EE/ACM 150 - Applications of Convex Optimization in Signal Processing and Communications
 Lecture 10

Andre Tkacenko

Signal Processing Research Group
Jet Propulsion Laboratory
May 3, 2012

Caltech

Outline

1 Vector Optimization
■ Overview

- Optimal and Pareto Optimal Points
- Scalarization
- Examples

Vector Optimization Problems

As opposed to problems with generalized inequality constraints, where the inequality constraint functions were vector-valued, in vector optimization problems, the objective is vector-valued and the optimization is carried out with respect to a proper cone.

General Vector Optimization Problem

minimize with respect to \mathcal{K}	$\mathbf{f}_{0}(\mathbf{x})$
subject to	$f_{i}(\mathbf{x}) \leq 0, i=1, \ldots, m$
	$h_{i}(\mathbf{x})=0, i=1, \ldots, p$

The vector objective $\mathbf{f}_{0}: \mathbb{R}^{n} \rightarrow \mathbb{R}^{q}$ is minimized with respect to the proper cone $\mathcal{K} \subseteq \mathbb{R}^{q}$.

Convex Vector Optimization Problem

$$
\begin{array}{ll}
\text { minimize with respect to } \mathcal{K} & \mathbf{f}_{0}(\mathbf{x}) \\
\text { subject to } & f_{i}(\mathbf{x}) \leq 0, i=1, \ldots, m \\
& \mathbf{A x}=\mathbf{b}
\end{array}
$$

The objective $\mathbf{f}_{0}: \mathbb{R}^{n} \rightarrow \mathbb{R}^{q}$ is \mathcal{K}-convex, f_{1}, \ldots, f_{m} are convex, $\mathbf{A} \in \mathbb{R}^{p \times n}$, and $\mathbf{b} \in \mathbb{R}^{p}$.

Optimal / Pareto Optimal Points for Vector Problems

Let \mathcal{O} denote the set of achievable objective values given by

$$
\mathcal{O}=\left\{\mathbf{f}_{0}(\mathbf{x}): \exists \mathbf{x} \in \mathcal{D}, f_{i}(\mathbf{x}) \leq 0, i=1, \ldots, m, h_{i}(\mathbf{x})=0, i=1, \ldots, p\right\} \subseteq \mathbb{R}^{q}
$$

In other words, \mathcal{O} consists of the values of $f_{0}(x)$ such that x is feasible.

- A point x^{\star} is said to be optimal if $\mathrm{f}_{0}\left(\mathrm{x}^{\star}\right)$ is the minimum element of \mathcal{O}, i.e., if and only if it is feasible and satisfies

$$
\mathcal{O} \subseteq \mathrm{f}_{0}\left(\mathrm{x}^{\star}\right)+\mathcal{K} .
$$

- A point x^{po} is said to be Pareto optimal if $\mathrm{f}_{0}\left(\mathrm{x}^{\mathrm{po}}\right)$ is a minimal element of \mathcal{O}, i.e., if and only if it is feasible and satisfies

$$
\left(\mathbf{f}_{0}\left(\mathbf{x}^{\mathrm{po}}\right)-\mathcal{K}\right) \cap \mathcal{O}=\left\{\mathbf{f}_{0}\left(\mathbf{x}^{\mathrm{po}}\right)\right\} .
$$

\mathbf{x}^{po} is Pareto optimal

Multicriterion Optimization

A vector optimization problem with $\mathcal{K}=\mathbb{R}_{+}^{q}$ is said to be a multicriterion or multi-objective optimization problem. In this case, we have

$$
\mathbf{f}_{0}(\mathbf{x})=\left[\begin{array}{lll}
F_{1}(\mathbf{x}) & \cdots & F_{q}(\mathbf{x})
\end{array}\right]^{T},
$$

where F_{1}, \ldots, F_{q} represent the q different objectives that we wish to minimize. In other words, we want every F_{i} for $i=1, \ldots, q$ to be small.

- A feasible x^{\star} is optimal if

$$
\mathbf{y} \text { feasible } \Longrightarrow \mathbf{f}_{0}\left(\mathbf{x}^{\star}\right) \preceq \mathbf{f}_{0}(\mathbf{y}) \Longleftrightarrow F_{i}\left(\mathbf{x}^{\star}\right) \leq F_{i}(\mathbf{y}), i=1, \ldots, q .
$$

- A feasible \mathbf{x}^{po} is Pareto optimal if

$$
\mathbf{y} \text { feasible, } \mathbf{f}_{0}(\mathbf{y}) \preceq \mathbf{f}_{0}\left(\mathbf{x}^{\mathrm{po}}\right) \Longrightarrow \mathbf{f}_{0}\left(\mathbf{x}^{\mathrm{po}}\right)=\mathbf{f}_{0}(\mathbf{y}) .
$$

If there are multiple Pareto optimal values, then there is a trade-off between the objectives. Namely, if x and y are Pareto optimal points with

$$
\begin{aligned}
& F_{i}(\mathbf{x})<F_{i}(\mathbf{y}), \quad i \in \mathcal{A}, \\
& F_{i}(\mathbf{x})=F_{i}(\mathbf{y}), \quad i \in \mathcal{B}, \\
& F_{i}(\mathbf{x})>F_{i}(\mathbf{y}), \quad i \in \mathcal{C},
\end{aligned}
$$

where $\mathcal{A} \cup \mathcal{B} \cup \mathcal{C}=\{1, \ldots, q\}$, then either \mathcal{A} and \mathcal{C} are both empty or both nonempty.

Solving Vector Optimization Problems Via Scalarization

A standard method for finding optimal or Pareto optimal points is through scalarization, which is based on the characterization of minimum and minimal elements via dual generalized inequalities.

Scalarization

Choose any $\boldsymbol{\lambda} \succ_{\mathcal{K} \circledast} \mathbf{0}$ and solve the scalar problem

$$
\begin{array}{ll}
\operatorname{minimize} & \boldsymbol{\lambda}^{T} \mathbf{f}_{0}(\mathbf{x}) \\
\text { subject to } & f_{i}(\mathbf{x}) \leq 0, i=1, \ldots, m \\
& h_{i}(\mathbf{x})=0, i=1, \ldots, p
\end{array}
$$

If x is optimal for the scalar problem, then it is Pareto optimal for the vector optimization problem. However, there may be Pareto optimal points which cannot be obtained through scalarization.

Scalarization of Convex Vector Optimization Problems:

■ Almost all Pareto optimal points can be obtained by varying $\boldsymbol{\lambda} \succ_{\mathcal{K} \circledast} \mathbf{0}$.
■ For every Pareto optimal point \mathbf{x}^{po}, there is some nonzero $\boldsymbol{\lambda} \succeq_{\mathcal{K} \circledast} \mathbf{0}^{\text {such }}$ that \mathbf{x}^{po} is a solution of the scalarized problem. However, not every solution of the scalarized problem with $\boldsymbol{\lambda} \succeq_{\mathcal{K} \circledast} \mathbf{0}$ and $\boldsymbol{\lambda} \neq \mathbf{0}$ is a Pareto optimal point for the vector problem.

Scalarization for Multicriterion Problems

To find Pareto optimal points via scalarization for multicriterion problems, we minimize

$$
\boldsymbol{\lambda}^{T} \mathbf{f}_{0}(\mathbf{x})=\sum_{i=1}^{q} \lambda_{i} F_{i}(\mathbf{x})
$$

where $\lambda_{i}>0$ for $i=1, \ldots, q$. In other words, we minimize a positive weighted sum of the objectives.

■ By varying $\boldsymbol{\lambda}$ over $\boldsymbol{\lambda} \succ \mathbf{0}$, this will trace out or explore the optimal trade-off surface (for $q>2$) or the optimal trade-off curve (for $q=2$).

- The quantity $\lambda_{k} / \lambda_{\ell}$ is the relative weight or relative importance of the k-th objective compared to the ℓ-th objective. Alternatively, $\lambda_{k} / \lambda_{\ell}$ is an exchange rate between the two objectives: a decrease in F_{k} by α is the same as an increase in F_{ℓ} by $\left(\lambda_{k} / \lambda_{\ell}\right) \alpha$.
- Starting from a weight vector $\boldsymbol{\lambda}$ yielding a Pareto optimal point x^{po}, to obtain a new Pareto optimal point which trades off a better k-th objective value for possibly worse values for the other objectives, we form a new weight vector $\widetilde{\lambda}$ with

$$
\tilde{\lambda}_{k}>\lambda_{k}, \tilde{\lambda}_{\ell}=\lambda_{\ell}, \ell \neq k, \ell=1, \ldots, q .
$$

This yields a new Pareto optimal point $\widetilde{\mathbf{x}}^{\mathrm{po}}$ with $F_{k}\left(\widetilde{\mathbf{x}}^{\mathrm{po}}\right) \leq F_{k}\left(\mathbf{x}^{\mathrm{po}}\right)$. Typically, we have $F_{k}\left(\widetilde{\mathbf{x}}^{\mathrm{po}}\right)<F_{k}\left(\mathbf{x}^{\mathrm{po}}\right)$.

Regularized Least-Squares

Given $\mathbf{A} \in \mathbb{R}^{m \times n}$ and $\mathbf{b} \in \mathbb{R}^{m}$, we want to choose $\mathbf{x} \in \mathbb{R}^{n}$ to minimize the two quadratic objectives:

- $F_{1}(\mathbf{x})=\|\mathbf{A} \mathbf{x}-\mathbf{b}\|_{2}^{2}=\mathbf{x}^{T} \mathbf{A}^{T} \mathbf{A} \mathbf{x}-2 \mathbf{b}^{T} \mathbf{A} \mathbf{x}+\mathbf{b}^{T} \mathbf{b}$, which is a measure of the misfit between $\mathbf{A x}$ and \mathbf{b},
- $F_{2}(\mathbf{x})=\|\mathbf{x}\|_{2}^{2}=\mathbf{x}^{T} \mathbf{x}$, which is a measure of the length of \mathbf{x}.

This yields the bi-criterion problem:
minimize (with respect to $\left.\mathbb{R}_{+}^{2}\right) \quad \mathbf{f}_{0}(\mathbf{x})=\left(F_{1}(\mathbf{x}), F_{2}(\mathbf{x})\right)=\left(\|\mathbf{A x}-\mathbf{b}\|_{2}^{2},\|\mathbf{x}\|_{2}^{2}\right)$.
Scalarization yields the scalar weighted sum objective

$$
\begin{aligned}
\boldsymbol{\lambda}^{T} \mathbf{f}_{0}(\mathbf{x})= & \lambda_{1}\|\mathbf{A x}-\mathbf{b}\|_{2}^{2}+\lambda_{2}\|\mathbf{x}\|_{2}^{2}, \\
& \mathbf{x}^{T}\left(\lambda_{1} \mathbf{A}^{T} \mathbf{A}+\lambda_{2} \mathbf{I}\right) \mathbf{x}-2 \lambda_{1} \mathbf{b}^{T} \mathbf{A} \mathbf{x}+\lambda_{1} \mathbf{b}^{T} \mathbf{b} .
\end{aligned}
$$

The first expression for the scalarized objective shows that this is a form of Tikhonov regularization. Defining $\gamma \triangleq \lambda_{2} / \lambda_{1}$ as the relative weight assigned to F_{2} compared to F_{1}, the optimizing value of \mathbf{x} is given by

$$
\mathbf{x}^{\star}(\gamma)=\left(\mathbf{A}^{T} \mathbf{A}+\gamma \mathbf{I}\right)^{-1} \mathbf{A}^{T} \mathbf{b}
$$

Regularized Least-Squares (Continued)

For example problem data $\mathbf{A} \in \mathbb{R}^{100 \times 10}$ and $\mathbf{b} \in \mathbb{R}^{100}$, we have the following set of achievable values $\left(\|\mathbf{A x}-\mathbf{b}\|_{2}^{2},\|\mathbf{x}\|_{2}^{2}\right)$ and optimal trade-off curve.

The shaded set is the set of achievable values, while the thick line is the optimal trade-off curve formed by Pareto optimal points.

Risk-Return Trade-Off in Portfolio Optimization

Bi-criterion expression of Markowitz portfolio optimization problem

In economics, the classical Markowitz portfolio optimization problem consists of minimizing the return variance or risk, subject to a minimum acceptable mean return. Assuming that a portfolio budget constraint and no-shorting constraints are in effect, this becomes the QP:

$$
\begin{array}{ll}
\operatorname{minimize} & \mathbf{x}^{T} \boldsymbol{\Sigma} \mathbf{x} \\
\text { subject to } & \overline{\mathbf{p}}^{T} \mathbf{x} \geq r_{\min }, \mathbf{1}^{T} \mathbf{x}=1, \mathbf{x} \succeq \mathbf{0}
\end{array}
$$

$\square \mathbf{x} \in \mathbb{R}^{n}$ is the investment portfolio, where x_{i} is the fraction invested in asset i.
■ $\mathbf{p} \in \mathbb{R}^{n}$ is the vector of relative asset price changes, modeled as a random vector with mean $\overline{\mathbf{p}}$ and covariance $\boldsymbol{\Sigma}$.
■ $r \triangleq \mathbf{p}^{T} \mathbf{x} \in \mathbb{R}$ is the return, with a mean return of $\overline{\mathbf{p}}^{T} \mathbf{x}$ and return variance (risk) of $\mathbf{x}^{T} \boldsymbol{\Sigma} \mathbf{x}$.

- $r_{\text {min }} \in \mathbb{R}$ is the minimum acceptable mean return.

By varying $r_{\text {min }}$, this is naturally equivalent to the bi-criterion problem

$$
\begin{array}{ll}
\text { minimize (with respect to } \left.\mathbb{R}_{+}^{2}\right) & \left(-\overline{\mathbf{p}}^{T} \mathbf{x}, \mathbf{x}^{T} \mathbf{\Sigma} \mathbf{x}\right) \\
\text { subject to } & \mathbf{1}^{T} \mathbf{x}=1, \mathbf{x} \succeq \mathbf{0}
\end{array}
$$

Through scalarization, this in turn becomes the problem

$$
\begin{array}{ll}
\text { minimize } & -\lambda_{1} \overline{\mathbf{p}}^{T} \mathbf{x}+\lambda_{2} \mathbf{x}^{T} \boldsymbol{\Sigma} \mathbf{x} \\
\text { subject to } & \mathbf{1}^{T} \mathbf{x}=1, \mathbf{x} \succeq \mathbf{0}
\end{array} \Longleftrightarrow \begin{array}{ll}
\text { minimize } & -\overline{\mathbf{p}}^{T} \mathbf{x}+\gamma \mathbf{x}^{T} \boldsymbol{\Sigma} \mathbf{x} \\
\text { subject to } & \mathbf{1}^{T} \mathbf{x}=1, \mathbf{x} \succeq \mathbf{0}
\end{array}
$$

where $\gamma \triangleq \lambda_{2} / \lambda_{1}>0$ is the exchange rate between mean return and risk. For fixed γ, this problem is a QP.

Risk-Return Trade-Off in Portfolio Optimization
 Optimal risk-return trade-off curve and corresponding optimal allocations

Consider a problem consisting of 4 assets with statistics as follows.

Asset	\bar{p}_{i}	$\Sigma_{i, i}^{1 / 2}$
1	12%	20%
2	10%	10%
3	7%	5%
4	3%	0%

- $\rho_{1,2}=30 \%$
- $\rho_{1,3}=-40 \%$
- $\rho_{2,3}=0 \%$

Here, $\rho_{k, \ell}$ is the correlation coefficient between p_{k} and p_{ℓ} given by
$\rho_{k, \ell}=\Sigma_{k, \ell} /\left(\Sigma_{k, k}^{1 / 2} \Sigma_{\ell, \ell}^{1 / 2}\right)$.

The optimal risk-return trade-off curve and corresponding portfolio allocations are as follows.

