\mathbf{x} \succeq \mathbf{0}$, and ν for the equality constraint $\mathbf{1}^{T} \mathbf{x}=1$, it follows that the KKT conditions are as follows.

- Primal feasibility:

$$
\mathbf{x}^{\star} \succeq \mathbf{0}, \mathbf{1}^{T} \mathbf{x}^{\star}=1
$$

- Dual feasibility:

$$
\lambda^{\star} \succeq \mathbf{0} .
$$

- Complementary slackness:

$$
\lambda_{k}^{\star}\left(-x_{k}^{\star}\right)=0, k=1, \ldots, n .
$$

- Stationarity:

$$
\nabla f_{0}\left(\mathbf{x}^{\star}\right)-\boldsymbol{\lambda}^{\star}+\nu^{\star} \mathbf{1}=\mathbf{0} .
$$

Here, $f_{0}(\mathbf{x})=-\log \left(\mathbf{a}^{T} \mathbf{x}\right)-\log \left(\mathbf{b}^{T} \mathbf{x}\right)$, and so we have

$$
\frac{\partial f_{0}}{\partial x_{k}}=-\frac{1}{\mathbf{a}^{T} \mathbf{x}} a_{k}-\frac{1}{\mathbf{b}^{T} \mathbf{x}} b_{k} \Longleftrightarrow \nabla f_{0}(\mathbf{x})=-\frac{1}{\mathbf{a}^{T} \mathbf{x}} \mathbf{a}-\frac{1}{\mathbf{b}^{T} \mathbf{x}} \mathbf{b}
$$

Thus, the stationarity condition becomes

$$
\boldsymbol{\lambda}^{\star}=\nu^{\star} \mathbf{1}-\frac{1}{\mathbf{a}^{T} \mathbf{x}^{\star}} \mathbf{a}-\frac{1}{\mathbf{b}^{T} \mathbf{x}^{\star}} \mathbf{b} .
$$

Combining the results so far, we have the following simplifed KKT conditions.

$$
\begin{align*}
& \mathbf{x}^{\star} \succeq \mathbf{0}, \mathbf{1}^{T} \mathbf{x}^{\star}=1, \frac{1}{\mathbf{a}^{T} \mathbf{x}^{\star}}+\frac{1}{\mathbf{b}^{T} \mathbf{x}^{\star}} \mathbf{b} \preceq \nu^{\star} \mathbf{1}, \\
& x_{k}^{\star}\left(\nu^{\star}-\frac{1}{\mathbf{a}^{T} \mathbf{x}^{\star}} a_{k}-\frac{1}{\mathbf{b}^{T} \mathbf{x}^{\star}} b_{k}\right)=0, k=1, \ldots, n . \tag{1}
\end{align*}
$$

We now show that $\mathbf{x}^{\star}=(1 / 2,0, \ldots, 0,1 / 2)$ and $\nu^{\star}=2$ satisfy all of the conditions in (1) and are hence primal and dual optimal, respectively.

The feasibility conditions $\mathbf{x}^{\star} \succeq \mathbf{0}, \mathbf{1}^{T} \mathbf{x}^{\star}=1$ obviously hold, and the complementary slackness conditions are trivially satisfied for $k=2, \ldots, n-2$. Thus, from (1), it remains to verify the inequalities

$$
\begin{equation*}
\frac{a_{k}}{\mathbf{a}^{T} \mathbf{x}^{\star}}+\frac{b_{k}}{\mathbf{b}^{T} \mathbf{x}^{\star}} \leq \nu^{\star}, k=1, \ldots, n \tag{2}
\end{equation*}
$$

and the complementary slackness conditions

$$
\begin{equation*}
x_{k}^{\star}\left(\nu^{\star}-\frac{1}{\mathbf{a}^{T} \mathbf{x}^{\star}} a_{k}-\frac{1}{\mathbf{b}^{T} \mathbf{x}^{\star}} b_{k}\right)=0, k=1, n . \tag{3}
\end{equation*}
$$

For $\mathbf{x}^{\star}=(1 / 2,0, \ldots, 0,1 / 2)$ and $\nu^{\star}=2$, the inequality (2) holds with equality for $k=1$ and $k=n$, since we have

$$
\frac{a_{1}}{\mathbf{a}^{T} \mathbf{x}^{\star}}+\frac{b_{1}}{\mathbf{b}^{T} \mathbf{x}^{\star}}=\frac{2 a_{1}}{a_{1}+a_{n}}+\frac{2 / a_{1}}{1 / a_{1}+1 / a_{n}}=\frac{2 a_{1}}{a_{1}+a_{n}}+\frac{2 a_{n}}{a_{n}+a_{1}}=2,
$$

for $k=1$ and

$$
\frac{a_{n}}{\mathbf{a}^{T} \mathbf{x}^{\star}}+\frac{b_{n}}{\mathbf{b}^{T} \mathbf{x}^{\star}}=\frac{2 a_{n}}{a_{1}+a_{n}}+\frac{2 / a_{n}}{1 / a_{1}+1 / a_{n}}=\frac{2 a_{n}}{a_{1}+a_{n}}+\frac{2 a_{1}}{a_{n}+a_{1}}=2,
$$

for $k=n$. Therefore also (3) is satisfied for $k=1, n$ as desired. The remaining inequalities in (2) reduce to

$$
\frac{a_{k}}{\mathbf{a}^{T} \mathbf{x}^{\star}}+\frac{b_{k}}{\mathbf{b}^{T} \mathbf{x}^{\star}}=\frac{2 a_{k}}{a_{1}+a_{n}}+\frac{2 / a_{k}}{1 / a_{1}+1 / a_{n}}=2 \frac{a_{k}+a_{1} a_{n} / a_{k}}{a_{1}+a_{n}} \leq 2, k=2, \ldots, n-1
$$

which is equivalent to

$$
\begin{equation*}
\frac{a_{k}+a_{1} a_{n} / a_{k}}{a_{1}+a_{n}} \leq 1, k=2, \ldots, n-1 \tag{4}
\end{equation*}
$$

To show that (4) is valid, note that the function $g(t) \triangleq \frac{t+a_{1} a_{n} / t}{a_{1}+a_{n}}$ is convex for $t \in \mathbb{R}_{++}$. Since the inequality in (4) holds with equality for $k=1$ and $k=n$, it follows that

$$
\frac{t+a_{1} a_{n} / t}{a_{1}+a_{n}} \leq 1, \forall t \in\left[a_{n}, a_{1}\right]
$$

Hence, $\mathbf{x}^{\star}=(1 / 2,0, \ldots, 0,1 / 2)$ and ν^{\star} satisfy all of the KKT conditions of (1) and are thus primal and dual optimal, respectively.
(b) Express \mathbf{A} in terms of its eigenvalue decomposition as $\mathbf{A}=\mathbf{Q} \mathbf{\Lambda} \mathbf{Q}^{T}$, and define $a_{k} \triangleq \lambda_{k}, b_{k} \triangleq 1 / \lambda_{k}$, and $x_{k}=\left[\mathbf{Q}^{T} \mathbf{u}\right]_{k}^{2}$. Note that we clearly have $x_{k} \geq 0$ for all k. Also, as $\|\mathbf{u}\|_{2}=1$, we have

$$
\mathbf{1}^{T} \mathbf{x}=\sum_{k=1}^{n}\left[\mathbf{Q}^{T} \mathbf{u}\right]_{k}^{2}=\left\|\mathbf{Q}^{T} \mathbf{u}\right\|_{2}^{2}=\mathbf{u}^{T} \mathbf{Q} \mathbf{Q}^{T} \mathbf{u}=\mathbf{u}^{T} \mathbf{u}=1
$$

Thus, the choice of $x_{k}=\left[\mathbf{Q}^{T} \mathbf{u}\right]_{k}^{2}$ is indeed feasible. Continuing further, note that

$$
\mathbf{a}^{T} \mathbf{x}=\sum_{k=1}^{n} \lambda_{k}\left[\mathbf{Q}^{T} \mathbf{u}\right]_{k}^{2}=\mathbf{u}^{T} \mathbf{A} \mathbf{u}
$$

and that

$$
\mathbf{b}^{T} \mathbf{x}=\sum_{k=1}^{n}\left(1 / \lambda_{k}\right)\left[\mathbf{Q}^{T} \mathbf{u}\right]_{k}^{2}=\mathbf{u}^{T} \mathbf{A}^{-1} \mathbf{u}
$$

Hence, from the result proven in part (a), we have

$$
-\log \left(\mathbf{u}^{T} \mathbf{A} \mathbf{u}\right)-\log \left(\mathbf{u}^{T} \mathbf{A}^{-1} \mathbf{u}\right) \geq-\log \left(\lambda_{1} / 2+\lambda_{n} / 2\right)-\log \left(1 /\left(2 \lambda_{1}\right)+1 /\left(2 \lambda_{n}\right)\right)
$$

After some algebraic manipulation, this becomes

$$
\left(\mathbf{u}^{T} \mathbf{A} \mathbf{u}\right)\left(\mathbf{u}^{T} \mathbf{A}^{-1} \mathbf{u}\right) \leq\left(\frac{\lambda_{1}}{2}+\frac{\lambda_{n}}{2}\right)\left(\frac{1}{2 \lambda_{1}}+\frac{1}{2 \lambda_{n}}\right)=\frac{1}{4}\left(\lambda_{1}+\lambda_{n}\right)\left(\lambda_{1}^{-1}+\lambda_{n}^{-1}\right)
$$

This can be further simplified to

$$
\left(\mathbf{u}^{T} \mathbf{A} \mathbf{u}\right)\left(\mathbf{u}^{T} \mathbf{A}^{-1} \mathbf{u}\right) \leq \frac{1}{4}\left(\lambda_{1} / \lambda_{n}+2+\frac{\lambda_{n}}{\lambda_{1}}\right)=\frac{1}{4}\left(\sqrt{\frac{\lambda_{1}}{\lambda_{n}}}+\sqrt{\frac{\lambda_{n}}{\lambda_{1}}}\right)^{2}
$$

Taking square roots of both sides of the above inequality yields

$$
2\left(\mathbf{u}^{T} \mathbf{A} \mathbf{u}\right)^{1 / 2}\left(\mathbf{u}^{T} \mathbf{A}^{-1} \mathbf{u}\right)^{1 / 2} \leq \sqrt{\frac{\lambda_{1}}{\lambda_{n}}}+\sqrt{\frac{\lambda_{n}}{\lambda_{1}}}
$$

for all \mathbf{u} with $\|\mathbf{u}\|_{2}=1$, which is Kantorovich's inequality.
*5. Define the following quantities.

$$
\mathbf{A} \triangleq\left[\begin{array}{cc}
-2 \mathbf{y}_{1}^{T} & 1 \\
\vdots & \vdots \\
-2 \mathbf{y}_{m}^{T} & 1
\end{array}\right], \mathbf{b} \triangleq\left[\begin{array}{c}
d_{1}^{2}-\left\|\mathbf{y}_{1}\right\|_{2}^{2} \\
\vdots \\
d_{m}^{2}-\left\|\mathbf{y}_{m}\right\|_{2}^{2}
\end{array}\right], \mathbf{C} \triangleq\left[\begin{array}{cc}
\mathbf{I}_{n} & \mathbf{0}_{n \times 1} \\
\mathbf{0}_{1 \times n} & 0
\end{array}\right], \mathbf{f} \triangleq\left[\begin{array}{c}
\mathbf{0}_{n \times 1} \\
-1 / 2
\end{array}\right]
$$

Also, define $\mathbf{z} \triangleq(\mathbf{x}, t)$. Then, with this notation, the problem becomes

$$
\begin{array}{ll}
\operatorname{minimize} & \|\mathbf{A x}-\mathbf{b}\|_{2}^{2} \\
\text { subject to } & \mathbf{z}^{T} \mathbf{C z}+2 \mathbf{f}^{T} \mathbf{z}=0
\end{array} .
$$

Introducing ν for the equality constraint, we obtain the following for the Lagrangian.

$$
\begin{aligned}
L(\mathbf{z}, \nu) & =\|\mathbf{A} \mathbf{z}-\mathbf{b}\|_{2}^{2}+\nu\left(\mathbf{z}^{T} \mathbf{C} \mathbf{z}+2 \mathbf{f}^{T} \mathbf{z}\right), \\
& =\mathbf{z}^{T} \mathbf{A}^{T} \mathbf{A} \mathbf{z}-2 \mathbf{b}^{T} \mathbf{A} \mathbf{z}+\mathbf{b}^{T} \mathbf{b}+\mathbf{z}^{T}(\nu \mathbf{C}) \mathbf{z}+2 \nu \mathbf{f}^{T} \mathbf{z}, \\
& =\mathbf{z}^{T}\left(\mathbf{A}^{T} \mathbf{A}+\nu \mathbf{C}\right) \mathbf{z}-2\left(\mathbf{A}^{T} \mathbf{b}-\nu \mathbf{f}\right)^{T} \mathbf{z}+\|\mathbf{b}\|_{2}^{2} .
\end{aligned}
$$

Note that this is bounded below as a function of \mathbf{z} if and only if

$$
\mathbf{A}^{T} \mathbf{A}+\nu \mathbf{C} \succeq \mathbf{0}, \quad \mathbf{A}^{T} \mathbf{b}-\nu \mathbf{f} \in \mathcal{R}\left(\mathbf{A}^{T} \mathbf{A}+\nu \mathbf{C}\right)
$$

Therefore, the KKT conditions are as follows.

- Primal feasibility:

$$
\mathbf{z}^{T} \mathbf{C} \mathbf{z}+2 \mathbf{f}^{T} \mathbf{z}=0
$$

- Dual feasibility:

$$
\mathbf{A}^{T} \mathbf{A}+\nu \mathbf{C} \succeq \mathbf{0}, \mathbf{A}^{T} \mathbf{b}-\nu \mathbf{f} \in \mathcal{R}\left(\mathbf{A}^{T} \mathbf{A}+\nu \mathbf{C}\right) .
$$

- Stationarity:

$$
\left(\mathbf{A}^{T} \mathbf{A}+\nu \mathbf{C}\right) \mathbf{z}=\mathbf{A}^{T} \mathbf{b}-\nu \mathbf{f}
$$

(Note that this implies the range condition for dual feasibility.)
Method 1: We derive the dual problem. If ν is feasible, then the dual function is given by

$$
g(\nu)=-\left(\mathbf{A}^{T} \mathbf{b}-\nu \mathbf{f}\right)^{T}\left(\mathbf{A}^{T} \mathbf{A}+\nu \mathbf{C}\right)^{\#}\left(\mathbf{A}^{T} \mathbf{b}-\nu \mathbf{f}\right)+\|\mathbf{b}\|_{2}^{2} .
$$

So, the dual problem can be expressed as the SDP

$$
\begin{array}{ll}
\operatorname{maximize} & -s+\|\mathbf{b}\|_{2}^{2} \\
\text { subject to } & {\left[\begin{array}{cc}
\mathbf{A}^{T} \mathbf{A}+\nu \mathbf{C} & \mathbf{A}^{T} \mathbf{b}-\nu \mathbf{f} \\
\left(\mathbf{A}^{T} \mathbf{b}-\nu \mathbf{f}\right)^{T} & s
\end{array}\right] \succeq \mathbf{0}}
\end{array}
$$

which is equivalent to the following SDP

$$
\begin{array}{ll}
\text { minimize } & s-\|\mathbf{b}\|_{2}^{2} \\
\text { subject to } & {\left[\begin{array}{cc}
\mathbf{A}^{T} \mathbf{A}+\nu \mathbf{C} & \mathbf{A}^{T} \mathbf{b}-\nu \mathbf{f} \\
\left(\mathbf{A}^{T} \mathbf{b}-\nu \mathbf{f}\right)^{T} & s
\end{array}\right] \succeq \mathbf{0},}
\end{array}
$$

Solving this in cvx gives $\nu^{\star}=0.5898$. Using ν^{\star} in the stationarity condition, we get

$$
\mathbf{z}^{\star}=\left(\mathbf{A}^{T} \mathbf{A}+\nu^{\star} \mathbf{C}\right)^{-1}\left(\mathbf{A}^{T} \mathbf{b}-\nu^{\star} \mathbf{f}\right)=(1.3269,0.6446,2.1765) .
$$

Hence, $\mathrm{x}^{\star}=(1.3269,0.6446)$.
Method 2: Alternatively, we can solve the KKT conditions directly. To simplify the equations, we make a change of variables

$$
\mathbf{w}=\mathbf{Q}^{T} \mathbf{L}^{T} \mathbf{z}
$$

where \mathbf{L} is the lower triangular matrix obtained from the Cholesky decomposition of $\mathbf{A}^{T} \mathbf{A}$, i.e., $\mathbf{A}^{T} \mathbf{A}=\mathbf{L} \mathbf{L}^{T}$, and \mathbf{Q} is the matrix of eigenvectors of $\mathbf{L}^{-1} \mathbf{C L}^{-T}$, i.e., $\mathbf{L}^{-1} \mathbf{C} \mathbf{L}^{-T}=\mathbf{Q} \mathbf{\Lambda} \mathbf{Q}^{T}$. This transforms the KKT conditions to

$$
\mathbf{w}^{T} \boldsymbol{\Lambda} \mathbf{w}+2 \mathbf{g}^{T} \mathbf{w}=0, \mathbf{I}+\nu \boldsymbol{\Lambda} \succeq \mathbf{0},(\mathbf{I}+\nu \boldsymbol{\Lambda}) \mathbf{w}=\mathbf{h}-\nu \mathbf{g},
$$

where we have

$$
\mathbf{g}=\mathbf{Q}^{T} \mathbf{L}^{-1} \mathbf{f}, \mathbf{h}=\mathbf{Q}^{T} \mathbf{L}^{-1} \mathbf{A}^{T} \mathbf{b}
$$

From the last equation of the KKT conditions, we find

$$
w_{k}=\frac{h_{k}-\nu g_{k}}{1+\nu \lambda_{k}}, k=1, \ldots, n+1,
$$

Substituting this into the first equation of the KKT conditions, we get the following nonlinear equation in ν.

$$
r(\nu)=\sum_{k=1}^{n+1}\left(\frac{\lambda_{k}\left(h_{k}-\nu g_{k}\right)^{2}}{\left(1+\nu \lambda_{k}\right)^{2}}+\frac{2 g_{k}\left(h_{k}-\nu g_{k}\right)}{1+\nu \lambda_{k}}\right)=0 .
$$

In our example, the eigenvalues are

$$
\lambda_{1}=0.5104, \lambda_{2}=0.2735, \lambda_{3}=0
$$

Plots of the function $r(\nu)$ for this example are shown in Figures 4(a) and (b). In Figure 4(a), we have a zoomed out plot showing all three solutions to $r(\nu)=0$, whereas in Figure $4(\mathrm{~b})$, we have a zoomed out plot showing the correct solution.
The correct solution of $r(\nu)=0$ is the one that satisfies $1+\nu \lambda_{k} \geq 0$ for $k=1, \ldots, n+1$, i.e., the solution to the right of the two singularities in this case. This solution can be determined by using Newton's method by repeating the iteration

$$
\nu:=\nu-\frac{r(\nu)}{r^{\prime}(\nu)}
$$

a few times, starting at a value close to the desired solution. This gives $\nu^{\star}=0.5896$, which is very close to the value obtained from cvx . From ν^{\star}, we determine \mathbf{x}^{\star} as in the first method.
A contour plot of the objective f_{0} for the given problem data, along with the sensor position vectors \mathbf{y}_{k} and optimal source position vector \mathbf{x}^{\star} is shown in Figure 5.

Figure 4: Plots of the nonlinear function $r(\nu)$ used to determine the optimal ν which satisfies the KKT conditions: (a) zoomed out plot showing all three solutions to $r(\nu)=0$ and (b) zoomed in plot showing a close-up of the correct solution to $r(\nu)=0$.

Figure 5: Contour plot of the objective $f_{0}\left(x_{1}, x_{2}\right)$ for the given problem data, with the sensor position vectors \mathbf{y}_{k} and optimal source position vector \mathbf{x}^{\star} indicated by circles.

