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1. For all parts to this problem, we will use the fact that HR(f) can be expressed as

HR(f) = c(f)T b , where [c(f)]k = cos(2π (k − 1) f) , k = 1, . . . ,M + 1 .

In addition, we will define the following functions for sake of convenience.

g1(b) , sup
0≤f≤fP

HR(f) = sup
0≤f≤fP

c(f)T b ,

g2(b) , inf
0≤f≤fP

HR(f) = inf
0≤f≤fP

c(f)T b ,

g3(b) , sup
fS≤f≤1/2

HR(f) = sup
fS≤f≤1/2

c(f)T b ,

g4(b) , inf
fS≤f≤1/2

HR(f) = inf
fS≤f≤1/2

c(f)T b .

Note that as g1 and g3 are each the pointwise supremum of an affine (actually linear)
function of b, they are each convex. Similarly, as g2 and g4 are each the pointwise infimum
of an affine (or rather linear) function of b, they are each concave.

(a) The optimization problem here is the following.

minimize δS

subject to g1(b) ≤ 1 + δP

g2(b) ≥ 1− δP
g3(b) ≤ δS
g4(b) ≥ −δS

,

with variables δS ∈ R and b ∈ RM+1. This is identical to the following problem.

minimize δS

subject to g1(b)− (1 + δP ) ≤ 0

−g2(b) + (1− δP ) ≤ 0

g3(b)− δS ≤ 0

−g4(b)− δS ≤ 0

,

As the objective δS is clearly convex, g1 and g3 are convex, and g2 and g4 are concave,
this problem is a convex optimization problem.

(b) Define the function g5(b) as follows.

g5(b) , inf {φ : −δS ≤ HR(f) ≤ δS for φ ≤ f ≤ 1/2} ,

= inf
{
φ : −δS ≤ c(f)T b ≤ δS for φ ≤ f ≤ 1/2

}
.

Note that g5(b) is quasiconvex as a function of b. To see this, note that the
φ0-sublevel set Cφ0 is given by

Cφ0 = {b : g5(b) ≤ φ0} =
{

b : −δS ≤ c(f)T b ≤ δS for φ0 ≤ f ≤ 1/2
}
,



which is the intersection of an infinite number of halfspaces. As such, Cφ0 is convex,
and so g5(b) is quasiconvex.

With the function g5 defined as such, the optimization problem becomes the following.

minimize g5(b)

subject to g1(b) ≤ 1 + δP

g2(b) ≥ 1− δP
,

with variable b ∈ RM+1. This is identical to the problem

minimize g5(b)

subject to g1(b)− (1 + δP ) ≤ 0

−g2(b) + (1− δP ) ≤ 0

.

As the objective function g5(b) is quasiconvex and the constraints are convex, this
problem is a quasiconvex optimization problem.

(c) Define the function g6(b) as follows.

g6(b) , min {k : bk+1 = · · · = bM = 0} .

Note that g6(b) is a quasiconvex function of b. To see this, note that the k0-sublevel
set Ck0 is given by

Ck0 = {b : g6(b) ≤ k0} = {b : bk0+1 = · · · = bM = 0} ,

which is an affine set. As such, Ck0 is convex and so g6(b) is quasiconvex.

With the function g6 defined as such, the optimization problem becomes the following.

minimize g6(b)

subject to g1(b) ≤ 1 + δP

g2(b) ≥ 1− δP
g3(b) ≤ δS
g4(b) ≥ −δS

,

with variable b ∈ RM+1. This is identical to the following problem.

minimize g6(b)

subject to g1(b)− (1 + δP ) ≤ 0

−g2(b) + (1− δP ) ≤ 0

g3(b)− δS ≤ 0

−g4(b)− δS ≤ 0

,

As the objective function g6(b) is quasiconvex and the constraints are convex, this
problem is a quasiconvex optimization problem.

(d) After discretizing the frequency to f` = `/ (2L), define the index sets IP and IS as
follows.

IP , {` : 0 ≤ f` ≤ fP } , IS , {` : fS ≤ f` ≤ 1/2} .



In other words, IP and IS denote the sets of discretized frequency indices
corresponding to the passband and stopband, respectively.

With these sets defined as such, the problem in part (c) can be solved via bisection by
solving the following feasibility LP at each step.

find b

subject to c(f`)
T b− (1 + δP ) ≤ 0 , ` ∈ IP

−c(f`)
T b + (1− δP ) ≤ 0 , ` ∈ IP

c(f`)
T b− δS ≤ 0 , ` ∈ IS

−c(f`)
T b− δS ≤ 0 , ` ∈ IS

.

Using cvx in MATLAB, we find M? = 27 and that the optimal filter which achieves
this minimal filter length has a magnitude response in dB as shown in Figure 1.
Close-ups of the passband and stopband regions are shown in Figure 2(a) and (b),
respectively, and clearly satisfy the design specifications.
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Figure 1: Minimal length FIR low-pass filter magnitude response in dB.

The following MATLAB code (employing cvx), was used to generate these results.

% Define filter specifications

f_P = 1./6;

f_S = 1./5;

delta_P_dB = 0.1;

delta_S_dB = -30;

% Map magnitude response specifications to amplitude response ones

K = 10.^(delta_P_dB./20);

delta_P = (K-1)./(K+1);

delta_S = 10.^(delta_S_dB./20);
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Figure 2: Minimal length FIR low-pass filter magnitude response in dB: (a) close-up of the passband
region 0 ≤ f ≤ fP and (b) close-up of the stopband region fS ≤ f ≤ 1/2.

% Set discretized frequency parameters

L = 16383;

f = [0:L]./(2.*L);

I_P = find(f >= 0 & f <= f_P);

I_S = find(f >= f_S & f <= 0.5);

% Define bisection parameters

M_LL = 0;

M_UL = 100;

bisec_tol = 1.1;

% Carry out bisection using a while-loop

while (M_UL - M_LL >= bisec_tol)

% Set the midpoint filter order

M_MP = round((M_UL+M_LL)./2);

% Compute the discretized cosine vectors

k = (0:M_MP)’;

C = cos(2.*pi.*k*f);

% Solve the feasibility LP

cvx_begin

variable b(M_MP + 1);

subject to

% Passband constraints

C(:,I_P)’*b - (1+delta_P) <= 0;

-C(:,I_P)’*b + (1-delta_P) <= 0;

% Stopband constraints

C(:,I_S)’*b - delta_S <= 0;

-C(:,I_S)’*b - delta_S <= 0;



cvx_end

% Check for feasibility and update the bisection ignorance interval

if (strcmp(cvx_status,’Solved’))

M_UL = M_MP;

b_opt = b;

M_opt = M_MP;

else

M_LL = M_MP;

end

end

% Plot the optimal magnitude response in dB

f = linspace(0,0.5,8192);

k = (0:M_opt)’;

C = cos(2.*pi.*k*f);

H_R = C’*b_opt;

plot(f,20*log10(abs(H_R)),’LineWidth’,1)

grid on

xlabel(’$f$’,’Interpreter’,’LaTeX’,’FontSize’,20)

ylabel(’$\left| H\!\left( e^{j2\pi f} \right) \right|$ (dB)’,...

’Interpreter’,’LaTeX’,’FontSize’,20)

2. (a) We get a subset P ⊆ R3 (which will soon be shown to be a polyhedron) of locations x
that are consistent with the camera measurements. To find the smallest box that
covers any subset in R3, all we need to do is minimize and maximize the (linear)
functions x1, x2, and x3 to get l and u. Here, P is a polyhedron, so we will end up
solving 6 LPs, one to get each of l1, l2, l3, u1, u2, and u3.

To verify that P is a polyhedron, note that our measurements tell us that

v̂i − (ρi/2) 1 � 1

cTi x + di
(Aix + bi) � v̂i + (ρi/2) 1 , i = 1, . . . ,m .

Multiplying through by
(
cTi x + di

)
, which is positive, we get

(v̂i − (ρi/2) 1)
(
cTi x + di

)
� Aix + bi � (v̂i + (ρi/2) 1)

(
cTi x + di

)
, i = 1, . . . ,m ,

which is a set of 2m linear inequalities in x. In particular, it defines a set P, which is a
polyhedron.

To get lk and uk, we solve the LPs

minimize/maximize xk

subject to (v̂i − (ρi/2) 1)
(
cTi x + di

)
� Aix + bi , i = 1, . . . ,m

Aix + bi � (v̂i + (ρi/2) 1)
(
cTi x + di

)
, i = 1, . . . ,m

,

for k = 1, 2, 3. Here, it is understood that lk is found by solving the minimization
problem, whereas uk is found by solving the maximization problem.

(b) The following MATLAB script (using cvx) solves this specific problem instance.

% Load the data and extract the sections of the camera matrices



camera_data;

A1 = P1(1:2,1:3); b1 = P1(1:2,4); c1 = P1(3,1:3)’; d1 = P1(3,4);

A2 = P2(1:2,1:3); b2 = P2(1:2,4); c2 = P2(3,1:3)’; d2 = P2(3,4);

A3 = P3(1:2,1:3); b3 = P3(1:2,4); c3 = P3(3,1:3)’; d3 = P3(3,4);

A4 = P4(1:2,1:3); b4 = P4(1:2,4); c4 = P4(3,1:3)’; d4 = P4(3,4);

% Solve the 6 LPs to find the smallest bounding box consistent with the

% measurements

cvx_quiet(true);

for bounds = 1:6

cvx_begin

variable x(3);

switch bounds

case 1

minimize x(1)

case 2

maximize x(1)

case 3

minimize x(2)

case 4

maximize x(2)

case 5

minimize x(3)

case 6

maximize x(3)

end

% Constraints for the 1st camera

(vhat(:,1)-rho(1)/2)*(c1’*x + d1) <= A1*x + b1;

A1*x + b1 <= (vhat(:,1)+rho(1)/2)*(c1’*x + d1);

% Constraints for the 2nd camera

(vhat(:,2)-rho(2)/2)*(c2’*x + d2) <= A2*x + b2;

A2*x + b2 <= (vhat(:,2)+rho(2)/2)*(c2’*x + d2);

% Constraints for the 3rd camera

(vhat(:,3)-rho(3)/2)*(c3’*x + d3) <= A3*x + b3;

A3*x + b3 <= (vhat(:,3)+rho(3)/2)*(c3’*x + d3);

% Constraints for the 4th camera

(vhat(:,4)-rho(4)/2)*(c4’*x + d4) <= A4*x + b4;

A4*x + b4 <= (vhat(:,4)+rho(4)/2)*(c4’*x + d4);

cvx_end

val(bounds) = cvx_optval;

end

% Display the minimal bounding box bounds

disp([’l1 = ’ num2str(val(1))]);

disp([’u1 = ’ num2str(val(2))]);

disp([’l2 = ’ num2str(val(3))]);

disp([’u2 = ’ num2str(val(4))]);

disp([’l3 = ’ num2str(val(5))]);



disp([’u3 = ’ num2str(val(6))]);

The script returns the following results.

l1 = −0.99561 , u1 = −0.8245 ,

l2 = 0.27531 , u2 = 0.37837 ,

l3 = −0.67899 , u3 = −0.57352 .

3. (a) Consider the desired measurement equations

zi = φ−1(yi) , i = 1, . . . ,m . (1)

The function φ−1 is unknown and needs to be estimated here, however, we do have
bounds on its derivative. Specifically, we have

1/β ≤
(
φ−1

)′
(v) ≤ 1/α , (2)

for all v. To show this, note that we have

φ
(
φ−1(v)

)
= v , ∀ v .

Differentiating both sides of the above relation and using the chain rule, we have

φ′(u)
(
φ−1

)′
(v) = 1 , where u = φ−1(v) .

Hence, we get (
φ−1

)′
(v) = 1/φ′(u) , where u = φ−1(v) . (3)

But, as α ≤ φ′(u) ≤ β for all u, where 0 < α < β, we have

1/β ≤ 1/φ′(u) ≤ 1/α , ∀ u .

Substituting this into (3) thus yields

1/β ≤
(
φ−1

)′
(v) ≤ 1/α , ∀ v .

Returning to the problem at hand, note that from (1) and the mean value theorem,
there is a v ∈ (−∞,∞) for which we have(

φ−1
)′

(v) =
zi+1 − zi
yi+1 − yi

,

for any i = 1, . . . ,m− 1. Substituting this into (2) and assuming that the data is given
with yi in nondecreasing order, we get

(1/β) (yi+1 − yi) ≤ zi+1 − zi ≤ (1/α) (yi+1 − yi) , i = 1, . . . ,m− 1 .

Now, as vi = zi − aTi x and vi are i.i.d. with distribution N
(
0, σ2

)
for i = 1, . . . ,m, the

log-likelihood function l(x, z) has the form

l(x, z) = −C1

m∑
i=1

(
zi − aTi x

)2
+ C2 ,



where C1 , 1/
(
2σ2
)

(which satisfies C1 > 0) and C2 , (m/2) log
(
2πσ2

)
are constants.

Thus, to find an ML estimate of x and z, we can minimize the objective

f0(x, z) ,
m∑
i=1

(
zi − aTi x

)2
= ||z−Ax||22 ,

subject to the constraints. Note that here, the i-th row of A is aTi for i = 1, . . . ,m.
This leads to the following problem.

minimize ||z−Ax||22
subject to (1/β) (yi+1 − yi) ≤ zi+1 − zi ≤ (1/α) (yi+1 − yi) , i = 1, . . . ,m− 1

,

with variables x ∈ Rn and z ∈ Rm. However, this is a QP and hence a convex
optimization problem. Note that the problem does not depend on the noise variance σ2.

(b) The following MATLAB code, which invokes cvx, was used to solve this specific
problem instance.

% Load the nonlinear measurement data

nonlin_meas_data;

% Generate the (m-1) x m first order difference matrix Delta_1

Delta_1_row = zeros(1,m);

Delta_1_row(1) = -1;

Delta_1_row(2) = 1;

Delta_1_col = zeros(1,m-1);

Delta_1_col(1) = -1;

Delta_1 = toeplitz(Delta_1_col,Delta_1_row);

% Solve the QP used to get the ML estimates of x and z using cvx

cvx_begin

variable x(n);

variable z(m);

minimize norm(z - A*x)

subject to

(1./beta).*Delta_1*y <= Delta_1*z;

Delta_1*z <= (1./alpha).*Delta_1*y;

cvx_end

% Display the ML estimate of x

disp(’ML estimate of x:’); disp(x);

% Plot the estimated function \widehat{\phi}_{\mathrm{ml}}

plot(z,y,’LineWidth’,1)

xlabel(’$u$’,’Interpreter’,’LaTeX’,’FontSize’,20)

ylabel(’$\widehat{\phi}_{\mathrm{ml}}\!\left( u \right)$’,’Interpreter’,...

’LaTeX’,’FontSize’,20)

This yields the ML estimate of x given as follows.

x̂ml =
[

0.4819 −0.4657 0.9364 0.9297
]T

.
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Figure 3: Plot of the ML estimate of the nonlinear function φ(u), namely φ̂ml(u). This was
constructed by plotting [ẑml]i versus yi for i = 1, . . . ,m.

A plot of the estimated function φ̂ml(u) is shown in Figure 3.

4. In this problem, to eliminate outliers successively, at each iteration, we compute the
Löwner-John ellipsoid for the current set of data points and remove the point corresponding
to the largest Lagrange multiplier and add it to the set of outliers. Let Dk and Ok denote,

respectively, the data and outlier sets at the k-th iteration. Also, let x
(k)
i denote the point

removed at the k-th iteration, i.e., the one that corresponds to the largest Lagrange
multiplier. Then, we have the following ellipsoidal peeling algorithm.

Initialization:
D0 , {x1, . . . ,xN} , O0 , ∅ .

Iteration: For k = 1, . . . , Nrem, where Nrem denotes the total number of points to remove
from the original data set, do the following.

1. Determine x
(k)
i as the point corresponding to the largest Lagrange multiplier of the

following convex optimization problem.

minimize − log det A

subject to ||Axi + b||2 ≤ 1 , xi ∈ Dk
⇐⇒

minimize − (det A)1/n

subject to ||Axi + b||2 ≤ 1 , xi ∈ Dk
,

with variables A ∈ Sn and b ∈ Rn. When it comes to solving instantiations of this
problem using cvx, we will use the second equivalent form of the problem as the
det rootn subroutine is more efficient that the log det one.

2. Update the data and outlier sets as follows.

Dk = Dk−1 \
{

x
(k)
i

}
, Ok = Ok−1 ∪

{
x
(k)
i

}
.



3. Increment k as k → k + 1.

4. If k ≤ Nrem, then go to 1. Otherwise, stop. The following MATLAB code, which uses
cvx, was used to remove outliers from the given data set here.

% Load the data

ellip_peel_data;

% Set the number of outliers to remove

N_rem = 30;

% Initialize the ellipsoidal peeling algorithm

D = data;

O = [];

log_vol_array = [];

n = size(data,1);

% Run for-loop iteration to remove outliers successively

for k = 1:(N_rem+1)

% Find the minimum volume ellipsoid containing all current data points

cvx_begin

variable A(n,n) symmetric;

variable b(n);

dual variable lambda;

minimize (-det_rootn(A))

%minimize (-log_det(A))

subject to

lambda : norms(A*D + repmat(b,1,size(D,2))) <= 1;

cvx_end

% Find the maximum dual variable (i.e., the largest Lagrange multiplier

% and remove the corresponding data point

[lambda_max,outlier_index] = max(lambda);

% Update the outlier and data sets

O = [O D(:,outlier_index)];

D(:,outlier_index) = [];

% Store the logarithm of the volume of the optimal ellipsoid

log_vol_array = [log_vol_array (0.5.*log(1./det(A)))];

clear A b;

end

% Plot the log of the volume of the optimal ellipsoid as a function of the

% number of points removed

figure

plot(0:N_rem,log_vol_array,’LineWidth’,1)

grid on

xlabel(’$\mathrm{card}\!\left( \mathcal{O} \right)$’,’Interpreter’,...

’LaTeX’,’FontSize’,20)

ylabel(’$\log\!\left(\mathrm{vol}\!\left(\mathcal{E}\right)\right)$’,...

’Interpreter’,’LaTeX’,’FontSize’,20)



% Plot the data points to determine visually the number of outliers present

figure

plot(data(1,:),data(2,:),’.’,’LineWidth’,1)

xlabel(’$x$’,’Interpreter’,’LaTeX’,’FontSize’,20)

ylabel(’$y$’,’Interpreter’,’LaTeX’,’FontSize’,20)

A plot of the number of points removed card(O) as a function of the logarithm of the
volume of the resulting minimum volume covering ellipsoid E is shown in Figure 4(a).
Along with this, a plot of the data points themselves is given in Figure 4(b).
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Figure 4: Ellipsoidal peeling plots: (a) logarithm of the volume of the minimum covering ellipsoid
(i.e., log(vol(E))) versus the number of data points removed (i.e., card(O)) and (b) original data
set.

From the ‘eyeball’ test, it is clear that there are 4 outliers. This is not immediately
clear from the plot in Figure 4(a), which exhibits two knees. From Figure 4(a), it can
be seen that there is a dramatic decrease in the volume of the minimum covering
ellipsoid for the first 3 points and then there is some stalling for the next two points,
which suggests that non-outlier points were erroneously added to O. This corresponds
to the first knee of the curve. Then, there is another dramatic decrease at the next
point, followed by a slow and gradual shrinking of the volume from that point on. This
corresponds to the second knee of the curve. If we add up only the number of points
leading to a dramatic decrease of the ellipsoidal volume, we obtain 4 outliers,
consistent with the ‘eyeball’ test.

The results of this simulation bring to light some of the advantages and disadvantages
of this ellipsoidal peeling approach. If we accumulate only the points corresponding to
large decreases in the ellipsoidal volume, then we obtain the correct number of outliers.
However, the algorithm did not extract all the outliers before extracting some of the
normal data points.



*5. (a) Let ν ∈ Rn denote the dual variable. Then, the Lagrangian is given by the following.

L(x,ν) = ||Ax− b||22 +
n∑
k=1

νk
(
x2k − 1

)
,

= xTATAx− 2bTAx + bTb + xT (diag(ν)) x− 1Tν ,

= xT
(
ATA + diag(ν)

)
x− 2bTAx− 1Tν + bTb . (4)

From (4), it can be seen that L(x,ν) is unbounded below in x if ATA + diag(ν) 6� 0 or(
−ATb

)
6∈ R

(
ATA + diag(ν)

)
. When both ATA + diag(ν) � 0 and(

−ATb
)
∈ R

(
ATA + diag(ν)

)
, the infimum of the Lagrangian occurs when the

gradient with respect to x vanishes. This yields

∇L(x,ν) = 2
(
ATA + diag(ν)

)
x− 2ATb = 0 ,

which is equivalent to the normal equations(
ATA + diag(ν)

)
x = ATb .

The solution to the normal equations is given by

x? =
(
ATA + diag(ν)

)#
ATb .

Substituting this into (4), it follows that the dual function g(ν) = infx L(x,ν) is given
by

g(ν) =


−1Tν − bTA

(
ATA + diag(ν)

)#
ATb + bTb , ATA + diag(ν) � 0 ,(

−ATb
)
∈ R

(
ATA + diag(ν)

)
−∞ , otherwise

.

Hence, the dual problem is the following.

maximize −1Tν − bTA
(
ATA + diag(ν)

)#
ATb + bTb

subject to ATA + diag(ν) � 0(
−ATb

)
∈ R

(
ATA + diag(ν)

) .

Expressing the problem in epigraph form yields the following equivalent problem.

maximize −1Tν − t+ bTb

subject to bTA
(
ATA + diag(ν)

)#
ATb ≤ t

ATA + diag(ν) � 0(
−ATb

)
∈ R

(
ATA + diag(ν)

) .

In turn, this is identical to the problem

maximize −1Tν − t+ bTb

subject to t−
(
−bTA

) (
ATA + diag(ν)

)# (−ATb
)
≥ 0

ATA + diag(ν) � 0(
−ATb

)
∈ R

(
ATA + diag(ν)

) ,



which, upon using Schur complements, leads to the following equivalent problem,
which is an SDP.

maximize −1Tν − t+ bTb

subject to

[
ATA + diag(ν) −ATb

−bTA t

]
� 0

.

(b) We first write the dual problem as a minimization problem by negating the objective
function. This leads to the problem

minimize 1Tν + t− bTb

subject to

[
ATA + diag(ν) −ATb

−bTA t

]
� 0

.

To handle the linear matrix inequality (LMI) constraint, we introduce a Lagrange
multiplier matrix of the form [

Z z

zT λ

]
.

With this, the Lagrangian is given by the following.

L(ν, t,Z, z, λ) = 1Tν + t− bTb− tr

([
Z z

zT λ

][
ATA + diag(ν) −ATb

−bTA t

])
,

= 1Tν + t− bTb− tr
(
Z
(
ATA + diag(ν)

)
− zbTA

)
−
(
−zTATb + λt

)
,

= 1Tν + t− bTb− tr
(
ATAZ

)
− diag(Z)T ν + bTAz + zTATb− λt ,

= (1− diag(Z))T ν + t (1− λ)− tr
(
ATAZ

)
+ 2bTAz− bTb .

This is unbounded below unless diag(Z) = 1 and λ = 1. As such, the dual function is
given by

g(Z, z, λ) =

{
−tr
(
ATAZ

)
+ 2bTAz− bTb , diag(Z) = 1 , λ = 1

−∞ otherwise
.

Thus, the dual problem of the SDP of part (a) is the following.

maximize −tr
(
ATAZ

)
+ 2bTAz− bTb

subject to diag(Z) = 1[
Z z

zT 1

]
� 0

.

Expressing this maximization problem as a minimization problem by negating the
objective leads to the following equivalent problem.

minimize tr
(
ATAZ

)
− 2bTAz + bTb

subject to diag(Z) = 1[
Z z

zT 1

]
� 0

. (5)



This is the desired form here.

To see that (5) is a relaxation of the original problem, note that the binary
least-squares problem is equivalent to

minimize tr
(
ATAZ

)
− 2bTAz + bTb

subject to diag(Z) = 1

Z = zzT
. (6)

Suppose we relax the equality constraint Z = zzT with the weaker inequality constraint
Z � zzT . Using Schur complements, this weaker inequality constraint is equivalent to[

1 zT

z Z

]
� 0 .

But note that we have the following.[
1 zT

z Z

]
� 0 ⇐⇒

[
0n×1 In

1 01×n

][
1 zT

z Z

][
01×n 1

In 0n×1

]
� 0 ,

⇐⇒

[
Z z

zT 1

]
� 0 .

Substituting this equivalent weaker inequality constraint into (6), we get the problem
from (5).

If we have

rank

([
Z z

zT 1

])
= 1

at the optimum of (5), which is equivalent to saying that Z = zzT , then we satisfy the
equality constraint Z = zzT of (6), and so the relaxation is exact in this case. Thus,
the optimal values of problems (6) and (5) are equal, and the optimal solution z of (5)
is optimal for (6).

(c) Consider the problem

minimize E
[
||Av − b||22

]
subject to E

[
v2k
]

= 1 , k = 1, . . . , n
. (7)

Note that we have the following upon expanding the objective.

E
[
||Av − b||22

]
= E

[
(Av − b)T (Av − b)

]
,

= E
[
tr
(

(Av − b) (Av − b)T
)]

,

= tr
(
E
[
(Av − b) (Av − b)T

])
,

= tr
(
E
[
AvvTAT −AvbT − bvTAT + bbT

])
,

= tr
(
A
(
E
[
vvT

])
AT −A (E[v]) bT − b (E[v])T AT + bbT

)
,

= tr
(
AZAT −AzbT − bzTAT + bbT

)
, (8)

= tr
(
ATAZ

)
− bTAz− zTATb + bTb ,

= tr
(
ATAZ

)
− 2bTAz + bTb . (9)



Here, (8) follows from the fact that z = E[v] and Z = E
[
vvT

]
. Similarly, for the

left-hand-side of the equality constraints of (7), we get the following.

E
[
v2k
]

= Zk,k = [Z]k,k , k = 1, . . . , n . (10)

Finally, the covariance matrix of v, given by

Cv , E
[
(v − E[v]) (v − E[v])T

]
= Z− zzT ,

must be positive semidefinite, i.e., Cv � 0. Hence, we must have Z− zzT � 0, which
was found in part (b) to be equivalent to[

Z z

zT 1

]
� 0 .

Combining this constraint with the results of (9) and (10), it follows that the problem
from (7) is equivalent to the problem

minimize tr
(
ATAZ

)
− 2bTAz + bTb

subject to diag(Z) = 1[
Z z

zT 1

]
� 0

,

which is the same as (5) from part (b).

(d) The following MATLAB code, employing cvx, was used to compute suboptimal
feasible solutions using the desired heuristics.

% Initialize the problem data

randn(’state’,0)

s = 0.5;

%s = 1;

%s = 2;

%s = 3;

m = 50;

n = 40;

A = randn(m,n);

xhat = sign(randn(n,1));

b = A*xhat + s.*randn(m,1);

f_xhat = norm(A*xhat - b).^2;

% (i) Compute the sign of the solution to the LS problem

x_a = sign(A\b);

f_x_a = norm(A*x_a - b).^2;

% (ii) Compute the sign of the solution to the SDP of part (b)

%cvx_precision high

cvx_begin sdp

variable z(n);



variable Z(n,n) symmetric;

minimize (trace(A’*A*Z) - 2*b’*A*z + b’*b)

subject to

[Z z ; z’ 1] >= 0;

diag(Z) == 1;

cvx_end

x_b = sign(z);

f_x_b = norm(A*x_b - b).^2;

% (iii) Compute the sign of the rank-one approximation of the optimal

% solution of the SDP of part (b)

Y = [Z z ; z’ 1];

[V,D] = eig(Y);

[eig_sorted,eig_index_sorted] = sort(diag(D),’descend’);

v_1 = V(1:n,eig_index_sorted(1));

x_c = sign(z);

f_x_c = norm(A*x_c - b).^2;

% (iv) Compute the sign of the random sample with mean z and second moment

% Z

N = 100;

U = randn(n,N);

V_tilde = sqrtm(Z - z*z’)*U + repmat(z,1,N);

X_d = sign(real(V_tilde));

R = A*X_d - repmat(b,1,N);

F_x_d = sum(R.^2,1);

[f_x_d,x_d_index] = min(F_x_d);

x_d = X_d(:,x_d_index);

% Report the objective function values for each approach

disp([’f_xhat = ’ num2str(f_xhat)]);

disp([’f_x_a = ’ num2str(f_x_a)]);

disp([’f_x_b = ’ num2str(f_x_b)]);

disp([’f_x_c = ’ num2str(f_x_c)]);

disp([’f_x_d = ’ num2str(f_x_d)]);

disp([’SDP lower bound = ’ num2str(cvx_optval)]);

% Report the square of the l_2-norm of the difference between the actual

% input to the problem and each heuristic solution

% solutions and the actual input to the problem

disp([’||xhat - x_a||_{2}^2 = ’ num2str(norm(xhat-x_a).^2)]);

disp([’||xhat - x_b||_{2}^2 = ’ num2str(norm(xhat-x_b).^2)]);

disp([’||xhat - x_c||_{2}^2 = ’ num2str(norm(xhat-x_c).^2)]);

disp([’||xhat - x_d||_{2}^2 = ’ num2str(norm(xhat-x_d).^2)]);

To generate samples of N
(
z,Z− zzT

)
, we used the following result from probability

theory. If u ∼ N (µ,Σ), then w , Bu + c is such that w ∼ N
(
Bµ + c,BΣBT

)
. Thus,

if u ∼ N (0n×1, In), then w , (Z− zz)1/2 u + z is such that w ∼ N
(
z,Z− zzT

)
.



The following table lists, for each s, the values of

f(x) = ||Ax− b||22 ,

for x = x̂ and the four suboptimal solutions (i)-(iv), along with the lower bound
obtained from the SDP relaxation given in (5).

s f(x̂) f
(
x(a)

)
f
(
x(b)

)
f
(
x(c)

)
f
(
x(d)

)
SDP lower bound

0.5 17.3243 17.3243 17.3243 17.3243 17.3243 16.4217
1 69.2974 162.0505 69.2974 69.2974 69.2974 61.9026
2 277.1895 908.5323 277.1895 277.1895 277.1895 230.4446
3 623.6765 1151.5117 673.6883 673.6883 623.6765 489.0238

From this table and the results of the simulations carried out here, we make the
following observations.

– For s = 0.5, all heuristics return x̂. This is likely to be the global optimum, but
that is not necessarily true. However, from the lower bound, we know that the
global optimum is in the interval [16.4217, 17.3243], so even if 17.3243 is not the
global optimum, it is quite close.

– For higher values of s, the result from the first heuristic x(a) is substantially worse
than those derived from the SDP-based heuristics.

– All three SDP-based heuristics return x̂ for s = 1 and s = 2.

– For s = 3, the randomized rounding method returns x̂. The other SDP-based
heuristics give slightly higher values.


