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1. First note that we can express f(t) as

f(t) = c(t)T x ,

where we have
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To compute the L2 approximation, we can equivalently minimize the L2-norm of the error.
This leads to the following.

||f − y||22 =

∫ T/2

−T/2

(
c(t)T x− y(t)

)2
dt

= xT

[∫ T/2

−T/2
c(t) c(t)T dt

]
︸ ︷︷ ︸

P

x− 2

[∫ T/2

−T/2
c(t) y(t)

]T
︸ ︷︷ ︸

qT

+

∫ T/2

−T/2
y2(t) dt︸ ︷︷ ︸
r

(1)

Note that by the orthogonality of the Fourier series basis functions, we have that

P =
T

2

[
1/2 01×2K

02K×1 I2K

]
, (2)

and hence P � 0. Thus, the optimal choice of x for the L2 approximation problem is given
by

x? = P−1q . (3)

This can be simplified further as follows. From our expression for P given in (2), it is clear
that we have

P−1 =
2
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]
. (4)

Also, note that from (1), we have

[q]k =



1

2

∫ T/2

−T/2
y(t) dt , k = 1∫ T/2

−T/2
y(t) cos

(
2π (k − 1) t

T

)
dt , k = 2, . . . ,K + 1∫ T/2

−T/2
y(t) sin

(
2π (k −K − 1) t

T

)
dt , k = K + 2, . . . , 2K + 1

.



From this, it can be shown that we have the following for our choice of y(t).
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4
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This can be further simplified to

[q]k =
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Combining this result with (3) and (4), we have that

[x?]k =


1 , k = 1

(−1)
k
2

[
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]
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.

To compute the L1 approximation, using the summation approximation to the L1-norm
advocated in the problem, we get

||f − y||1 =
T

2N

2N−1∑
m=0

∣∣∣c(tm)T x− y(tm)
∣∣∣ .

Now, the problem of minimizing the L1-norm of the error can be posed as the following LP.

minimize
T

2N
1T s

subject to −si ≤ c(ti−1)
T x− y(ti−1) ≤ si , i = 1, . . . , 2N

.

A plot of the periodic function y(t) along with its optimal L2 and L1 Fourier series
approximations are shown in Figure 1. From the plot, we can see that the L2 optimal
approximation has the familiar Gibbs phenomenon near the discontinuities in y, but the L1

optimal approximation has much less pronounced oscillation in this neighborhood.
Furthermore, the L1 approximation has much smaller error than the L2 approximation,
except near the discontinuities.

A plot of the histogram of the residuals for both the L2 and L1 optimal solutions is shown
in Figure 2. As can be seen, the optimal L1 approximation exhibits a much larger number
of residuals near zero than the L2 approximation. In addition, the L1 approximation also
has a larger number of outlier residuals than the L2 approximation, as expected.

Sample MATLAB code using cvx that can be used to generate the figures created here is
shown below.
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Figure 1: Plot of the 1-periodic function y(t) along with its optimal L2 and L1 Fourier series
approximations.
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Figure 2: Plot of the histogram of the residuals for both the L2 and L1 optimal approximations to
y.



% Initialize problem parameters

N = 4096;

n = 0:(2.*N-1);

T = 1;

t = (-T/2) + (n.*T./(2.*N));

K = 10;

% Create matrix of Fourier series coefficients

for k = 1:K

cos_mat(k,:) = cos(2.*pi.*k.*t./T);

sin_mat(k,:) = sin(2.*pi.*k.*t./T);

end

coef_mat = [ repmat(0.5,1,2.*N) ; cos_mat ; sin_mat];

% Generate samples of the periodic signal

y = zeros(2.*N,1);

i_live = find(t >= -0.25 & t < 0.25);

y(i_live) = 1;

% Calculate the optimal L_2 approximation

x_L_2 = zeros(2.*K+1,1);

x_L_2(1) = 1;

for k = 2:K+1

x_L_2(k) = (((-1).^(k./2)).*(((-1).^(k-1)) - 1))./((k-1).*pi);

end

% Calculate the optimal L_1 approximation

cvx_begin

variable x_L_1(2.*K+1)

minimize(norm(coef_mat’*x_L_1 - y,1))

cvx_end

% Alternate method for calculating the optimal L_1 approximation

cvx_begin

variable x_L_1(2.*K+1)

variable s(2.*N)

minimize((T./(2.*N)).*ones(1,2.*N)*s)

subject to

- coef_mat’*x_L_1 + y - s <= 0

coef_mat’*x_L_1 - y - s <= 0

cvx_end

% Compute the optimal function approximation from the Fourier series

% coefficients

f_L_2 = coef_mat’*x_L_2;

f_L_1 = coef_mat’*x_L_1;

% Plot the periodic function and its L_2 and L_1 Fourier series



% approximations

figure

plot(t,y,’r’)

hold on

plot(t,f_L_2,’g’)

plot(t,f_L_1,’b’)

xlabel(’$t$’,’Interpreter’,’LaTeX’,’FontSize’,20)

%print -depsc2 Fourier_series_approx_plot

% Plot histograms or distributions of the residual magnitudes

figure

subplot(2,1,1)

hist(f_L_2 - y,50)

ylabel(’$L_{2}$-norm’,’Interpreter’,’LaTeX’,’FontSize’,20)

axis([-0.6 0.6 0 3500])

subplot(2,1,2)

hist(f_L_1 - y,50)

ylabel(’$L_{1}$-norm’,’Interpreter’,’LaTeX’,’FontSize’,20)

axis([-0.6 0.6 0 3500])

%print -depsc2 Fourier_series_hist_plot

2. This problem can be simplified through vectorization of the matrix quantities that appear
throughout the problem. For example, by defining the horizontal and vertical difference
vectors as

ux , vec(Uk,` − Uk−1,`) , uy , vec(Uk,` − Uk,`−1) ,

with some abuse of notation, then the `2 variation problem can be equivalently expressed as

minimize

∣∣∣∣∣
∣∣∣∣∣
[

ux

uy

]∣∣∣∣∣
∣∣∣∣∣
2

subject to Uk,` = Uorig
k,`

,

while the total variation problem can be expressed as

minimize

∣∣∣∣∣
∣∣∣∣∣
[

ux

uy

]∣∣∣∣∣
∣∣∣∣∣
1

subject to Uk,` = Uorig
k,`

,

In MATLAB, with the help of cvx, this can be implemented as follows.

% Load total variation image interpolation data

tv_img_interp

% Calculate the optimal l_2 variation interpolant

cvx_begin

variable Ul2(m,n);

Ux = Ul2(2:end,2:end) - Ul2(2:end,1:end-1); % Compute the x

% (horizontal) variations
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Figure 3: Plot of the original, obscured, `2 variation interpolated, and total variation interpolated
images.

Uy = Ul2(2:end,2:end) - Ul2(1:end-1,2:end); % Compute the y (vertical)

% variations

minimize(norm([Ux(:);Uy(:)],2)); % minimize the l_2

% roughness measure

subject to

Ul2(Known) == Uorig(Known); % Fix known pixel values

% values

cvx_end

% Calculate the optimal total variation interpolant

cvx_begin

variable Utv(m,n);

Ux = Utv(2:end,2:end) - Utv(2:end,1:end-1); % Compute the x

% (horizontal) variations

Uy = Utv(2:end,2:end) - Utv(1:end-1,2:end); % Compute the y (vertical)

% variations

minimize(norm([Ux(:);Uy(:)],1)); % minimize the total

% variation measure

subject to

Utv(Known) == Uorig(Known); % Fix known pixel values

cvx_end

A plot of the original and obscured image, along with the `2 variation and total variation
interpolants are shown in Figure 3. As can be seen, for this particular type of sparse original
image, the `1 based total variation reconstruction interpolates the missing data much better
than the `2 variation based approach.



3. (a) Ideally, the problem we would like to solve is the following one.

minimize card
(
Â
)

+ card
(
B̂
)

subject to
T−1∑
t=1

∣∣∣∣∣∣W−1/2
(
x(t+ 1)− Âx(t)− B̂u(t)

)∣∣∣∣∣∣2
2
≤ n (T − 1) + 2

√
2n (T − 1)

.

Here, card(X) is the cardinality of matrix X, i.e., the number of nonzero entries. The
issue with trying to solve this problem is that the objective is nonconvex. To address
this issue, we will use the common heuristic of minimizing the `1 norm of the entries of
Â and B̂. Using the standard vectorization operator, this leads to the following convex
optimization problem.

minimize
∣∣∣∣∣∣vec

(
Â
)∣∣∣∣∣∣

1
+
∣∣∣∣∣∣vec

(
B̂
)∣∣∣∣∣∣

1

subject to
T−1∑
t=1

∣∣∣∣∣∣W−1/2
(
x(t+ 1)− Âx(t)− B̂u(t)

)∣∣∣∣∣∣2
2
≤ n (T − 1) + 2

√
2n (T − 1)

.

Intuitively, it can be said that the constraint will always be tight as relaxing the
requirement on the implied errors allows for more freedom to reduce the sum of the

`1-norms of vec
(
Â
)

and vec
(
B̂
)

.

(b) This problem can be easily solved in MATLAB with the help of cvx using the
following code.

% Load problem data

sparse_lds_data

% Set the fit tolerance

fit_tol = sqrt(n*(T-1) + 2*sqrt(2*n*(T-1)));

% Compute the l_1 approximation to the sparse dynamical system fit problem

cvx_begin

variables Ahat(n,n) Bhat(n,m);

minimize(sum(norms(Ahat,1)) + sum(norms(Bhat,1)));

subject to

norm(inv(Whalf)*(xs(:,2:T) - Ahat*xs(:,1:T-1) - Bhat*us),’fro’) ...

<= fit_tol;

cvx_end

disp(cvx_status)

% Round near-zero elements to zero

Ahat = Ahat .* (abs(Ahat) >= 0.01);

Bhat = Bhat .* (abs(Bhat) >= 0.01);

% Display the number of false positives and negatives

disp([’false positives, Ahat: ’ num2str(nnz((Ahat ~= 0) & (A == 0)))])

disp([’false negatives, Ahat: ’ num2str(nnz((Ahat == 0) & (A ~= 0)))])

disp([’false positives, Bhat: ’ num2str(nnz((Bhat ~= 0) & (B == 0)))])

disp([’false negatives, Bhat: ’ num2str(nnz((Bhat == 0) & (B ~= 0)))])



With the given problem data, we get 1 false positive (at the (6, 5)-th entry) and 2 false
negatives (at the (4, 1)-th and (6, 1)-th entries) for Â, and no false positives and 1 false
negative (at the (7, 2)-th entry) for B̂. The matrix estimates are

Â =



0 0 0 0 0 0 0 0

0 0 1.1483 −0.0899 0.1375 −0.0108 0 0

0 0 0 0.9329 0 0 0.2868 0

0 0.2055 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 −0.0190 0.9461 0 0.8697

0 0 0 0 0.2065 0 0 0

0 0 0 0 0 0 0 0


,

and

B̂ =



−1.4717 0 0 0

0 0 0 −0.2832

0 0 0 0

0 0 0 0

1.6363 −0.0456 0 0

0 1.4117 0 0

−0.0936 0 0 −0.7755

0 −0.5705 0 0


Finally, there are a lot of methods that will do better than this, usually be taking the
above solutions as a starting point and then ‘polishing’ the result after that. Several of
these have been shown to give fairly reliable, if modest, improvements.

4. (a) To find qmin
i , we solve the convex optimization problem

minimize qi

subject to l � Sq � u , q � 0
,

with variable q ∈ Rn. Then, we set qmin
i = q?i . Similarly, to find qmax

i , we solve the
convex optimization problem

maximize qi

subject to l � Sq � u , q � 0
,

and then we set qmax
i = q?i .

(b) Running spectrum data.m yields plots of the spectra of the compounds s(1), . . . , s(n),
alongside the lower and upper bounds l and u shown in Figure 4(a) and (b),
respectively.

The following MATLAB code using cvx can be used to find the range of possible
values for each compound quantity qi ∈

[
qmin
i , qmax

i

]
.

% Load the spectrum compound data

spectrum_data
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Figure 4: Plots of compound data: (a) spectra of the compounds and (b) lower and upper bounds
for the sample.

% Calculate the quantity bounds for each compound using a for-loop

qmin = zeros(n,1); qmax = zeros(n,1);

for i = 1:n

% Compute the minimum bound for the i-th quantity

cvx_begin

variable q(n)

l <= S*q; u >= S*q;

q >= 0;

minimize(q(i))

cvx_end

qmin(i) = q(i);

% Compute the maximum bound for the i-th quantity

cvx_begin

variable q(n)

l <= S*q; u >= S*q;

q >= 0;

maximize(q(i))

cvx_end

qmax(i) = q(i);

end

% Display the quantity bounds

[qmin qmax]

% Plot the quantity bounds

figure; hold on;

for i = 1:n

plot([i,i],[qmax(i),qmin(i)],’o-’);

end



0 1 2 3 4 5 6 7 8 9 10 11
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

i : i = 1, . . ., n

q i
∈

[ q
m
in

i
,
q
m
a
x

i

]

Figure 5: Plot of the range of possible values for each quantity qi ∈
[
qmin
i , qmax

i

]
for i = 1, . . . , n.

axis([0,11,0,1]);

A plot of the range of possible values for each quantity qi is shown in Figure 5.

From the output of cvx, we have qmin
4 = 0.1211 and qmax

4 = 0.2052.

*5. (a) First note that we have

|G(θ)| =

∣∣∣∣∣
∣∣∣∣∣
[

Re[G(θ)]

Im[G(θ)]

]∣∣∣∣∣
∣∣∣∣∣
2

.

Then, note that if we define the following quantities

x ,

[
wre

wim

]
∈ R2n , where [wre]k = wre,k, [wim]k = wim,k ,

C(θ) ,

[
cosφ1(θ) · · · cosφn(θ) − sinφ1(θ) · · · − sinφn(θ)

sinφ1(θ) · · · sinφn(θ) cosφ1(θ) · · · cosφn(θ)

]
∈ R2×2n ,

then we have [
Re[G(θ)]

Im[G(θ)]

]
= C(θ)x .

To express the design problem as an SOCP, define the following quantities.

A` , C(θ`) ,

B , C
(
θtar
)
,

d ,

[
1

0

]
.
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Figure 6: Plots of (a) the antenna array geometry and (b) antenna array magnitude response |G(θ)|
in dB.

Note that the constraint G
(
θtar
)

= 1 is equivalent to the following.[
Re
[
G
(
θtar
)]

Im
[
G
(
θtar
)] ] =

[
1

0

]
⇐⇒ Bx = d ,

which is an affine equality constraint on x. Thus, the antenna array design problem
becomes the following SOCP.

minimize t

subject to ||A`x||2 ≤ t , ` = 1, . . . , N

Bx = d

.

(b) This part of the problem can be simplified by noting that we can alternatively express
G(θ) as

G(θ) = e†(θ)w ,

where e(θ) ∈ Cn and w ∈ Cn are given by

[e(θ)]k = e
−j

(
2πxk
λ

cos θ+
2πyk
λ

sin θ
)
, k = 1, . . . , n

[w]k = wk , k = 1, . . . , n

Using this simplification, for the antenna array geometry shown in Figure 6(a), we
obtain the antenna array magnitude response |G(θ)| in dB as shown in Figure 6(b).
From Figure 6(b), it can be seen that the array response yields unity gain at the target
angle of arrival θtar and over 35 dB of attenuation outside of the beamwidth 2∆.

Sample MATLAB code using cvx which was used to obtain the results here is shown
below.

% Define design problem parameters

n = 40;



lambda = 2*pi;

theta_tar_deg = 15; theta_tar = deg2rad(theta_tar_deg);

Delta_deg = 15; Delta = deg2rad(Delta_deg);

N = 1000;

% Generate antenna positions

rand(’state’,0);

x = 30*rand(n,1);

y = 30*rand(n,1);

% Construct the discretized angle of arrival values

theta_des = linspace(theta_tar+Delta,theta_tar+(2*pi)-Delta);

wn = 2*pi/lambda;

e = exp(-j.*(((wn.*x)*cos(theta_des)) + ((wn.*y)*sin(theta_des))));

e_tar = exp(-j.*(((wn.*x)*cos(theta_tar)) + ((wn.*y)*sin(theta_tar))));

% Compute the optimal antenna array using cvx

cvx_begin

variable w(n) complex

minimize(max(abs(e’*w)))

subject to

e_tar’*w == 1;

cvx_end

% Plot the antenna array response

theta_plot_deg = linspace(-180,180,8192);

theta_plot = deg2rad(theta_plot_deg);

e = exp(-j.*(((wn.*x)*cos(theta_plot)) + ((wn.*y)*sin(theta_plot))));

G = e’*w;

plot(theta_plot_deg,20*log10(abs(G)))

xlim([-180 180])

grid

xlabel(’$\theta$ (deg)’,’Interpreter’,’LaTeX’,’FontSize’,20)

ylabel(’$\left| G\!\left( \theta \right) \right|$ (dB)’,’Interpreter’,...

’LaTeX’,’FontSize’,20)


