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Lagrangian Duality The Lagrangian and Lagrange Dual Function

The Lagrangian
Recall the standard form optimization problem (which need not be convex).

minimize f0(x)

subject to fi(x) ≤ 0 , i = 1, . . . ,m

hi(x) = 0 , i = 1, . . . , p

,

with variable x ∈ Rn, domain D =
⋂m

i=0 dom(fi)∩
⋂p

i=1 dom(hi), and optimal value p?.
The Lagrangian is a function that combines the objective with the constraint functions.

Lagrangian

The Lagrangian L : Rn × Rm × Rp → R, with dom(L) = D × Rm × Rp, is defined as

L(x,λ,ν) , f0(x) +
m∑
i=1

λifi(x) +

p∑
i=1

νihi(x) .

It is a weighted sum of the objective and constraint functions.

The quantity λi is the Lagrange multiplier associated with fi(x) ≤ 0.

The quantity νi is the Lagrange multiplier associated with hi(x) = 0.

The vectors λ and ν are called the dual variables associated with the problem.
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Lagrangian Duality The Lagrangian and Lagrange Dual Function

The Lagrange Dual Function

The minimum value of the Lagrangian over x is known as the Lagrange dual function.

Lagrange Dual Function

The Lagrange dual function g : Rm × Rp → R is defined as

g(λ,ν) , inf
x∈D

L(x,λ,ν) = inf
x∈D

{
f0(x) +

m∑
i=1

λifi(x) +

p∑
i=1

νihi(x)

}
.

As the dual function g is the pointwise infimum of a family of affine functions of
(λ,ν), it is always concave, even if the original or primal problem is not convex.

When the Lagrangian L is unbounded below in x, the dual function g takes on
the value −∞.

Lower Bound Property: If λ � 0, then g(λ,ν) ≤ p?.
Proof: If x̃ is feasible and λ � 0, then we have

g(λ,ν) = inf
x∈D

L(x,λ,ν) ≤ L(x̃,λ,ν) ≤ f0(x̃) .

Minimizing over all feasible x̃ gives g(λ,ν) ≤ f0(x?) = p?.
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Lagrangian Duality The Lagrangian and Lagrange Dual Function

Least-Norm Solution of Linear Equations

minimize xTx

subject to Ax = b
.

Dual function:
The Lagrangian is L(x,ν) = xTx+ νT (Ax− b).
To minimize L over x, simply set the gradient with respect to x
equal to zero. This yields

∇xL(x,ν) = 2x+ATν = 0 =⇒ x = − (1/2)ATν .

Plug in this value of x into L to obtain g. This results in

g(ν) = L
(
− (1/2)ATν,ν

)
= − (1/4)νTAATν − bTν ,

which is a concave function of ν.
Lower bound property: p? ≥ − (1/4)νTAATν − bTν for all ν.
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Lagrangian Duality The Lagrangian and Lagrange Dual Function

Standard Form LP

minimize cTx

subject to Ax = b , x � 0
.

Dual function:
The Lagrangian is

L(x,λ,ν) = cTx+ νT (Ax− b)− λTx ,

= −bTν +
(
c+ATν − λ

)T
x .

Note that L is affine in x. Hence, we have

g(λ,ν) = inf
x

L(x,λ,ν) =

{
−bTν , ATν − λ+ c = 0

−∞ , otherwise
.

Here, g is linear on an affine domain
{
(λ,ν) : ATν − λ+ c = 0

}
,

and thus is concave.
Lower bound property: p? ≥ −bTν if ATν + c � 0.

Andre Tkacenko (JPL) EE/ACM 150 - Lecture 11 May 8, 2012 6 / 18



Lagrangian Duality The Lagrangian and Lagrange Dual Function

Equality Constrained Norm Minimization
minimize ||x||
subject to Ax = b

.

Dual function:
The Lagrangian is L(x,ν) = ||x|| − νT (Ax− b) = bT ν + ||x|| −

(
AT ν

)T
x.

The dual function is

g(ν) = bT ν + inf
x

{
||x|| −

(
AT ν

)T
x

}
=

{
bT ν ,

∣∣∣∣AT ν
∣∣∣∣

� ≤ 1

−∞ , otherwise
,

where recall that ||v||� = sup||u||≤1

{
uTv

}
is the dual norm of ||·||.

Proof: This follows from the fact that

inf
x

{
||x|| − yTx

}
=

{
0 , ||y||� ≤ 1

−∞ , ||y||� > 1
.

If ||y||� ≤ 1, then we have ||x|| ≥ ||x|| · ||y||� ≥ yTx for all x. Hence,
||x|| − yTx ≥ 0 for all x, with equality if x = 0.
If ||y||� > 1, then choose x = tu, where t > 0 and u is such that ||u|| ≤ 1 and
uTy = ||y||� > 1. Note that such a u always exists. In this case, we get

||x|| − yTx = t
(
||u|| − ||y||�

)
→ −∞ as t→∞ .

Lower bound property: p? ≥ bT ν if
∣∣∣∣AT ν

∣∣∣∣
� ≤ 1.
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Lagrangian Duality The Lagrangian and Lagrange Dual Function

Two-Way Partitioning Problem

minimize xTWx

subject to x2i = 1 , i = 1, . . . , n
.

Here, W ∈ Sn.

This is a nonconvex, NP-complete problem; the feasible set contains 2n discrete
points.

The interpretation of the problem is to partition {1, . . . , n} into two sets, where
Wk,` is the cost of assigning k and ` to the same set, while −Wk,` is the cost of
assigning k and ` to different sets.

Dual function:

g(ν) = inf
x

{
xTWx+

n∑
i=1

νi
(
x2i − 1

)}
= inf

x

{
xT (W + diag(ν))x− 1Tν

}
,

=

{
−1Tν , W + diag(ν) � 0

−∞ , otherwise
.

Lower bound property: p? ≥ −1Tν if W + diag(ν) � 0.
Example: ν = −λmin(W)1 gives the bound p? ≥ nλmin(W).
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Lagrangian Duality The Lagrangian and Lagrange Dual Function

Relation to the Conjugate Function
Consider the following optimization problem with affine inequality and equality
constraints.

minimize f0(x)

subject to Ax � b , Cx = d
.

The dual function corresponding to this problem can be elegantly expressed in terms
of the conjugate f�

0 of the function f0, given by

f�
0 (y) = sup

x∈dom(f0)

{
yTx− f0(x)

}
.

Dual function:

g(λ,ν) = inf
x∈dom(f0)

{
f0(x) +

(
ATλ+CTν

)T
x− bTλ− dTν

}
,

= −f�
0

(
−ATλ−CTν

)
− bTλ− dTν .

This simplifies the derivation of the dual if the conjugate of f0 is known.

Example: Entropy maximization

f0(x) =
n∑

i=1

xi log xi , f
�
0 (y) =

n∑
i=1

eyi−1 .
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Lagrangian Duality Lagrange Dual Problem

The Lagrange Dual Problem
The problem of finding the best lower bound on p? obtained from the Lagrange dual
function is called the Lagrange dual problem for the original or primal problem.

Lagrange Dual Problem

maximize g(λ,ν)

subject to λ � 0
.

Here, the variables are λ ∈ Rm and ν ∈ Rp.

As this is a concave maximization problem over a convex set, this is a convex
optimization problem, whose optimal value is denoted as d?.

The variable pair (λ,ν) is said to be dual feasible if λ � 0 and (λ,ν) ∈ dom(g).

This is often simplified by making the implicit constraint that (λ,ν) ∈ dom(g)
explicit. Such an equivalent problem is also called the Lagrange dual problem or
dual problem, with some abuse of terminology.

Example: Standard form LP and its dual

Primal: minimize cTx Dual: maximize −bTν

subject to Ax = b , x � 0 subject to ATν + c � 0
.
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Lagrangian Duality Weak & Strong Duality

Weak and Strong Duality

Weak Duality: d? ≤ p?

This condition always holds for both convex and nonconvex problems.

It can be used to find nontrivial lower bounds for difficult problems.

For example, solving the SDP

maximize −1Tν

subject to W + diag(ν) � 0
,

gives a lower bound for the two-way partitioning problem from above.

Strong Duality: d? = p?

This condition does not hold in general.

It usually holds for convex problems.

Conditions that guarantee strong duality in convex problems are called
constraint qualifications.
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Lagrangian Duality Weak & Strong Duality

Slater’s Constraint Qualification

Strong duality holds for a convex optimization problem

minimize f0(x)

subject to fi(x) ≤ 0 , i = 1, . . . ,m

Ax = b

,

if it is strictly feasible, meaning that

∃x ∈ relint(D) : fi(x) < 0 , i = 1, . . . ,m , Ax = b .

This constraint qualification is called Slater’s condition.

If p? > −∞, this condition also guarantees that the dual optimal is attained.

It can be sharpened when some of the inequality constraint functions fi are
affine. Specifically, if the first k constraint functions f1, . . . , fk are affine, then
strong duality holds provided the following weaker condition holds.

∃x ∈ relint(D) : fi(x) ≤ 0 , i = 1, . . . , k , fi(x) < 0 , i = k + 1, . . . ,m , Ax = b .

There exist many other types of constraint qualifications.
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Lagrangian Duality Weak & Strong Duality

Complementary Slackness
Assume that strong duality holds (i.e., p? = d?), x? is primal optimal, and (λ?,ν?) is
dual optimal. Then, we have the following.

f0(x
?) = g(λ?,ν?) = inf

x∈D
L(x,λ?,ν?)

= inf
x∈D

{
f0(x) +

m∑
i=1

λ?
i fi(x) +

p∑
i=1

ν?i hi(x)

}
,

≤ f0(x
?) +

m∑
i=1

λ?
i fi(x

?) +

p∑
i=1

ν?i hi(x
?) ,

≤ f0(x
?) .

Thus, the two inequalities hold with equality. From this, we ascertain the following.
The primal optimal point x? minimizes L(x,λ?,ν?). Note that the Lagrangian
L(x,λ?,ν?) may have other minimizers besides x?.
We have λ?

i fi(x
?) = 0 for i = 1, . . . ,m. This condition is known as

complementary slackness. Specifically, this implies that
λ?
i > 0 =⇒ fi(x

?) = 0 , fi(x
?) < 0 =⇒ λ?

i = 0 .

In other words, the slackness sparsity patterns for the primal inequality
constraints and corresponding dual Lagrange multipliers do not overlap.
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Lagrangian Duality Weak & Strong Duality

Inequality Form LP

Primal problem:
minimize cTx

subject to Ax � b
.

Dual function:

g(λ) = inf
x

{(
c+ATλ

)T
x− bTλ

}
=

{
−bTλ , ATλ+ c = 0

−∞ , otherwise
.

Dual problem:
maximize −bTλ

subject to ATλ+ c = 0 , λ � 0
.

From Slater’s condition, p? = d? if Ax̃ ≺ b for some x̃.

As all constraints are affine, we have in fact p? = d? except when both
the primal and dual are infeasible.
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Lagrangian Duality Weak & Strong Duality

General and Special QCQPs
Primal problem:

minimize (1/2)xTP0x+ qT
0 x+ r0

subject to (1/2)xTPix+ qT
i x+ ri ≤ 0 , i = 1, . . . ,m

.

Here, P0 ∈ Sn++ and Pi ∈ Sn+ for i = 1, . . . , n.

Dual function:
L(x,λ) = (1/2)xTP(λ)x+ q(λ)T x+ r(λ) ,

where
P(λ) = P0 +

m∑
i=1

λiPi , q(λ) = q0 +
m∑
i=1

λiqi , r(λ) = r0 +
m∑
i=1

λiri .

If λ � 0, then P(λ) � 0 and we have

g(λ) = inf
x
L(x,λ) = − (1/2)q(λ)T P(λ)−1 q(λ) + r(λ) .

Dual problem:
maximize − (1/2)q(λ)T P(λ)−1 q(λ) + r(λ)

subject to λ � 0
.

From Slater’s condition, p? = d? if there exists some x̃ such that

(1/2) x̃TPix̃+ qT
i x̃+ ri < 0 , i = 1, . . . ,m .

When Pi = 0 for all i, then all constraints are affine and so p? = d? always in this case.
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Lagrangian Duality Weak & Strong Duality

Nonconvex QP with Strong Duality
Primal problem:

minimize xTAx+ 2bTx

subject to xTx ≤ 1
.

Here, A ∈ Sn but A 6� 0, and so the problem is not convex.

Dual function:
L(x, λ) = xT (A+ λI)x+ 2bTx− λ .

The Lagrangian L(x, λ) is unbounded below if A+ λI 6� 0 or if A+ λI � 0 and
b 6∈ R(A+ λI).
It is minimized by x = − (A+ λI)# b otherwise, in which case
g(λ) = −bT (A+ λI)# b− λ.

g(λ) =

{
−bT (A+ λI)# b− λ , A+ λI � 0 , b ∈ R(A+ λI)

−∞ , otherwise
.

Dual problem: (and equivalent SDP)

maximize −bT (A+ λI)# b− λ
subject to A+ λI � 0 , b ∈ R(A+ λI) ,

maximize −t− λ

subject to

[
A+ λI b

bT t

]
� 0

.

Strong duality (i.e., p? = d?) holds even though the primal problem is not convex. The
proof of this involves a theorem of alternatives known as the S-procedure.
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Lagrangian Duality Geometric Interpretation

Weak/Strong Duality Via the Set of Values
A geometric interpretation of the dual function can be given in terms of the set of values

G = {(f1(x) , . . . , fm(x) , h1(x) , . . . , hp(x) , f0(x)) ∈ Rm × Rp × R : x ∈ D} .
With this set, the optimal value of the primal problem p? can be expressed as

p? = inf {t : (u,v, t) ∈ G , u � 0 , v = 0} ,
while the dual function g(λ,ν) is given by

g(λ,ν) = inf
{
(λ,ν, 1)T (u,v, t) : (u,v, t) ∈ G

}
.

Hence, (λ,ν, 1)T (u,v, t) ≥ g(λ,ν) defines a nonvertical supporting hyperplane to G.
Visual example: For simplicity, consider a problem with one constraint. In this case, we have

g(λ) = inf
(u,t)∈G

{λu+ t} , where G = {(f1(x) , f0(x)) : x ∈ D} .

u

t

G

p⋆

g(λ)
λu+ t = g(λ)

u

t

G

p⋆

d⋆

Here, λu+ t = g(λ) is a nonvertical supporting hyperplane to G.
The hyperplane intersects the t-axis at t = g(λ).
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Lagrangian Duality Geometric Interpretation

Epigraph Variation
An alternate geometric interpretation can be made by considering an epigraph form of G given by
A = G +

{
Rm
+ × {0} × R+

}
,

= {(u,v, t) : ∃ x ∈ D, fi(x) ≤ ui , i = 1, . . . ,m , hi(x) = vi , i = 1, . . . , p , f0(x) ≤ t} .
With this set, the optimal value of the primal problem p? and the dual function g(λ,ν) are given by

p? = inf {t : (0,0, t) ∈ A} , g(λ,ν) = inf
{
(λ,ν, 1)T (u,v, t) : (u,v, t) ∈ A

}
.

Thus, (λ,ν, 1)T (u,v, t) ≥ g(λ,ν) defines a nonvertical supporting hyperplane to A.
Strong duality:

This condition holds if and only if there exists a nonvertical supporting hyperplane to A at
its boundary point (0,0, p?).
For a convex problem, A is convex, and so has a supporting hyperplane at (0,0, p?).
Slater’s condition: If there exists (ũ, ṽ, t) ∈ A with ũ ≺ 0 and ṽ = 0, then the supporting
hyperplanes at (0,0, p?) must be nonvertical.

Visual example: A = {(u, t) : f1(x) ≤ u , f0(x) ≤ t for some x ∈ D}

u

t

p⋆

g(λ)

λu+ t = g(λ)

A
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