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Vector Optimization Overview

Vector Optimization Problems
As opposed to problems with generalized inequality constraints, where the inequality
constraint functions were vector-valued, in vector optimization problems, the objective
is vector-valued and the optimization is carried out with respect to a proper cone.

General Vector Optimization Problem

minimize with respect to K f0(x)

subject to fi(x) ≤ 0 , i = 1, . . . ,m

hi(x) = 0 , i = 1, . . . , p

.

The vector objective f0 : Rn → Rq is minimized with respect to the proper coneK ⊆ Rq.

Convex Vector Optimization Problem

minimize with respect to K f0(x)

subject to fi(x) ≤ 0 , i = 1, . . . ,m

Ax = b

.

The objective f0 : Rn → Rq isK-convex, f1, . . . , fm are convex, A ∈ Rp×n, and b ∈ Rp.
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Vector Optimization Optimal and Pareto Optimal Points

Optimal / Pareto Optimal Points for Vector Problems
Let O denote the set of achievable objective values given by

O = {f0(x) : ∃x ∈ D , fi(x) ≤ 0 , i = 1, . . . ,m , hi(x) = 0 , i = 1, . . . , p} ⊆ Rq .

In other words, O consists of the values of f0(x) such that x is feasible.
A point x? is said to be optimal if f0(x?) is the minimum element of O, i.e., if and
only if it is feasible and satisfies

O ⊆ f0(x
?) +K .

A point xpo is said to be Pareto optimal if f0(xpo) is a minimal element of O, i.e.,
if and only if it is feasible and satisfies

(f0(x
po)−K) ∩ O = {f0(xpo)} .

f0(x
⋆)

x⋆ is optimal

O

xpo is Pareto optimal

f0(x
po) O
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Vector Optimization Optimal and Pareto Optimal Points

Multicriterion Optimization
A vector optimization problem with K = Rq

+ is said to be a multicriterion or
multi-objective optimization problem. In this case, we have

f0(x) =
[
F1(x) · · · Fq(x)

]T
,

where F1, . . . , Fq represent the q different objectives that we wish to minimize. In other
words, we want every Fi for i = 1, . . . , q to be small.

A feasible x? is optimal if

y feasible =⇒ f0(x
?) � f0(y)⇐⇒ Fi(x

?) ≤ Fi(y) , i = 1, . . . , q .

A feasible xpo is Pareto optimal if

y feasible, f0(y) � f0(x
po) =⇒ f0(x

po) = f0(y) .

If there are multiple Pareto optimal values, then there is a trade-off between the
objectives. Namely, if x and y are Pareto optimal points with

Fi(x) < Fi(y) , i ∈ A ,
Fi(x) = Fi(y) , i ∈ B ,
Fi(x) > Fi(y) , i ∈ C ,

where A ∪ B ∪ C = {1, . . . , q}, then either A and C are both empty or both
nonempty.
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Vector Optimization Scalarization

Solving Vector Optimization Problems Via Scalarization
A standard method for finding optimal or Pareto optimal points is through scalarization, which is
based on the characterization of minimum and minimal elements via dual generalized inequalities.

Scalarization
Choose any λ �K� 0 and solve the scalar problem

minimize λT f0(x)

subject to fi(x) ≤ 0 , i = 1, . . . ,m

hi(x) = 0 , i = 1, . . . , p

.

If x is optimal for the scalar problem, then it
is Pareto optimal for the vector optimization
problem. However, there may be Pareto
optimal points which cannot be obtained
through scalarization.

O
f0(x1)

f0(x2)

f0(x3)λ1 λ2

Scalarization of Convex Vector Optimization Problems:
Almost all Pareto optimal points can be obtained by varying λ �K� 0.
For every Pareto optimal point xpo, there is some nonzero λ �K� 0 such that xpo is a
solution of the scalarized problem. However, not every solution of the scalarized problem
with λ �K� 0 and λ 6= 0 is a Pareto optimal point for the vector problem.
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Vector Optimization Scalarization

Scalarization for Multicriterion Problems
To find Pareto optimal points via scalarization for multicriterion problems, we minimize

λT f0(x) =

q∑
i=1

λiFi(x) ,

where λi > 0 for i = 1, . . . , q. In other words, we minimize a positive weighted sum of
the objectives.

By varying λ over λ � 0, this will trace out or explore the optimal trade-off
surface (for q > 2) or the optimal trade-off curve (for q = 2).
The quantity λk/λ` is the relative weight or relative importance of the k-th
objective compared to the `-th objective. Alternatively, λk/λ` is an exchange rate
between the two objectives: a decrease in Fk by α is the same as an increase in
F` by (λk/λ`)α.
Starting from a weight vector λ yielding a Pareto optimal point xpo, to obtain a
new Pareto optimal point which trades off a better k-th objective value for possibly
worse values for the other objectives, we form a new weight vector λ̃ with

λ̃k > λk , λ̃` = λ` , ` 6= k , ` = 1, . . . , q .

This yields a new Pareto optimal point x̃po with Fk(x̃
po) ≤ Fk(x

po). Typically, we
have Fk(x̃

po) < Fk(x
po).
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Vector Optimization Examples

Regularized Least-Squares
Given A ∈ Rm×n and b ∈ Rm, we want to choose x ∈ Rn to minimize the two
quadratic objectives:

F1(x) = ||Ax− b||22 = xTATAx− 2bTAx+ bTb, which is a measure of the
misfit between Ax and b,
F2(x) = ||x||22 = xTx, which is a measure of the length of x.

This yields the bi-criterion problem:

minimize (with respect to R2
+) f0(x) = (F1(x) , F2(x)) =

(
||Ax− b||22 , ||x||

2
2

)
.

Scalarization yields the scalar weighted sum objective

λT f0(x) = λ1 ||Ax− b||22 + λ2 ||x||22 ,

xT
(
λ1A

TA+ λ2I
)
x− 2λ1b

TAx+ λ1b
Tb .

The first expression for the scalarized objective shows that this is a form of Tikhonov
regularization. Defining γ , λ2/λ1 as the relative weight assigned to F2 compared to
F1, the optimizing value of x is given by

x?(γ) =
(
ATA+ γI

)−1

ATb .
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Vector Optimization Examples

Regularized Least-Squares (Continued)
For example problem data A ∈ R100×10 and b ∈ R100, we have the following set of
achievable values

(
||Ax− b||22 , ||x||

2
2

)
and optimal trade-off curve.
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The shaded set is the set of achievable values, while the thick line is the optimal
trade-off curve formed by Pareto optimal points.
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Vector Optimization Examples

Risk-Return Trade-Off in Portfolio Optimization
Bi-criterion expression of Markowitz portfolio optimization problem

In economics, the classical Markowitz portfolio optimization problem consists of minimizing the
return variance or risk, subject to a minimum acceptable mean return. Assuming that a portfolio
budget constraint and no-shorting constraints are in effect, this becomes the QP:

minimize xT Σx

subject to pT x ≥ rmin , 1T x = 1 , x � 0
.

x ∈ Rn is the investment portfolio, where xi is the fraction invested in asset i.
p ∈ Rn is the vector of relative asset price changes, modeled as a random vector with
mean p and covariance Σ.
r , pT x ∈ R is the return, with a mean return of pT x and return variance (risk) of xT Σx.
rmin ∈ R is the minimum acceptable mean return.

By varying rmin, this is naturally equivalent to the bi-criterion problem

minimize (with respect to R2
+)

(
−pT x,xT Σx

)
subject to 1T x = 1 , x � 0

.

Through scalarization, this in turn becomes the problem

minimize −λ1pT x + λ2xT Σx

subject to 1T x = 1 , x � 0
⇐⇒

minimize −pT x + γxT Σx

subject to 1T x = 1 , x � 0
,

where γ , λ2/λ1 > 0 is the exchange rate between mean return and risk. For fixed γ, this
problem is a QP.
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Vector Optimization Examples

Risk-Return Trade-Off in Portfolio Optimization
Optimal risk-return trade-off curve and corresponding optimal allocations

Consider a problem consisting of 4 assets with statistics as follows.

Asset pi Σ
1/2
i,i

1 12% 20%
2 10% 10%
3 7% 5%
4 3% 0%

ρ1,2 = 30%

ρ1,3 = −40%

ρ2,3 = 0%

Here, ρk,` is the correlation
coefficient between pk and p`
given by
ρk,` = Σk,`/

(
Σ

1/2
k,kΣ

1/2
`,`

)
.

The optimal risk-return trade-off curve and corresponding portfolio allocations are as follows.
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