EE/ACM 150 - Applications of Convex Optimization in Signal Processing and Communications Lecture 11

Andre Tkacenko

Signal Processing Research Group Jet Propulsion Laboratory

May 8, 2012

Outline

Lagrangian Duality

- The Lagrangian and Lagrange Dual Function
 - Examples
- Lagrange Dual Problem
- Weak & Strong Duality
 - Examples
- Geometric Interpretation

The Lagrangian

Recall the standard form optimization problem (which need not be convex).

$$\begin{array}{ll} \mbox{minimize} & f_0(\mathbf{x}) \\ \mbox{subject to} & f_i(\mathbf{x}) \leq 0 \,, \; i=1,\ldots,m \quad, \\ & h_i(\mathbf{x})=0 \,, \; i=1,\ldots,p \end{array}$$

with variable $\mathbf{x} \in \mathbb{R}^n$, domain $\mathcal{D} = \bigcap_{i=0}^m \operatorname{dom}(f_i) \cap \bigcap_{i=1}^p \operatorname{dom}(h_i)$, and optimal value p^* . The *Lagrangian* is a function that combines the objective with the constraint functions.

Lagrangian

The Lagrangian $L: \mathbb{R}^n \times \mathbb{R}^m \times \mathbb{R}^p \to \mathbb{R}$, with $dom(L) = \mathcal{D} \times \mathbb{R}^m \times \mathbb{R}^p$, is defined as

$$L(\mathbf{x}, \boldsymbol{\lambda}, \boldsymbol{\nu}) \triangleq f_0(\mathbf{x}) + \sum_{i=1}^m \lambda_i f_i(\mathbf{x}) + \sum_{i=1}^p \nu_i h_i(\mathbf{x}) \; .$$

- It is a weighted sum of the objective and constraint functions.
- The quantity λ_i is the Lagrange multiplier associated with $f_i(\mathbf{x}) \leq 0$.
- The quantity ν_i is the Lagrange multiplier associated with $h_i(\mathbf{x}) = 0$.
- The vectors λ and ν are called the *dual variables* associated with the problem.

The Lagrange Dual Function

The minimum value of the Lagrangian over \mathbf{x} is known as the Lagrange dual function.

Lagrange Dual Function

The Lagrange dual function $g: \mathbb{R}^m \times \mathbb{R}^p \to \mathbb{R}$ is defined as

$$g(\boldsymbol{\lambda}, \boldsymbol{\nu}) \triangleq \inf_{\mathbf{x} \in \mathcal{D}} L(\mathbf{x}, \boldsymbol{\lambda}, \boldsymbol{\nu}) = \inf_{\mathbf{x} \in \mathcal{D}} \left\{ f_0(\mathbf{x}) + \sum_{i=1}^m \lambda_i f_i(\mathbf{x}) + \sum_{i=1}^p \nu_i h_i(\mathbf{x}) \right\} \,.$$

- As the dual function g is the pointwise infimum of a family of affine functions of (λ, ν) , it is always *concave*, even if the original or primal problem is not convex.
- When the Lagrangian *L* is unbounded below in \mathbf{x} , the dual function *g* takes on the value $-\infty$.

Lower Bound Property: If $\lambda \succeq 0$, then $g(\lambda, \nu) \leq p^*$.

Proof: If $\tilde{\mathbf{x}}$ is feasible and $\boldsymbol{\lambda} \succeq \mathbf{0}$, then we have

$$g(\boldsymbol{\lambda}, \boldsymbol{\nu}) = \inf_{\mathbf{x} \in \mathcal{D}} L(\mathbf{x}, \boldsymbol{\lambda}, \boldsymbol{\nu}) \leq L(\widetilde{\mathbf{x}}, \boldsymbol{\lambda}, \boldsymbol{\nu}) \leq f_0(\widetilde{\mathbf{x}}) \;.$$

Minimizing over all feasible $\tilde{\mathbf{x}}$ gives $g(\boldsymbol{\lambda}, \boldsymbol{\nu}) \leq f_0(\mathbf{x}^{\star}) = p^{\star}$.

Least-Norm Solution of Linear Equations

Dual function:

- The Lagrangian is $L(\mathbf{x}, \boldsymbol{\nu}) = \mathbf{x}^T \mathbf{x} + \boldsymbol{\nu}^T (\mathbf{A}\mathbf{x} \mathbf{b}).$
- To minimize L over x, simply set the gradient with respect to x equal to zero. This yields

$$\nabla_{\mathbf{x}} L(\mathbf{x}, \boldsymbol{\nu}) = 2\mathbf{x} + \mathbf{A}^T \boldsymbol{\nu} = \mathbf{0} \Longrightarrow \mathbf{x} = -(1/2) \mathbf{A}^T \boldsymbol{\nu}.$$

Plug in this value of \mathbf{x} into L to obtain g. This results in

$$g(\boldsymbol{\nu}) = L(-(1/2) \mathbf{A}^T \boldsymbol{\nu}, \boldsymbol{\nu}) = -(1/4) \boldsymbol{\nu}^T \mathbf{A} \mathbf{A}^T \boldsymbol{\nu} - \mathbf{b}^T \boldsymbol{\nu},$$

which is a concave function of ν .

Lower bound property: $p^* \ge -(1/4) \nu^T \mathbf{A} \mathbf{A}^T \nu - \mathbf{b}^T \nu$ for all ν .

Standard Form LP

minimize
$$\mathbf{c}^T \mathbf{x}$$

subject to $\mathbf{A}\mathbf{x} = \mathbf{b}, \ \mathbf{x} \succeq \mathbf{0}$

Dual function:

The Lagrangian is

$$L(\mathbf{x}, \boldsymbol{\lambda}, \boldsymbol{\nu}) = \mathbf{c}^T \mathbf{x} + \boldsymbol{\nu}^T (\mathbf{A}\mathbf{x} - \mathbf{b}) - \boldsymbol{\lambda}^T \mathbf{x},$$

= $-\mathbf{b}^T \boldsymbol{\nu} + (\mathbf{c} + \mathbf{A}^T \boldsymbol{\nu} - \boldsymbol{\lambda})^T \mathbf{x}.$

Note that L is affine in \mathbf{x} . Hence, we have

$$g(\boldsymbol{\lambda}, \boldsymbol{\nu}) = \inf_{\mathbf{x}} L(\mathbf{x}, \boldsymbol{\lambda}, \boldsymbol{\nu}) = \begin{cases} -\mathbf{b}^T \boldsymbol{\nu} , & \mathbf{A}^T \boldsymbol{\nu} - \boldsymbol{\lambda} + \mathbf{c} = \mathbf{0} \\ -\infty , & \text{otherwise} \end{cases}$$

Here, *g* is linear on an affine domain $\{(\lambda, \nu) : \mathbf{A}^T \nu - \lambda + \mathbf{c} = \mathbf{0}\}$, and thus is concave.

Lower bound property: $p^{\star} \geq -\mathbf{b}^T \boldsymbol{\nu}$ if $\mathbf{A}^T \boldsymbol{\nu} + \mathbf{c} \succeq \mathbf{0}$.

٠

Equality Constrained Norm Minimization

Dual function:

- The Lagrangian is $L(\mathbf{x}, \boldsymbol{\nu}) = ||\mathbf{x}|| \boldsymbol{\nu}^T (\mathbf{A}\mathbf{x} \mathbf{b}) = \mathbf{b}^T \boldsymbol{\nu} + ||\mathbf{x}|| (\mathbf{A}^T \boldsymbol{\nu})^T \mathbf{x}.$
- The dual function is

$$g(\boldsymbol{\nu}) = \mathbf{b}^T \boldsymbol{\nu} + \inf_{\mathbf{x}} \left\{ ||\mathbf{x}|| - \left(\mathbf{A}^T \boldsymbol{\nu}\right)^T \mathbf{x} \right\} = \left\{ \begin{array}{c} \mathbf{b}^T \boldsymbol{\nu} \,, & \left| \left| \mathbf{A}^T \boldsymbol{\nu} \right| \right|_{\circledast} \leq 1 \\ -\infty \,, & \text{otherwise} \end{array} \right.$$

where recall that $||\mathbf{v}||_{\circledast} = \sup_{||\mathbf{u}|| \leq 1} \left\{ \mathbf{u}^T \mathbf{v} \right\}$ is the *dual norm* of $|| \cdot ||$.

Proof: This follows from the fact that

$$\inf_{\mathbf{x}} \left\{ ||\mathbf{x}|| - \mathbf{y}^T \mathbf{x} \right\} = \begin{cases} 0, & ||\mathbf{y}||_{\circledast} \le 1 \\ -\infty, & ||\mathbf{y}||_{\circledast} > 1 \end{cases}$$

If $||\mathbf{y}||_{\circledast} \leq 1$, then we have $||\mathbf{x}|| \geq ||\mathbf{x}|| \cdot ||\mathbf{y}||_{\circledast} \geq \mathbf{y}^T \mathbf{x}$ for all \mathbf{x} . Hence, $||\mathbf{x}|| - \mathbf{y}^T \mathbf{x} \geq 0$ for all \mathbf{x} , with equality if $\mathbf{x} = \mathbf{0}$. If $||\mathbf{y}||_{\circledast} > 1$, then choose $\mathbf{x} = t\mathbf{u}$, where t > 0 and \mathbf{u} is such that $||\mathbf{u}|| \leq 1$ and $\mathbf{u}^T \mathbf{y} = ||\mathbf{y}||_{\circledast} > 1$. Note that such a \mathbf{u} always exists. In this case, we get

$$||\mathbf{x}|| - \mathbf{y}^T \mathbf{x} = t \left(||\mathbf{u}|| - ||\mathbf{y}||_{\circledast} \right) \to -\infty \text{ as } t \to \infty.$$

Lower bound property: $p^{\star} \geq \mathbf{b}^T \boldsymbol{\nu}$ if $||\mathbf{A}^T \boldsymbol{\nu}||_{\circledast} \leq 1$.

,

Two-Way Partitioning Problem

minimize
$$\mathbf{x}^T \mathbf{W} \mathbf{x}$$

subject to $x_i^2 = 1, \ i = 1, \dots, n$

Here, $\mathbf{W} \in \mathbb{S}^n$.

- This is a nonconvex, NP-complete problem; the feasible set contains 2ⁿ discrete points.
- The interpretation of the problem is to partition {1,...,n} into two sets, where W_{k,ℓ} is the cost of assigning k and ℓ to the same set, while −W_{k,ℓ} is the cost of assigning k and ℓ to different sets.

Dual function:

$$g(\boldsymbol{\nu}) = \inf_{\mathbf{x}} \left\{ \mathbf{x}^{T} \mathbf{W} \mathbf{x} + \sum_{i=1}^{n} \nu_{i} \left(x_{i}^{2} - 1 \right) \right\} = \inf_{\mathbf{x}} \left\{ \mathbf{x}^{T} \left(\mathbf{W} + \operatorname{diag}(\boldsymbol{\nu}) \right) \mathbf{x} - \mathbf{1}^{T} \boldsymbol{\nu} \right\},$$
$$= \begin{cases} -\mathbf{1}^{T} \boldsymbol{\nu}, & \mathbf{W} + \operatorname{diag}(\boldsymbol{\nu}) \succeq \mathbf{0} \\ -\infty, & \text{otherwise} \end{cases}.$$

Lower bound property: $p^* \ge -\mathbf{1}^T \boldsymbol{\nu}$ if $\mathbf{W} + \operatorname{diag}(\boldsymbol{\nu}) \succeq \mathbf{0}$.

Example: $\boldsymbol{\nu} = -\lambda_{\min}(\mathbf{W}) \mathbf{1}$ gives the bound $p^* \ge n\lambda_{\min}(\mathbf{W})$.

Relation to the Conjugate Function

Consider the following optimization problem with affine inequality and equality constraints.

subject to
$$\mathbf{Ax} \preceq \mathbf{b}, \ \mathbf{Cx} = \mathbf{d}$$

The dual function corresponding to this problem can be elegantly expressed in terms of the conjugate f_0^{\circledast} of the function f_0 , given by

$$f_0^{\circledast}(\mathbf{y}) = \sup_{\mathbf{x} \in \operatorname{dom}(f_0)} \left\{ \mathbf{y}^T \mathbf{x} - f_0(\mathbf{x}) \right\} \,.$$

Dual function:

$$g(\boldsymbol{\lambda}, \boldsymbol{\nu}) = \inf_{\mathbf{x} \in \operatorname{dom}(f_0)} \left\{ f_0(\mathbf{x}) + \left(\mathbf{A}^T \boldsymbol{\lambda} + \mathbf{C}^T \boldsymbol{\nu} \right)^T \mathbf{x} - \mathbf{b}^T \boldsymbol{\lambda} - \mathbf{d}^T \boldsymbol{\nu} \right\}, \\ = -f_0^{\circledast} \left(-\mathbf{A}^T \boldsymbol{\lambda} - \mathbf{C}^T \boldsymbol{\nu} \right) - \mathbf{b}^T \boldsymbol{\lambda} - \mathbf{d}^T \boldsymbol{\nu}.$$

This simplifies the derivation of the dual if the conjugate of f_0 is known.

Example: Entropy maximization

$$f_0(\mathbf{x}) = \sum_{i=1}^n x_i \log x_i, \ f_0^{\circledast}(\mathbf{y}) = \sum_{i=1}^n e^{y_i - 1}$$

The Lagrange Dual Problem

The problem of finding the best lower bound on p^* obtained from the Lagrange dual function is called the *Lagrange dual problem* for the original or *primal problem*.

Lagrange Dual Problem

 $\begin{array}{ll} \text{maximize} & g(\boldsymbol{\lambda},\boldsymbol{\nu}) \\ \text{subject to} & \boldsymbol{\lambda}\succeq \mathbf{0} \end{array}.$

Here, the variables are $\lambda \in \mathbb{R}^m$ and $\nu \in \mathbb{R}^p$.

- As this is a concave maximization problem over a convex set, this is a convex optimization problem, whose optimal value is denoted as d*.
- The variable pair (λ, ν) is said to be *dual feasible* if $\lambda \succeq 0$ and $(\lambda, \nu) \in dom(g)$.
- This is often simplified by making the implicit constraint that (\u03c6, \u03c6) ∈ dom(g) explicit. Such an equivalent problem is also called the Lagrange dual problem or dual problem, with some abuse of terminology.

Example: Standard form LP and its dual

Primal:	minimize	$\mathbf{c}^T \mathbf{x}$	Dual:	maximize	$-\mathbf{b}^T oldsymbol{ u}$
	subject to	$\mathbf{A}\mathbf{x}=\mathbf{b},~\mathbf{x}\succeq0$		subject to	$\mathbf{A}^T oldsymbol{ u} + \mathbf{c} \succeq 0$.

Andre Tkacenko (JPL)

EE/ACM 150 - Lecture 11

Weak and Strong Duality

Weak Duality: $d^{\star} \leq p^{\star}$

- This condition always holds for both convex and nonconvex problems.
- It can be used to find nontrivial lower bounds for difficult problems.

For example, solving the SDP

maximize $-\mathbf{1}^T \boldsymbol{\nu}$ subject to $\mathbf{W} + \operatorname{diag}(\boldsymbol{\nu}) \succeq \mathbf{0}$,

gives a lower bound for the two-way partitioning problem from above.

Strong Duality: $d^{\star} = p^{\star}$

- This condition does not hold in general.
- It *usually* holds for convex problems.
- Conditions that guarantee strong duality in convex problems are called constraint qualifications.

Slater's Constraint Qualification

Strong duality holds for a convex optimization problem

$$\begin{array}{ll} \mbox{minimize} & f_0(\mathbf{x}) \\ \mbox{subject to} & f_i(\mathbf{x}) \leq 0 \,, \; i=1,\ldots,m \ , \\ & \mathbf{A}\mathbf{x}=\mathbf{b} \end{array}$$

if it is *strictly feasible*, meaning that

 $\exists \mathbf{x} \in \operatorname{relint}(\mathcal{D}) : f_i(\mathbf{x}) < 0, \ i = 1, \dots, m, \ \mathbf{A}\mathbf{x} = \mathbf{b}.$

This constraint qualification is called *Slater's condition*.

- If $p^* > -\infty$, this condition also guarantees that the dual optimal is attained.
- It can be sharpened when some of the inequality constraint functions f_i are affine. Specifically, if the first k constraint functions f_1, \ldots, f_k are affine, then strong duality holds provided the following weaker condition holds.

 $\exists \mathbf{x} \in \operatorname{relint}(\mathcal{D}) : f_i(\mathbf{x}) \le 0, \ i = 1, \dots, k, \ f_i(\mathbf{x}) < 0, \ i = k+1, \dots, m, \ \mathbf{A}\mathbf{x} = \mathbf{b}.$

There exist many other types of constraint qualifications.

Complementary Slackness

f

Assume that strong duality holds (i.e., $p^* = d^*$), \mathbf{x}^* is primal optimal, and $(\lambda^*, \boldsymbol{\nu}^*)$ is dual optimal. Then, we have the following.

$$\begin{aligned} f_{0}(\mathbf{x}^{\star}) &= g(\boldsymbol{\lambda}^{\star}, \boldsymbol{\nu}^{\star}) = \inf_{\mathbf{x} \in \mathcal{D}} L(\mathbf{x}, \boldsymbol{\lambda}^{\star}, \boldsymbol{\nu}^{\star}) \\ &= \inf_{\mathbf{x} \in \mathcal{D}} \left\{ f_{0}(\mathbf{x}) + \sum_{i=1}^{m} \lambda_{i}^{\star} f_{i}(\mathbf{x}) + \sum_{i=1}^{p} \nu_{i}^{\star} h_{i}(\mathbf{x}) \right\} , \\ &\leq f_{0}(\mathbf{x}^{\star}) + \sum_{i=1}^{m} \lambda_{i}^{\star} f_{i}(\mathbf{x}^{\star}) + \sum_{i=1}^{p} \nu_{i}^{\star} h_{i}(\mathbf{x}^{\star}) , \\ &\leq f_{0}(\mathbf{x}^{\star}) . \end{aligned}$$

Thus, the two inequalities hold with equality. From this, we ascertain the following.

- The primal optimal point \mathbf{x}^* minimizes $L(\mathbf{x}, \boldsymbol{\lambda}^*, \boldsymbol{\nu}^*)$. Note that the Lagrangian $L(\mathbf{x}, \boldsymbol{\lambda}^*, \boldsymbol{\nu}^*)$ may have other minimizers besides \mathbf{x}^* .
- We have $\lambda_i^* f_i(\mathbf{x}^*) = 0$ for i = 1, ..., m. This condition is known as *complementary slackness*. Specifically, this implies that

$$\lambda_i^{\star} > 0 \Longrightarrow f_i(\mathbf{x}^{\star}) = 0 \,, \ f_i(\mathbf{x}^{\star}) < 0 \Longrightarrow \lambda_i^{\star} = 0 \,.$$

In other words, the slackness sparsity patterns for the primal inequality constraints and corresponding dual Lagrange multipliers do not overlap.

Andre Tkacenko (JPL)

Inequality Form LP

Primal problem:

 $\begin{array}{ll} \mbox{minimize} & \mathbf{c}^T \mathbf{x} \\ \mbox{subject to} & \mathbf{A} \mathbf{x} \preceq \mathbf{b} \end{array}.$

Dual function:

$$g(\boldsymbol{\lambda}) = \inf_{\mathbf{x}} \left\{ \left(\mathbf{c} + \mathbf{A}^T \boldsymbol{\lambda} \right)^T \mathbf{x} - \mathbf{b}^T \boldsymbol{\lambda} \right\} = \begin{cases} -\mathbf{b}^T \boldsymbol{\lambda}, & \mathbf{A}^T \boldsymbol{\lambda} + \mathbf{c} = \mathbf{0} \\ -\infty, & \text{otherwise} \end{cases}$$

Dual problem:

$$\begin{array}{ll} \text{maximize} & -\mathbf{b}^T \boldsymbol{\lambda} \\ \text{subject to} & \mathbf{A}^T \boldsymbol{\lambda} + \mathbf{c} = \mathbf{0} \,, \; \boldsymbol{\lambda} \succeq \mathbf{0} \end{array}$$

From Slater's condition, $p^* = d^*$ if $A\widetilde{\mathbf{x}} \prec \mathbf{b}$ for some $\widetilde{\mathbf{x}}$.

■ As all constraints are affine, we have in fact $p^* = d^*$ except when both the primal and dual are infeasible.

•

٠

General and Special QCQPs

Primal problem:

minimize
$$(1/2) \mathbf{x}^T \mathbf{P}_0 \mathbf{x} + \mathbf{q}_0^T \mathbf{x} + r_0$$

subject to $(1/2) \mathbf{x}^T \mathbf{P}_i \mathbf{x} + \mathbf{q}_i^T \mathbf{x} + r_i \leq 0, \ i = 1, \dots, m$

Here, $\mathbf{P}_0 \in \mathbb{S}_{++}^n$ and $\mathbf{P}_i \in \mathbb{S}_{+}^n$ for $i = 1, \dots, n$.

Dual function:

$$L(\mathbf{x}, \boldsymbol{\lambda}) = (1/2) \, \mathbf{x}^T \mathbf{P}(\boldsymbol{\lambda}) \, \mathbf{x} + \mathbf{q}(\boldsymbol{\lambda})^T \, \mathbf{x} + r(\boldsymbol{\lambda}) \;,$$

where

$$\mathbf{P}(\boldsymbol{\lambda}) = \mathbf{P}_0 + \sum_{i=1}^m \lambda_i \mathbf{P}_i , \ \mathbf{q}(\boldsymbol{\lambda}) = \mathbf{q}_0 + \sum_{i=1}^m \lambda_i \mathbf{q}_i , \ r(\boldsymbol{\lambda}) = r_0 + \sum_{i=1}^m \lambda_i r_i .$$

If $\pmb{\lambda} \succeq \pmb{0}$, then $\mathbf{P}(\pmb{\lambda}) \succ \pmb{0}$ and we have

$$g(\boldsymbol{\lambda}) = \inf_{\mathbf{x}} L(\mathbf{x}, \boldsymbol{\lambda}) = -(1/2) \mathbf{q}(\boldsymbol{\lambda})^T \mathbf{P}(\boldsymbol{\lambda})^{-1} \mathbf{q}(\boldsymbol{\lambda}) + r(\boldsymbol{\lambda}) .$$

Dual problem:

maximize
$$-(1/2) \mathbf{q}(\boldsymbol{\lambda})^T \mathbf{P}(\boldsymbol{\lambda})^{-1} \mathbf{q}(\boldsymbol{\lambda}) + r(\boldsymbol{\lambda})$$

subject to $\boldsymbol{\lambda} \succeq \mathbf{0}$

From Slater's condition, $p^{\star} = d^{\star}$ if there exists some $\widetilde{\mathbf{x}}$ such that

$$(1/2) \widetilde{\mathbf{x}}^T \mathbf{P}_i \widetilde{\mathbf{x}} + \mathbf{q}_i^T \widetilde{\mathbf{x}} + r_i < 0, \ i = 1, \dots, m$$

When $\mathbf{P}_i = \mathbf{0}$ for all *i*, then all constraints are affine and so $p^* = d^*$ always in this case.

Nonconvex QP with Strong Duality

Primal problem:

minimize $\mathbf{x}^T \mathbf{A} \mathbf{x} + 2 \mathbf{b}^T \mathbf{x}$ subject to $\mathbf{x}^T \mathbf{x} < 1$

Here, $\mathbf{A} \in \mathbb{S}^n$ but $\mathbf{A} \not\succeq \mathbf{0}$, and so the problem is not convex.

Dual function:

$$L(\mathbf{x}, \lambda) = \mathbf{x}^T \left(\mathbf{A} + \lambda \mathbf{I} \right) \mathbf{x} + 2\mathbf{b}^T \mathbf{x} - \lambda.$$

- The Lagrangian $L(\mathbf{x}, \lambda)$ is unbounded below if $\mathbf{A} + \lambda \mathbf{I} \neq \mathbf{0}$ or if $\mathbf{A} + \lambda \mathbf{I} \succ \mathbf{0}$ and $\mathbf{b} \notin \mathcal{R}(\mathbf{A} + \lambda \mathbf{I}).$
- It is minimized by $\mathbf{x} = -(\mathbf{A} + \lambda \mathbf{I})^{\#} \mathbf{b}$ otherwise, in which case $q(\lambda) = -\mathbf{b}^T \left(\mathbf{A} + \lambda \mathbf{I}\right)^\# \mathbf{b} - \lambda.$ $g(\lambda) = \begin{cases} -\mathbf{b}^T \left(\mathbf{A} + \lambda \mathbf{I}\right)^{\#} \mathbf{b} - \lambda, & \mathbf{A} + \lambda \mathbf{I} \succeq \mathbf{0}, \ \mathbf{b} \in \mathcal{R}(\mathbf{A} + \lambda \mathbf{I}) \\ -\infty, & \text{otherwise} \end{cases}$

Dual problem: (and equivalent SDP)

$$\begin{array}{ll} \text{maximize} & -\mathbf{b}^T \left(\mathbf{A} + \lambda \mathbf{I} \right)^{\#} \mathbf{b} - \lambda & \text{maximize} & -t - \lambda \\ \text{subject to} & \mathbf{A} + \lambda \mathbf{I} \succeq \mathbf{0} \,, \, \mathbf{b} \in \mathcal{R}(\mathbf{A} + \lambda \mathbf{I}) &, \\ \mathbf{b}^T & \mathbf{b} & \mathbf{b}^T & t \end{array} \right] \succeq \mathbf{0} \quad \begin{array}{l} \mathbf{A} + \lambda \mathbf{I} & \mathbf{b} \\ \mathbf{b}^T & t & \mathbf{b} \\ \mathbf{b}^T & t & \mathbf{b} \end{array} \right] \succeq \mathbf{0} \quad \begin{array}{l} \mathbf{A} + \lambda \mathbf{I} & \mathbf{b} \\ \mathbf{b}^T & t & \mathbf{b} \\ \mathbf{b}^T & t & \mathbf{b} \end{array} \right]$$

Strong duality (i.e., $p^{\star} = d^{\star}$) holds even though the primal problem is not convex. The proof of this involves a theorem of alternatives known as the S-procedure.

Andre Tkacenko (JPL)

EE/ACM 150 - Lecture 11

Weak/Strong Duality Via the Set of Values

A geometric interpretation of the dual function can be given in terms of the set of values

$$\mathcal{G} = \{ (f_1(\mathbf{x}), \dots, f_m(\mathbf{x}), h_1(\mathbf{x}), \dots, h_p(\mathbf{x}), f_0(\mathbf{x})) \in \mathbb{R}^m \times \mathbb{R}^p \times \mathbb{R} : \mathbf{x} \in \mathcal{D} \} .$$

With this set, the optimal value of the primal problem p^{\star} can be expressed as

$$p^{\star} = \inf \left\{ t : (\mathbf{u}, \mathbf{v}, t) \in \mathcal{G}, \ \mathbf{u} \leq \mathbf{0}, \ \mathbf{v} = \mathbf{0} \right\}$$

while the dual function $g({m \lambda},{m
u})$ is given by

$$g(\boldsymbol{\lambda}, \boldsymbol{\nu}) = \inf \left\{ (\boldsymbol{\lambda}, \boldsymbol{\nu}, 1)^T (\mathbf{u}, \mathbf{v}, t) : (\mathbf{u}, \mathbf{v}, t) \in \mathcal{G} \right\}.$$

Hence, $(\boldsymbol{\lambda}, \boldsymbol{\nu}, 1)^T (\mathbf{u}, \mathbf{v}, t) \ge g(\boldsymbol{\lambda}, \boldsymbol{\nu})$ defines a *nonvertical supporting hyperplane* to \mathcal{G} .

Visual example: For simplicity, consider a problem with one constraint. In this case, we have

Here, $\lambda u + t = g(\lambda)$ is a nonvertical supporting hyperplane to \mathcal{G} . The hyperplane intersects the *t*-axis at $t = g(\lambda)$.

Epigraph Variation

An alternate geometric interpretation can be made by considering an *epigraph form* of G given by

$$\mathcal{A} = \mathcal{G} + \left\{ \mathbb{R}^m_+ \times \{ \mathbf{0} \} \times \mathbb{R}_+ \right\},$$

= $\left\{ (\mathbf{u}, \mathbf{v}, t) : \exists \mathbf{x} \in \mathcal{D}, f_i(\mathbf{x}) \le u_i, i = 1, \dots, m, h_i(\mathbf{x}) = v_i, i = 1, \dots, p, f_0(\mathbf{x}) \le t \right\}.$

With this set, the optimal value of the primal problem p^* and the dual function $g(\lambda, \nu)$ are given by

$$p^{\star} = \inf \left\{ t : (\mathbf{0}, \mathbf{0}, t) \in \mathcal{A}
ight\}, \ g(\boldsymbol{\lambda}, \boldsymbol{
u}) = \inf \left\{ (\boldsymbol{\lambda}, \boldsymbol{
u}, 1)^T \left(\mathbf{u}, \mathbf{v}, t
ight) : (\mathbf{u}, \mathbf{v}, t) \in \mathcal{A}
ight\}.$$

Thus, $(\boldsymbol{\lambda}, \boldsymbol{\nu}, 1)^T (\mathbf{u}, \mathbf{v}, t) \ge g(\boldsymbol{\lambda}, \boldsymbol{\nu})$ defines a *nonvertical supporting hyperplane* to \mathcal{A} .

Strong duality:

- This condition holds if and only if there exists a nonvertical supporting hyperplane to A at its boundary point (0, 0, p*).
- For a convex problem, A is convex, and so has a supporting hyperplane at $(0, 0, p^*)$.
- Slater's condition: If there exists $(\widetilde{\mathbf{u}}, \widetilde{\mathbf{v}}, t) \in \mathcal{A}$ with $\widetilde{\mathbf{u}} \prec \mathbf{0}$ and $\widetilde{\mathbf{v}} = \mathbf{0}$, then the supporting hyperplanes at $(\mathbf{0}, \mathbf{0}, p^*)$ must be nonvertical.

Visual example: $\mathcal{A} = \{(u, t) : f_1(\mathbf{x}) \leq u, f_0(\mathbf{x}) \leq t \text{ for some } \mathbf{x} \in \mathcal{D}\}$

