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The Lagrangian

Recall the standard form optimization problem (which need not be convex).

minimize  fo(x)

subjectto  fi(x)<0,i=1,...,m ,

hi(x)=0,i=1,...,p

with variable x € R™, domain D = (", dom(f;) N("}_, dom(h;), and optimal value p*.
The Lagrangian is a function that combines the objective with the constraint functions.
Lagrangian
The Lagrangian L : R" x R™ x R? — R, with dom(L) = D x R™ x RP?, is defined as

L(x)\ll -I-Z)\fl(x +Zl/z i

It is a weighted sum of the objectlve and constramt functlons.

The quantity \; is the Lagrange multiplier associated with f;(x) < 0.

The quantity v; is the Lagrange multiplier associated with h;(x) = 0.

The vectors A and v are called the dual variables associated with the problem.
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Lagrangian Duality The Lagrangian and Lagrange Dual Function

The Lagrange Dual Function

The minimum value of the Lagrangian over x is known as the Lagrange dual function.
Lagrange Dual Function

The Lagrange dual function g : R™ x R? — R is defined as

9\ v) = inf L(x,A,v) = inf {fO(X) +) Nfi()+ ) Vihi(x)} :
i=1 =1

= As the dual function g is the pointwise infimum of a family of affine functions of
(A, v), it is always concave, even if the original or primal problem is not convex.

m When the Lagrangian L is unbounded below in x, the dual function g takes on
the value —oo.

Lower Bound Property: If A = 0, then g(A\,v) < p*
Proof: If x is feasible and X > 0, then we have

g(>\,l/) =

injf)L(x, Av) <Lx A v) < folx) .
x€

Minimizing over all feasible x gives g(A,v) < fo(x*) = p*.
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The Lagrangian and Lagrange Dual Function
Least-Norm Solution of Linear Equations

minimize x'x
subjectto Ax=b

Dual function:
m The Lagrangian is L(x,v) = x'x +v7 (Ax — b).
m To minimize L over x, simply set the gradient with respect to x
equal to zero. This yields

Vil(x,v) =2x+ ATv =0=x=—(1/2) ATv.
m Plug in this value of x into L to obtain g. This results in
gw)=L(-(1/2) ATv,v) = — (1/4)v" AATY - b v,

which is a concave function of v.
Lower bound property: p* > — (1/4) vTAATv — bTv for all v.
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The Lagrangian and Lagrange Dual Function
Standard Form LP

minimize ¢’x
subjectto Ax=b, x>0
Dual function:
m The Lagrangian is
Lx,A\v) = c'x+v7(Ax—b) - ATx,
= —bv+ (C+ATV - )\)Tx.
m Note that L is affine in x. Hence, we have

Av)=inf L(x,\,v) = ,
9A.v) x (e, A ) {—oo, otherwise

—bTv, ATv—A+c=0

Here, g is linear on an affine domain {(A,v) : ATv — XA + ¢ =0},

and thus is concave.
Lower bound property: p* > —b v if ATv + ¢ = 0.
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The Lagrangian and Lagrange Dual Function
Equality Constrained Norm Minimization

minimize  ||x||
subjectto Ax=b

Dual function:
= The Lagrangian is L(x,v) = ||x|| — v7 (Ax — b) = bTv + ||x|| — (ATv)" x.
= The dual function is
bTv, ||ATUH® <1

T
g(w) =bTv +inf {||x|| — (ATV) x} = .
x —oo, otherwise
where recall that ||v||g = sup)|, <1 {u” v} is the dual norm of ||-||.
Proof: This follows from the fact that

0, Iyllg <1
inf {|Ix|| - yTx } = ®
x —00, lyllg > 1

B If[ly|lg <1, then we have [|x|| > |[x]| - |lyllg > yTx for all x. Hence,

l1x|| — yTx > 0 for all x, with equality if x = 0.
B If [ly||g > 1, then choose x = tu, where ¢ > 0 and u is such that [|u|| < 1 and

uly = [lyllg > 1. Note that such a u always exists. In this case, we get

lxll = y7x =t (Jlull = llyllg ) = —o0 ast = oo.

Lower bound property: p* > b™w if || ATv|| < 1.
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The Lagrangian and Lagrange Dual Function
Two-Way Partitioning Problem

minimize  x’Wx
subjectto 27 =1,i=1,...,n

Here, W € S™.
m This is a nonconvex, NP-complete problem; the feasible set contains 2™ discrete
points.
m The interpretation of the problem is to partition {1,...,n} into two sets, where

Wiy, e is the cost of assigning k and ¢ to the same set, while —W}, , is the cost of
assigning & and ¢ to different sets.

Dual function:
gv) = mf{x WX—FZM, 7 —-1) } 1nf{x (W +diag(v))x — 1 u}

1"y, W +diag(v) = 0
—00, otherwise

Lower bound property: p* > —17v if W + diag(v) > 0.
Example: v = —Amin (W) 1 gives the bound p* > nAmin(W).
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The Lagrangian and Lagrange Dual Function
Relation to the Conjugate Function

Consider the following optimization problem with affine inequality and equality
constraints.
minimize  fo(x)

subjectto Ax<b,Cx=d

The dual function corresponding to this problem can be elegantly expressed in terms
of the conjugate f$ of the function fo, given by

1) = s {y"x=fo(x)} -

x€dom(fp)
Dual function:

_ T T NT oy T

g A v) = xedom(fo){fo( )+ (A A+C V) x—b ' A—-d V} ,
- g8 (—ATA - CTV) —p"A-d"w

This simplifies the derivation of the dual if the conjugate of f, is known.

Example: Entropy maximization

E zilogwi, fo(y) = E e’
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Lagrange Dual Problem
The Lagrange Dual Problem

The problem of finding the best lower bound on p* obtained from the Lagrange dual
function is called the Lagrange dual problem for the original or primal problem.

Lagrange Dual Problem
maximize g(\,v)
subjectto A >0
Here, the variables are A € R™ and v € RP.

m As this is a concave maximization problem over a convex set, this is a convex
optimization problem, whose optimal value is denoted as d*.

m The variable pair (A, v) is said to be dual feasible if A > 0 and (A, v) € dom(g).

m This is often simplified by making the implicit constraint that (X, ») € dom(g)
explicit. Such an equivalent problem is also called the Lagrange dual problem or

dual problem, with some abuse of terminology.
Example: Standard form LP and its dual
Primal: minimize c¢’x Dual: maximize —b v
subjectto Ax=b, x>0 subjectto A'v+c>0 -
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Weak and Strong Duality
Weak Duality: ¢* < p*
m This condition always holds for both convex and nonconvex problems.
m It can be used to find nontrivial lower bounds for difficult problems.
For example, solving the SDP

maximize —-1Tv
subjectto W + diag(v) = 0

Y

gives a lower bound for the two-way partitioning problem from above.
Strong Duality: d* = p*
m This condition does not hold in general.
m It usually holds for convex problems.

m Conditions that guarantee strong duality in convex problems are called
constraint qualifications.
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Slater’s Constraint Qualification

Strong duality holds for a convex optimization problem

minimize  fo(x)
subjectto  fi(x)<0,i=1,...,m ,
Ax=D

if it is strictly feasible, meaning that
Ix €relint(D) : fi(x) <0, i=1,...,m, Ax=Db.

This constraint qualification is called Slater’s condition.
m If p* > —o0, this condition also guarantees that the dual optimal is attained.

= It can be sharpened when some of the inequality constraint functions f; are
affine. Specifically, if the first & constraint functions f1, ..., fi are affine, then
strong duality holds provided the following weaker condition holds.

Ix erelint(D) : fi(x) <0,i=1,...,k, fi(x)<0,i=k+1,...,m, Ax=Db.

m There exist many other types of constraint qualifications.
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Complementary Slackness

Assume that strong duality holds (i.e., p* = d*), x* is primal optimal, and (A*,v*) is
dual optimal. Then, we have the following.

fO(X*) = g()\*,l/*) :gggL@Q}‘*vV*)
S SUCED SRISD SR IL ¥

< So(xX) D N+ D vihi(xT)
=1 i=1
< fo(x") .

Thus, the two inequalities hold with equality. From this, we ascertain the following.
m The primal optimal point x* minimizes L(x, A*,v*). Note that the Lagrangian
L(x, A*,v*) may have other minimizers besides x*.

m We have )] f;(x*) =0fori=1,...,m. This condition is known as
complementary slackness. Specifically, this implies that

)\: >O:>fi(x*) =0, fi(x*) <O:>)\: =0.
In other words, the slackness sparsity patterns for the primal inequality
constraints and corresponding dual Lagrange multipliers do not overlap.
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Inequality Form LP

Primal problem:

minimize c¢’x

subjectto Ax=<b
Dual function:
—-bTA, ATA+c=0
—00, otherwise

X

g(A) = inf{(c +ATA)  x - bT)\} = {

Dual problem:
maximize —bTA
subjectto ATA+c=0,A>0

m From Slater’s condition, p* = d* if Ax < b for some x.

m As all constraints are affine, we have in fact p* = d* except when both
the primal and dual are infeasible.
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General and Special QCQPs

Primal problem:

minimize  (1/2)xT Pox + gl x + 1o

subjectto  (1/2)xTP;x+qfx+7 <0,i=1,...,m
Here, Po €S, andP; €S} fori=1,...,n.

Dual function:
L(x,A) = (1/2) xTPAN) x + q AT x +7r(N)

where

PA)=Po+> ANPi, aN) =ao+ Y Niai, r(A) =ro+ Y Airy.
i=1 i=1 i=1
If X > 0, then P(A) > 0 and we have

g(N) =inf L(x, ) = = (1/2) aN) " P(A) "L a(A) +7(A) -

Dual problem: o T .
maximize  —(1/2)g(A)” P(A)" " aq(X) +r(A)

subjectto A >0
m From Slater’s condition, p* = d* if there exists some x such that
1/)FTPx+ql%+r; <0,i=1,...,m.
m When P; = 0 for all 4, then all constraints are affine and so p* = d* always in this case.
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Lagrangian Duality Weak & Strong Duality

Nonconvex QP with Strong Duality

Primal problem:
minimize xTAx+ 2bTx
subjectto xTx <1
Here, A € S™ but A # 0, and so the problem is not convex.
Dual function:
L(x,A\) =xT (A+AD)x+2bTx — X,

m The Lagrangian L(x, \) is unbounded below if A + AI i 0 or if A + AI > 0 and
b & R(A + AI).

m ltis minimized by x = — (A + AI)* b otherwise, in which case

g(A\) = —bT (A + AXD)# b — A,

o) = { —bT(A+XD#b—X, A+AI>0,becR(A+A)
—00, otherwise
Dual problem: (and equivalent SDP)
maximize —b% (A +AD)# b — ) maximize —t — A
subjectto A+ AI =0, b€ R(A + AI) A+ I b}H)
bT t |-

m Strong duality (i.e., p* = d*) holds even though the primal problem is not convex. The
proof of this involves a theorem of alternatives known as the S-procedure.
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Lagrangian Duality Geometric Interpretation

Weak/Strong Duality Via the Set of Values

A geometric interpretation of the dual function can be given in terms of the set of values
G={(f1(x),..., fm(x),h1(x),...,hp(x), fo(x)) ER™ xRP xR:x € D} .
With this set, the optimal value of the primal problem p* can be expressed as

p* =inf{t: (u,v,t) G, u=<0, v=0},
while the dual function g(A, v) is given by

gAw) = imf {a v, )T (0 v,0): (uv,0) € G} .
Hence, (A,v,1)T (u,v,t) > g(\, v) defines a nonvertical supporting hyperplane to G.
Visual example: For simplicity, consider a problem with one constraint. In this case, we have

g(A) = inf {Au+t}, where G = {(f1(x), fo(x)) : x € D} .
(u,t)eg

m Here, Au +t = g()) is a nonvertical supporting hyperplane to G.
m The hyperplane intersects the ¢-axis at t = g(\).
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Epigraph Variation

An alternate geometric interpretation can be made by considering an epigraph form of G given by
A = G+ {RP x{0} xR.},
= {(u,v,t):I3x€eD, fi(x)<wu;,i=1,...,m, hy(x)=v;, i=1,...,p, fo(x) <t}.
With this set, the optimal value of the primal problem p* and the dual function g(, v) are given by
p*=inf{t:(0,0,6) € A}, gA,w) = inf {A, v, )T (,v,1) : (u,v,0) € A}
Thus, (A, v, 1)T (u,v,t) > g(A, v) defines a nonvertical supporting hyperplane to A.
Strong duality:

m This condition holds if and only if there exists a nonvertical supporting hyperplane to A at
its boundary point (0, 0, p*).

m For a convex problem, A is convex, and so has a supporting hyperplane at (0, 0, p*).

m Slater’s condition: If there exists (u, v,t) € A with u < 0 and v = 0, then the supporting
hyperplanes at (0, 0, p*) must be nonvertical.

Visual example: A = {(u,t) : f1(x) < wu, fo(x) <tforsome x € D}
t

A

4
)\u+t:y(A)\p<

9(\)
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