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Vector Optimization Overview

Vector Optimization Problems

As opposed to problems with generalized inequality constraints, where the inequality
constraint functions were vector-valued, in vector optimization problems, the objective
is vector-valued and the optimization is carried out with respect to a proper cone.

General Vector Optimization Problem

minimize with respectto £ fo(x)
subject to filx)<0,i=1,...,m .
hi(x)=0,i=1,...,p
The vector objective fo : R™ — R? is minimized with respect to the proper cone K C RY.

Convex Vector Optimization Problem

minimize with respectto K fo(x)
subject to filx)<0,i=1,...,m .
Ax=Db

The objective f, : R™ — R?is K-convex, fi, ..., fm are convex, A € RP*" andb € R”.
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Optimal / Pareto Optimal Points for Vector Problems

Let O denote the set of achievable objective values given by
O={fo(x):IxeD, fi(x)<0,i=1,....,m, hi(x)=0,:=1,...,p} CR?.
In other words, O consists of the values of fy(x) such that x is feasible.

m A point x* is said to be optimal if fo(x*) is the minimum element of O, i.e., if and
only if it is feasible and satisfies

O Ch(x)+K.

m A point xP° is said to be Pareto optimal if f,(x"°) is a minimal element of O, i.e.,
if and only if it is feasible and satisfies

(fo(x”?) =K)N O = {fo(x")} .

fo(x*)

x* is optimal xP° is Pareto optimal
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Optimal and Pareto Optimal Points
Multicriterion Optimization

A vector optimization problem with C = RY is said to be a multicriterion or
multi-objective optimization problem. In this case, we have

T
fox) =[ Fi(x) - F,(x) ] ,
where F1, ..., F, represent the ¢ different objectives that we wish to minimize. In other
words, we want every F; fori = 1,...,q to be small.

m A feasible x* is optimal if
y feasible = f(x*) < fuo(y) = F(x") < F(y),i=1,.
m A feasible x?° is Pareto optimal if
y feasible, fo(y) < fo(x°) = fo(x*°) = fo(y) .

If there are multiple Pareto optimal values, then there is a trade-off between the
objectives. Namely, if x and y are Pareto optimal points with

Fi(x) < Fi(y), i€A,
Fz(x) = F’L(Y)3 ieBa
FZ(X) > F’L(Y)v ieca

where AUBUC = {1,...,q}, then either A and C are both empty or both
nonempty.
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Vector Optimization Scalarization

Solving Vector Optimization Problems Via Scalarization

A standard method for finding optimal or Pareto optimal points is through scalarization, which is
based on the characterization of minimum and minimal elements via dual generalized inequalities.

Scalarization

Choose any A >~,-¢ 0 and solve the scalar problem
minimize ~ ATfo(x)
subjectto  fi(x) <0,i=1,...,m
hi(x)=0,i=1,...,p

If x is optimal for the scalar problem, then it
is Pareto optimal for the vector optimization
problem. However, there may be Pareto
optimal points which cannot be obtained
through scalarization.

Scalarization of Convex Vector Optimization Problems:

m Almost all Pareto optimal points can be obtained by varying A >,@ 0.

m For every Pareto optimal point xP°, there is some nonzero A = ,-¢ 0 such that xP° is a
solution of the scalarized problem. However, not every solution of the scalarized problem
with X =@ 0 and X # 0 is a Pareto optimal point for the vector problem.
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Scalarization for Multicriterion Problems

To find Pareto optimal points via scalarization for multicriterion problems, we minimize
q
ATy (x) = Y NFi(x)
=1

where \; > 0fori=1,...,q. In other words, we minimize a positive weighted sum of
the objectives.

m By varying A over A > 0, this will trace out or explore the optimal trade-off
surface (for ¢ > 2) or the optimal trade-off curve (for ¢ = 2).

m The quantity \x /A, is the relative weight or relative importance of the k-th
objective compared to the ¢-th objective. Alternatively, A\x /A, is an exchange rate
between the two objectives: a decrease in Fj, by « is the same as an increase in
Fy by ()\k/>\g) Q.

m Starting from a weight vector A yielding a Pareto optimal point x”°, to obtain a
new Pareto optimal point which trades off a better k-th objective value for possibly
worse values for the other objectives, we form a new weight vector A with

MNe>Mes Ae=Ae, L£k, 0=1,...,q.

This yields a new Pareto optimal point X*° with F},(x"°) < Fj(x°). Typically, we
have Fk(ipo) < Fk(xpo).
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Regularized Least-Squares

Given A € R™*™ and b € R™, we want to choose x € R™ to minimize the two
quadratic objectives:

B Fi(x) = ||Ax - b||2 = xTATAx — 2b” Ax + b”b, which is a measure of the
misfit between Ax and b,

B [(x) = ||x|[; = x"'x, which is a measure of the length of x.
This yields the bi-criterion problem:

minimize (with respectto R3)  fo(x) = (F1(x), F2(x)) = (||Ax — b||§ , ||x||§) .
Scalarization yields the scalar weighted sum objective
ATfo(x) = ilAx bl + A |x][3
x" (MATA + 2al) x — 201b" Ax + AibTb.

The first expression for the scalarized objective shows that this is a form of Tikhonov
regularization. Defining v = X2 /A1 as the relative weight assigned to F» compared to
F, the optimizing value of x is given by

x*(7) = (ATA n VI) ' ATb.
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Regularized Least-Squares (Continued)

For example problem data A € R'°°%10 and b € R%, we have the following set of
achievable values (||Ax — bll3, x| |§) and optimal trade-off curve.
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The shaded set is the set of achievable values, while the thick line is the optimal
trade-off curve formed by Pareto optimal points.
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Risk-Return Trade-Off in Portfolio Optimization

Bi-criterion expression of Markowitz portfolio optimization problem

In economics, the classical Markowitz portfolio optimization problem consists of minimizing the
return variance or risk, subject to a minimum acceptable mean return. Assuming that a portfolio
budget constraint and no-shorting constraints are in effect, this becomes the QP:
minimize x7¥x
subjectto  PTx > rmin, 17x=1,x>0
m x € R" is the investment portfolio, where z; is the fraction invested in asset :.

m p € R™ is the vector of relative asset price changes, modeled as a random vector with
mean p and covariance X.

m 2 pTx € Ris the return, with a mean return of p7x and return variance (risk) of x7 =x.
B Thmin € R is the minimum acceptable mean return.

By varying rmin, this is naturally equivalent to the bi-criterion problem

minimize (with respect to R2 ) (—ﬁTx, xTZ:x)

subject to 1Tx=1,x>0
Through scalarization, this in turn becomes the problem
minimize -\’ x + Aox’ Ix minimize  —p’x +yx’ Bx
subjectto 1Tx=1,x>0 — subjectto 1Tx=1,x>0

where v £ X\2/\1 > 0 is the exchange rate between mean return and risk. For fixed -, this
problem is a QP.
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Risk-Return Trade-Off in Portfolio Optimization

Optimal risk-return trade-off curve and corresponding optimal allocations

Consider a problem consisting of 4 assets with statistics as follows.

= 1/2
Asset ‘ i ‘ HA
1 12% | 20% = p12 =30%
2 10% | 10% m 13 =—40%
3 % | 5% - B
p2,3 =0%
4 3% 0%

Here, py, ¢ is the correlation
coefficient between p;. and p,
given by

1/2
P = Tge/ (E /

k,k

1/2

ZZ,E

The optimal risk-return trade-off curve and corresponding portfolio allocations are as follows.
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